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Background: Coronary heart disease (CHD) is the most common progressive

disease that is di�cult to diagnose and predict in the young asymptomatic

period. Our study explored a mechanistic understanding of the genetic

e�ects of premature CHD (PCHD) and provided potential biomarkers and

treatment targets for further research through high throughput sequencing

and integrated bioinformatics analysis.

Methods: High throughput sequencing was performed among recruited

patients with PCHD and young healthy individuals, and CHD-related

microarray datasets were obtained from the Gene Expression Omnibus (GEO)

database. Di�erentially expressed genes (DEGs) were identified by using R

software. Enrichment analysis and CIBERSORT were performed to explore the

enriched pathways of DEGs and the characteristics of infiltrating immune cells.

Hub genes identified by protein–protein interaction (PPI) networks were used

to construct the competitive endogenous RNA (ceRNA) networks. Potential

drugs were predicted by using the Drug Gene Interaction Database (DGIdb).

Results: A total of 35 DEGs were identified from the sequencing dataset

and GEO database by the Venn Diagram. Enrichment analysis indicated that

DEGs are mostly enriched in excessive immune activation pathways and

signal transduction. CIBERSORT exhibited that resting memory CD4T cells

and neutrophils were more abundant, and M2 macrophages, CD8T cells,

and naïve CD4T cells were relatively scarce in patients with PCHD. After the

identification of 10 hub gens, three ceRNA networks of CD83, CXCL8, and
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NR4A2 were constructed by data retrieval and validation. In addition, CXCL8

might interact most with multiple chemical compounds mainly consisting of

anti-inflammatory drugs.

Conclusions: The immune dysfunctionmainly contributes to the pathogenesis

of PCHD, and three ceRNA networks of CD83, CXCL8, and NR4A2 may

be potential candidate biomarkers for early diagnosis and treatment targets

of PCHD.

KEYWORDS

premature coronary heart disease, high throughput sequencing, integrated

bioinformatics analysis, immune dysfunction, potential biomarkers

Introduction

Coronary heart disease (CHD) is associated with high

morbidity, mortality, and economic burdens, and it has emerged

as a leading health problem worldwide that is generally

caused by multiple cardiovascular risk factors, including

diabetes, hyperlipidemia, hypertension, cigarette smoking, and

an unhealthy lifestyle (1). With recent substantial progress in

exploring the progression of coronary atherosclerosis, classic

cardiovascular risk factors are inadequate as indicators of disease

prediction and stratification (2), and inflammatory biomarkers

such as C-reactive protein (CRP) and interleukin-6 (IL-6)

have received growing attention in the pathogenesis of CHD

(3, 4). The currently available therapeutic strategies in clinical

practice have not yet completely prevented or reversed coronary

artery damage (5, 6), and this disease occurs increasingly at

a younger age (7). Premature CHD (PCHD) is considered an

acute myocardial infarction, with more than 70% stenosis of

the coronary arteries observed in coronary angiography before

the age of 45 (7). The accumulating evidence has found that

approximately 40% of predispositions for patients with CHD

are inherited, and genetic variation is therefore considered a

non-negligible risk factor for these special populations (2, 8).

The identification of potential molecular mechanisms and novel

detectable biomarkers is essential for early clinical diagnosis,

individualized medication, and improved prognosis of CHD (9).

Currently, the extensive application of high throughput

sequencing, microarray profiling, and integrated bioinformatics

analysis made a breakthrough in the discovery of abundant

differentially expressed genes (DEGs) that participate in various

diseases (9, 10). These DEGs show close relationships to their

multiple biological functions of CHD, and these technologies

can therefore provide insight into the deleterious mechanisms

of CHD from the genome-wide dimension (9, 11, 12).

The detection and construction of competitive endogenous

RNA (ceRNA) networks based on DEGs could elucidate a

transcriptional regulatory mechanism in disease progression

and recovery in detail (13). Additionally, these circulating

DEGs are viewed as promising candidate biomarkers because

they are relatively stable, easily detectable, and a result of

their system-specific attributes (11). In this study, we recruited

45 Chinese Han patients for PCHD, combined sequencing,

and bioinformatics analysis to make comparisons of whole

blood transcriptome differences in individuals with and without

PCHD, and identified potential targets for early diagnosis,

stratification, and intervention.

Materials and methods

Participant recruitment and sample
collection

This study was approved by the ethics committee of the

Chinese PLA General Hospital, and only young adults under

the age of 45 were recruited. A total of 45 patients with PCHD

were eligible for enrollment based on the results of diagnostic

coronary angiography. We excluded the patients with aortic

dissection, pulmonary embolism, cardiomyopathy, valvular

heart disease, and a history of previous cancer, current infection,

autoimmune diseases, or hemopathy. Another population

encompassed eight healthy individuals who were enrolled as the

control group. All participants with informed consent provided

fasting blood samples for high throughput sequencing the next

morning after admission to exclude physiological interfering

factors, such as eating, fasting, and diurnal rhythms.

Total RNAs extraction, sequencing, and
data processing

The red blood cells were lysed and total RNAs were

isolated from whole blood samples by using TRIzol
R©

reagent

(Wuhan ServiceBio Technology, Wuhan, China) following

the manufacturer’s instructions. We used 1% agarose gel

electrophoresis to evaluate the degradation and contamination
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of RNA. The RNA purity and concentration were calculated via

a NanoDrop 2000 spectrophotometer (Thermo Scientific, MA,

USA). The RNA integrity was accurately assessed by using the

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA, USA). Then, RNA sequencing libraries were constructed

by NEBNext
R©

UltraTM Directional RNA Library Prep Kit for

Illumina
R©

(NEB, Ispawich, USA). Given that some rRNA and

circulating non-coding RNAs will result in data bias in RNA-seq

technology, the rRNA and circulating non-coding RNAs have

been eliminated by the kit when the library was established.

To further reduce the influence of these RNAs, we would also

screen and eliminate rRNAs based on the quality control results

of fastqc to ensure the accuracy of the final quantitative results

of each gene in the comparison analysis. Libraries were then

tested for quality via the Agilent 2100 Bioanalyzer, quantified

using qPCR (Kapa Biosystems, Woburn, MA, USA), and

sequenced on an Illumina HiSeqTM 2000 sequencing platform

(Illumina, San Diego, CA, USA), following the manufacturer’s

protocols. We filtered raw sequencing reads via the following

three criteria to ensure the quality of information analysis:

(1) paired reads were discarded if the percentage of unknown

bases was more than 10% in single-ended reads; (2) paired

reads with sequencing joints or adaptors were discarded; and

(3) paired reads were discarded if the percentage of low-

quality bases was over 50% in single-ended reads. In addition,

the Q20, Q30, and GC contents of all sequencing reads were

detected and thus high-quality clean reads were selected for

subsequent analysis.

The genome reference files and gene model annotations

were downloaded from the genome website. The reference

genome index was generated via Bowtie2 software and then

paired-end clean reads were aligned with the reference genome

based on HISA T2 software (14). Cufflinks 2.0 program

was applied to assemble separately the transcriptome of each

sample. We used Cuffmerge to combine all transcriptomes to

produce a final transcriptome, and thereby the abundance of all

transcripts can be quantified and presented as transcripts per

million (TPM) after standardization through Cuffdiff software

(9, 15).

Microarray data acquisition

CHD-related microarray data were obtained from GEO

(https://www.ncbi.nlm.nih.gov/geo), which is an available

online genomic database that contains abundant gene

expression profiles and relevant clinical information. We

used the following search strategy: (1) (“coronary disease”

[MeSH Terms] OR coronary heart disease [All Fields])

AND (“Expression profiling by array” [Study type] AND

“Homo sapiens” [Top Organisms]) was adopted; (2) blood

sample from all individuals; (3) each dataset contained more

than six individuals. After rigorous screening, we selected

one GPL570 dataset, GSE66360, which consists of 21 CHD

samples and 22 healthy samples, as the test set along with

our high-throughput sequencing data. Moreover, another

GPL570 dataset GSE19339, one GPL9040 dataset GSE31568,

and one GPL21825 dataset GSE160717, comprising 26 CHD

samples and 26 healthy samples, were included as the validation

sets to verify hub genes, miRNAs, and cicrRNAs involved

in the pathogenesis of CHD, respectively. All data table

header descriptions and series matrix files of gene expression

profiles above were reprocessed and normalized by using the

Robust Multiarray Average (RMA) method with R software

4.1.0 (10).

Identification of di�erentially expressed
genes

High-throughput sequencing directly obtains the sequence

and quantity of all captured fragments through next-generation

sequencing technology. However, microarray sequencing needs

to synthesize the gene sequence of interest in advance and

determine whether these genes are expressed through the

fluorescent signal introduced by nucleic acid hybridization.

The directness of high-throughput sequencing will inevitably

make its overall accuracy and sequencing depth better than

that of microarray sequencing. Considering the different

methods and depths of data sequencing, the differentially

expressed genes (DEGs) were screened using the following

threshold criteria: (1) high-throughput sequencing data: log2

(fold change) > 4 or < −4 and adjusted P-value (Q-value)

< 0.01; (2) microarray data: log2 (fold change) > 0.5 or < −0.5

and adjusted P-value (Q-value) < 0.05. The volcano plot and

heatmaps of DEGs from each dataset were made with the limma

package and pheatmap package of the R software. Additionally,

system/organ-specific properties of all DEGs were identified

by the online tool BioGPS (http://biogps.org/), which better

indicated the distribution of genes in various tissues. Further

online tool Venn Diagrams (http://www.bioinformatics.com.

cn/static/others/jvenn/) were employed to exhibit DEGs shared

by datasets.

Functional and pathway enrichment
analysis

The biological characteristics of all DEGs were

annotated into molecular functions (MF), biological

processes (BP), and cell components (CC) by using

Gene Ontology (GO) enrichment analysis. In addition,

the comprehensive gene interactions were presented

through the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis that could enrich DEGs into the
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molecular pathway. In our study, GO and KEGG pathway

enrichment analyses were performed and visualized using

the R software. The screening criteria were adjusted to

P < 0.05.

Gene Set Enrichment Analysis (GSEA) software was

initiated to carry out all genes to distinguish differential

pathogenetic effects derived from the specific disease

status. The screening criteria of significant gene sets were

stated as follows: P < 5% and false discovery rate (FDR)

< 25%.

Immune infiltration analysis

Normalized expression profiling of the DEGs was imported

to evaluate the relative content of 22 types of infiltrating immune

cells by using the CIBERSORT (http://cibersort.stanford.edu/)

to identify the immune characteristics of the dataset.

Protein–protein interaction network
construction

We constructed the PPI network of DEGs by searching

the online tool Search Tool for the Retrieval of Interacting

Genes/Proteins database (STRING; http://www.string-db.org/),

which would predict and exhibit the interrelation of genes

or proteins. Next, the PPI network was optimized with

Cytoscape software, which could discover significant gene

clusters through the module of Minimal Common Oncology

Data Elements (MCODE) and identify hub genes via another

plug-in Cytohubba.

Construction of CeRNAs networks

We entered obtained hub genes into three miRNA

databases, namely, miRDB, miRWalk, and targetScan, to predict

corresponding target miRNAs and selected common miRNAs

that were identified in at least three databases for downstream

analysis. StarBase database (http://starbase.sysu.edu.cn/contact.

php) was applied to identify circRNAs that targeted the miRNAs

above. These miRNAs and circRNAs were intersected with

CHD-related miRNAs, and circRNAs obtained from GEO and

overlapped ones were constructed as the ceRNAs network,

which was visualized by Cytoscape.

Identification of potential drugs for CHD

Potential drugs related to selected hub genes were identified

by using the Drug Gene Interaction Database (DGIdb; http://

www.dgidb.org).

Statistical analysis

All statistical data processing and analysis were

performed with R software and SPSS Statistics 25.0.

Comparisons of quantitative variables between the

groups were performed by using Student’s t-test.

Pearson correlation analysis was used to elucidate

the gene correlation. P-values < 0.05 were considered

statistically significant.

Results

Identification of DEGs

A total of 1,692 and 885 DEGs were respectively identified

from the high throughput sequencing dataset and GSE66360

based on the defined criteria, which were visualized using

the volcano plots and the heatmaps . The high throughput

sequencing dataset contains 235 up-regulated genes and

1,457 down-regulated genes, and GSE66360 contains

666 up-regulated genes and 219 down-regulated genes.

The total overlap of the DEGs is presented in the Venn

Diagram, including 31 up-regulated genes and 4 down-

regulated genes (Figures 1E,F; Supplementary Table 1).

The system/organ-specific properties of 35 DEGs were

indicated by BioGPS (Supplementary Table 2), of which

19 DEGs are clustered in the hematologic/immune system

(19/35, 54.28%).

Enrichment analysis

We first performed a KEGG pathway analysis of 35

overlapped DEGs that were mainly enriched in the exuberant

immune response, including the IL-17 signaling pathway,

NF-kappa B signaling pathway, TNF signaling pathway,

and NOD-like receptor signaling pathway Figures 2A,D.

In the GO enrichment analysis of these 35 DEGs, the

significantly enriched categories for BP were positive

regulation of response to external stimulus, regulation of

hemopoiesis, neutrophil activation, and positive regulation

of inflammatory response, and the prominent MF entries

contained cytokine activity and Toll-like receptor binding

(Figures 2B,C).

Considering the genetic attributes of PCHD, we

further conducted a separate enrichment analysis on high-

throughput sequencing dataset to obtain a preliminary

understanding of its pathogenetic mechanism. KEGG

pathway enrichment analysis of PCHD showed that all

DEGs were mostly enriched in focal adhesion, tight

junction, and ECM-receptor interaction (Figure 3A).

The BP entries of GO enrichment included humoral
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FIGURE 1

Identification of DEGs. (A,B) Volcano plot of DEGs between the CHD samples and the healthy samples from the GSE66360 dataset and high

throughput sequencing dataset, respectively. Blue plots represent downregulated genes, gray plots represent nonsignificant genes, and red

plots represent upregulated genes. (C,D) Heatmap of DEGs between the CHD samples and the healthy samples from the GSE66360 dataset and

high throughput sequencing dataset, respectively. Blue rectangles represent low expression and red rectangles represent high expression. (E,F)

Venn diagram of overlapped up-regulated and down-regulated DEGs from the two datasets, respectively.

immune response, phagocytosis, complement activation,

immunoglobulin-mediated immune response, and B cell-

mediated immunity. Regarding CC, the significant categories

were the immunoglobulin complex and the external side

of the plasma membrane. For MF, enriched terms were

channel activity and passive transmembrane transporter
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FIGURE 2

GO and KEGG pathway enrichment analysis of DEGs. (A,D) Bubble charts and chord plots both show KEGG pathway enrichment significance

items of DEGs. (B,C) Two Bubble charts show GO enrichment significance items of DEGs in the two sections of BP and MF. In the Bubble charts,

the Y-axis label represents enrichment significance terms and the X-axis label represents the gene ratio. In the Chord plot, DEGs are exhibited on

the left side of the graph, and enrichment significance items are exhibited on the right side of the graph.

activity (Figure 3B). Additionally, GSEA was carried out

to indicate that the most significant-enriched gene sets,

namely, cardiac muscle contraction, innate immune response

activating signal transduction, IL-1 mediated signaling pathway,

and response to IL-12, positively correlated with PCHD

(Figure 4).

Immune infiltration characteristics of
high throughput sequencing dataset

To demonstrate the distribution of immune cells in

PCHD, we found that resting memory CD4T cells, resting

mast cells, eosinophils, and neutrophils were more abundant;
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FIGURE 3

GO and KEGG pathway enrichment analysis of all DEGs of PCHD. (A) Bubble chart shows KEGG pathway enrichment significance items of DEGs.

(B) Bubble chart shows GO pathway enrichment significance items of DEGs in three functional sections: biological processes (BP), cell

composition (CC), and molecular function (MF). The Y-axis label represents enrichment significance terms and the X-axis label represents the

gene ratio.
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FIGURE 4

GSEA of high throughput sequencing dataset. (A–D) Four GSEA plots showing four significant gene sets of PCHD, which respectively are cardiac

muscle contraction, innate immune response activating signal transduction, IL-1 mediated signaling pathway, and response to IL-12.

however resting NK cells, M2 macrophages, memory B

cells, CD8T cells, naïve CD4T cells were relatively scarce

in patients with PCHD by using CIBERSORT algorithm

Figure 5A. The proportion of neutrophils was negatively

associated with that of CD8T cells and T regulatory (Treg) cells

(Figure 5B).

PPI network analysis

A total of 35 co-expressed DEGs were entered into the

online tool STRING and constructed as a PPI interaction

network with 17 nodes and 28 edges under the condition

of scattered nodes deletion (Figure 6A). Next, cytohubba was
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FIGURE 5

Immune infiltration analysis of DEGs from high throughput sequencing dataset. (A) Bar charts showing the proportions of immune cell subsets.

(B) Correlation heatmap showing the association of various immune cell subsets.

applied to identify 10 hub genes presented with red and

yellow color.

Further, we put all the DEGs of the high throughput

sequencing dataset into STRING and screened the top 100

hub genes using algorithms of cytohubba (Figure 6B). The

MCODE plugin was used to verify the most significant cluster

1 consisting of 22 nodes (MCODE score: 22), followed by

cluster 2 (MCODE score: 11) and cluster 3 (MCODE score: 10)

(Figures 6C–E).

Verification of 10 hub genes in GSE19339
dataset

Expression profiles of 10 hub genes were extracted from

GSE19339 and compared between the two groups. We

observed that the levels of CD83, CXCL2, CXCL8, JUN,

and NR4A2 were significantly increased in the CHD group

(P < 0.05) (Figure 7).

Target NcRNAs prediction and network
construction

A total of 201 hub-gene-related miRNAs were obtained

based on three miRNA databases, and we screened out 397

CHD-related miRNAs by differential genes expression analysis

in the GSE31568 dataset. Finally, 19 intersected miRNAs and

their correspondingmRNAswere exhibited in the Venn diagram

and interaction networks figure (Figure 8A).

Using the same method as above to predict circRNAs,

we successively searched the StarBase database, analyzed data

from GSE160717, and took intersections as target circRNAs.

Finally, three ceRNA networks of CD83, CXCL8, and NR4A2
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FIGURE 6

PPI network of DEGs. (A) The interaction network shows the important genes and their interactions among 35 co-expressed DEGs. (B) The

interaction network shows the important genes and their interactions in the high throughput sequencing dataset. (C–E) Three most significant

clusters of the high throughput sequencing dataset. Each node represents a protein, while each edge represents one protein-protein association.

were constructed, and they might be potential RNA regulatory

pathways to regulate PCHD progression (Figures 8B–E).

Identification of the potential drugs

We used the DGIdb database to predict the potential

drugs that might reverse the detrimental effects of DEGs

in PCHD. As a result, CXCL8 interacted most with drugs,

namely, cetuximab, acetaminophen, bevacizumab, leflunomide,

colchicine, paclitaxel, etc., (Figure 9).

Discussion

Approximately 10% of the young population under the

age of 45 develop CHD, which contributes greatly to the

current global health and economic burden (11). The chronic

and systemic inflammations perpetuate this disease and

are positively correlated with the subsequent major adverse

cardiovascular events (3, 16). Even if patients with CHD receive

optimal medical treatment or invasive percutaneous coronary

intervention (PCI), a substantial portion of them still suffer from

recurrent myocardial infarction or elective revascularization

(3, 5). Recent studies demonstrated that the onset and

progression of CHD could be intervened by polygenetic variants

that were involved in multiple biological pathways, including

the regulation of hypertension, dyslipidemia, hyperglycemia,

vascular remodeling, and inflammation (17–19). It is firmly

believed that patients with PCHD with no clear traditional

cardiovascular risk factors might be more likely to be modulated

by inherited risk factors (2, 20). This indicates that the

identification of novel genetic biomarkers with maximal

specificity and sensitivity is rationally demanded to prevent and

diagnose PCHD earlier.

In the present study, we recruited 45 Chinese Han patients

with PCHD as the investigated population and draw their

peripheral blood samples for high throughput sequencing.
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FIGURE 7

The validation of ten hub genes in the GSE19339 dataset.

Since no available sequencing data related to PCHD have

been reported before, we retrieved CHD-related data as a

reference from the online public genomic database. Through

data processing and differential gene expression analysis,

a set of whole blood gene expression changes specific to

those with PCHD were compared to healthy individuals,

suggesting a direct correlation between myocardial injury

and blood gene expression (12). Moreover, we identified the

total overlap of 35 DEGs from two datasets, including 19

hematologic/immune system-specific expressed genes. These

findings were consistent with a recently published study focusing

on unstable angina patients, which preliminarily indicated that

immune dysfunction was involved in the pathophysiological

processes of this disease (9). GO and KEGG enrichment analysis

of 35 overlapped DEGs indicated that the immune responses,

such as neutrophil activation, IL-17 signaling pathway, NF-

kappa B signaling pathway, TNF signaling pathway, and NOD-

like receptor signaling pathway, were exuberant in patients

with CHD compared to healthy individuals. Considering

the genetic attributes of PCHD, we further conducted the

enrichment analysis of all PCHD-related DEGs, which also

were mostly enriched in excessive immune activation pathways

and abundant signal transduction. Additionally, we performed

a GSEA algorithm that could identify differential enrichment

functions based on the overall expression trend of all genes

in the PCHD dataset. The results demonstrated that most of

the genes in subjects with PCHD were mainly clustered in the

cardiac muscle contraction, innate immune response activating

signal transduction, and response to IL-12 and IL-1 mediated-

signaling pathway, suggesting that immune dysfunctions have

been again confirmed as the essential mechanism contributing

to PCHD (21). The proportions of 22 subsets of infiltrating

immune cells from PCHD transcriptomes were calculated

by conducting a state-of-the-art deconvolution CIBERSORT

algorithm. We found that higher proportions of neutrophils

and eosinophils were associated with PCHD, which was in line

with the results of GO and KEGG enrichment analysis in this

study. Abundant evidence has implicated the essential roles of

neutrophils that release a series of inflammatory cytokines in

plaque progression (3, 22). We also found that M2macrophages,

CD8T cells, and Treg cells were relatively scarce in patients

with PCHD. M2 macrophages and Treg cells are however

pivotal anti-inflammatory ingredients that could render plaque

stabilization by secreting anti-atherogenic cytokines (16, 23, 24).

It could be interpreted that PCHD was prone to occur when

protective immune cells were dampened. All findings above

in our study are consistent with the progression of coronary

atherosclerotic plaques that are composed of a thin fibrous

cap and large necrotic cores involving activated immune cells

and inflammatory cytokines (23). We have identified important

inflammatory pathways and immune cell subsets in patients with

PCHD at the transcriptome and cell level through integrated

bioinformatics methods, which could provide a more detailed

understanding of disease pathogenesis.

Ten hub genes were recognized by constructing the PPI

network and analyzing it by Cytoscape. Through verifying the

expression levels of these hub genes in 53 recruited participants

and another CHD dataset, we identified five critical genes that

included CD83, CXCL2, JUN, CXCL8, and NR4A2. Various

studies demonstrated that the gene expression could generally

Frontiers inCardiovascularMedicine 11 frontiersin.org

https://doi.org/10.3389/fcvm.2022.893502
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Wang et al. 10.3389/fcvm.2022.893502

FIGURE 8

Target ncRNAs Prediction and Network Construction. (A) Venn diagram of overlapped miRNAs from the GSE31568 dataset and online miRNA

databases. (B) Venn diagram of overlapped circRNAs from GSE160717 dataset and online circRNAs databases. (C–E) Three ceRNA network of

CD83, CXCL8, and NR4A2. Red nodes represent hub genes, blue nodes represent miRNAs, and orange nodes represent circRNAs.

be down-regulated and even silenced by combining with

miRNAs; however, upstream circRNAs could intervene with

miRNAs response elements (10). This regulatory interaction

among RNAs is called a ceRNA network. We thus crossed

the GEO, miRNA databases, and StarBase database to obtain

three ceRNA networks of CD83, CXCL8, and NR4A2 to

elucidate the pathogenesis of CHD. CD83, a member of the

immunoglobulin superfamily, is a characteristic marker on

the surface of dendritic cells. A continuous high expression

of CD83 represents abundant dendritic cells that participate

in antigen presentation and lymphocyte activation (25). IL-

12, TGF-β, and IL-1β released by dendritic cells promote the

maturation of helper T 1 cells to induce inflammatory cascades

(16, 25). Previous studies claimed that activated dendritic

cells migrated into atherosclerotic plaque and accelerated its

progression (23, 25). CXCL8 (also called IL-8), a contributor

to the local inflammatory response, has been considered to

chemoattract neutrophils that move toward progressive plaque

and produce excessive inflammatory cytokines (26). CXCL8

also is confirmed as a center molecule involved in the IL-17

signaling pathway, NF-kappa B signaling pathway, and NOD-

like receptor signaling pathway, which is consistent with GO

and KEGG enrichment analysis in our study (26–28). An up-

regulated CXCL8 gene is thus associated with a high incidence

of PCHD. NR4A2 is a member of the NR4A orphan nuclear

receptor family, which encodes a zinc finger protein that can

bind to DNA. NR4A2 is considered an adaptive response gene

that can be activated in response to various stresses (29).

Mutations in this gene have been associated with disorders

related to dopaminergic dysfunction, such as Parkinson’s

disease and manic depression (30). In addition, NR4A2 is

also up-regulated by the upstream molecule TNFα in synovial

tissue, contributing to cartilage destruction and ultimately

rheumatoid arthritis. A recent study revealed that NR4A2 was

upregulated in mice with ischemia-induced myocardial damage,

and the overexpression of NR4A2 would improve myocardial
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FIGURE 9

The gene-drug interaction network. The red node represents the hub gene and ocean blue nodes represent drugs.

apoptosis (31). Up-regulation of NR4A2 might be therefore

self-protective with progressive pro-inflammatory infiltration of

patients with PCHD in our study. Our realization of these three

ceRNA networks regarding inflammatory activation could be

further rationally explored as potential diagnostic biomarkers

for PCHD.

To predict the promising effective therapy for PCHD, we

used the DGIdb database to discover promising therapeutic

agents that might reverse the detrimental effects of CD83,

CXCL8, and NR4A2. The results indicated that only CXCL8

could be interfered with by multiple chemical compounds

mainly consisting of biological monoclonal antibodies and

non-steroidal and anti-inflammatory drugs. The CANTOS

trial suggested the efficacy of canakinumab targeting IL-

1β in improving the prognosis of patients with CHD (32).

Subsequent evidence has supported the idea that multiple anti-

inflammatory manipulations exert their cardiovascular benefits

with controllable adverse reactions through the resolution

of inflammation (4). Among our predicted drugs, colchicine

targeting CXCL8 has been confirmed by COLCOT, LoDoCo-

2, COPS, and COLCHICINE-PCI trials to show significant

clinical benefits, indicating that other predicted agents have the

potential to be administrated in future individualized treatment

of PCHD.
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There were several limitations in this study. Various

investigations demonstrated that the whole blood transcriptome

could be viewed as an accessible window to the multiorgan

transcriptome (33), and our study was the first one to explore

differences in gene expression of Chinese Han patients with

PCHD. Therefore, a comparison of transcriptome differences in

blood samples from individuals with and without PCHD in our

study exhibited distinct differences in gene regulation changes

related to PCHD from the genome-wide perspective. However,

multi-gene interactions and their complex functions require

cellular and animal experiments for verification. Second, the

blood samples were drawn from all participants before or after

medication and PCI; we were not yet sure about the possible

effects of treatments on gene transcription and cell subsets.

Third, the cohorts included in this study contained multiple

ethnicities, which might be an important risk factor involved

in the pathogenesis of CHD (34). Further investigations into

more Chinese individuals are needed for the confirmation of our

results to exclude potential racial bias.

Conclusion

We identified three hematologic/immune system-specific

expressed genes, CD83, CXCL8, and NR4A2, that could control

disease progression through the ceRNA network in PCHD.

Although the uncertainties warrant further evidence, these three

genes might be potential biomarkers for clinical applications

regarding early diagnosis, targeted therapy, and prognosis

evaluation of PCHD.
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