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Abstract

Background: Flavobacterium columnare is the causative agent of columnaris disease, a disease
affecting many freshwater fish species. Methods for the genetic manipulation for some of the
species within the Bacteroidetes, including members of the genus Flavobacterium, have been
described, but these methods were not adapted to work with F. columnare.

Results: As a first step toward developing a robust set of genetic tools for F. columnare, a protocol
was developed to introduce the E. coli — Flavobacterium shuttle vector pCP29 into F. columnare strain
C#2 by conjugal mating at an efficiency of 1.5 x 10-3 antibiotic-resistant transconjugants per
recipient cell. Eight of eleven F. columnare strains tested were able to receive pCP29 using the
protocol. pCP29 contains the cfxA and ermF genes, conferring both cefoxitin and erythromycin
resistance to recipient cells. Selection for pCP29 introduction into F. columnare was dependent on
cfxA, as ermF was found not to provide strong resistance to erythromycin. This is in contrast to
other Flavobacterium species where ermF-based erythromycin resistance is strong. The green
fluorescent protein gene (gfp) was introduced into F. columnare strains under the control of two
different native Flavobacterium promoters, demonstrating the potential of this reporter system for
the study of gene expression. The transposon Tn435/ was successfully introduced into F.
columnare, but the method was dependent on selecting for erythromycin resistance. To work, low
concentrations of antibiotic (| pg ml-') were used, and high levels of background growth occurred.
These results demonstrate that Tn435/ functions in F. columnare but that it is not an effective
mutagenesis tool due to its dependence on erythromycin selection. Attempts to generate mutants
via homologous recombination met with limited success, suggesting that RecA dependent
homologous recombination is rare in F. columnare.

Conclusion: The conjugation protocol developed as part of this study represents a significant first
step towards the development of a robust set of genetic tools for the manipulation of F. columnare.
The availability of this protocol will facilitate studies aimed at developing a deeper understanding of
the virulence mechanisms of this important pathogen.
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Background

The causative agent of columnaris disease is the bacte-
rium, Flavobacterium columnare [1]. This fish disease is
common in freshwater environments, affects numerous
fish species [2], and is responsible for significant eco-
nomic losses in the US channel catfish (Ictalurus puncta-
tus) industry [3]. Virulence is known to vary between
strains of F. columnare [4,5] and there is some evidence
that strains vary in host preference |6]. Infected fish often
exhibit external lesions on the body surface, gills and fins
[2], but during some outbreaks bacteria can be isolated
from moribund fish that exhibit no external signs of infec-
tion. Flavobacterium columnare is an opportunistic patho-
gen and is particularly problematic in commercial
aquaculture facilities where high fish densities are
required for profitability.

A substantial amount of work has been done to develop
methods for the rapid identification of F. columnare dur-
ing outbreaks [7,8] and in distinguishing between more
and less virulent strains of the bacterium [6,9-13]. Efforts
have also been made to understand the mechanisms of
virulence employed by the organism. Several factors have
been proposed, including the ability to adhere to surfaces
[14-16], extracellular protease activity [17], and chondroi-
tin AC lyase activity [12,18,19]. The bulk of the evidence
for these factors playing a role in virulence is suggestive,
based primarily on observed symptoms of the disease. Lit-
tle work has been done to characterize the genetic basis of
virulence due, in part, to the lack of a robust genetic sys-
tem for the manipulation of this important pathogen. The
ability to introduce foreign DNA into strains of F. colum-
nare would greatly increase our ability to study mecha-
nisms of virulence in this pathogen.

While no reports of the successful introduction of plas-
mids or transposons into F. columnare exist in the peer-
reviewed literature, other members of the genus Flavobac-
terium have proven amenable to genetic manipulation.
Expression of genes and replication of plasmids in mem-
bers of the genus Flavobacterium required modifications of
existing expression and mutagenesis vectors because sys-
tems optimized for the better-studied groups such as Pro-
teobacteria do not function in Bacteroidetes [20,21]. The
first successful mutagenesis of a member of this genus was
reported by McBride and Kempf [21] for Flavobacterium
johnsoniae with the introduction of the Bacteroides trans-
poson Tn4351 [22] carrying the erythromycin resistance
gene ermF. They also constructed an E. coli-F. johnsoniae
shuttle vector by combining the pCU19-based suicide vec-
tor pLYLO3 [23] with a cryptic plasmid (pCP1) isolated
from Flavobacterium psychrophilum strain D12 [21]. The
transposon has subsequently been shown to work in one
F. psychrophilum strain [24] and the shuttle vector has been
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introduced into both F. psychrophilum [24] and Flavobacte-
rium hibernum [25].

The successful introduction of these vectors into other Fla-
vobacterium species led us to hypothesize that, under the
proper conditions, F. columnare would be susceptible to
genetic manipulation using the vectors and markers
described above. The objective of this study was to deter-
mine the conditions required for F. columnare to accept
DNA by conjugal mating and to begin exploring the
potential of a green fluorescence protein (Gfp) based
reporter system for the study of native F. columnare pro-
moters.

Results

Introduction of pCP29 into F. columnare

The E. coli - Flavobacterium shuttle vector pCP29 was
introduced into F. columnare strain C#2 by conjugation
with E. coli S17-1 at a frequency of 1.5 x 10-3 cefoxitin-
resistant transconjugants per recipient cell. Attempts to
extract plasmids from F. columnare cultures with commer-
cial kits resulted in low yields. As a result, the presence of
the plasmids in F. columnare strains was confirmed two
ways. First, the cefoxitin gene was amplified by PCR with
primers pr32 and pr33 using both the low yield plasmid
extractions and genomic DNA extracted from cefoxitin
resistant F. columnare strains as the template. Genomic
DNA from the cefoxitin sensitive F. columnare parental
strain was used as the negative control. In the second
approach, the plasmid was reintroduced back into E. coli
cells by electroporation using the low yield plasmid
extractions as the source of the DNA in the transformation
protocol. The recovery of the plasmid from these E. coli
cells, demonstrated its presence in the cefoxitin resistant
F. columnare strains.

Ten pg ml! of cefoxitin was sufficient to prevent back-
ground growth as all cefoxitin resistant colonies tested
were found to harbor the plasmid. In total, eight of eleven
F. columnare strains screened took up pCP29 by conjugal
transfer. The efficiency of the transfer was not estimated
for any strains other than C#2, but based on the number
colonies seen on the selection plates, two of the strains
(1191-B and 94-078) appeared to take up the plasmid at
an efficiency lower than that achieved with C#2. The other
6 produced transconjugants at rates similar to C#2 (Table
1). The virulence to channel catfish of 10 of the 11 strains
used has been previously reported [13,26]. All 6 of the
more virulent strains were capable of taking up pCP29. Of
the 4 less virulent strains, 2 took up the plasmid and 2 did
not (Table 1). The virulence of Fc14-56 to channel catfish
is not known, but it is capable of causing disease in zebra
fish (Danio rerio) [27].
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Table I: Ability of F. columnare strain to receive pCP29 by conjugation with E. coli S17-1.

Strain Results of mating attempts? Virulence in channel catfish
C#2 ++ High
AL-203-94 ++ High
Fcl14-56 - Unknown
94-060 ++ High
1191-B + High
94-078 + High
94-081 ++ High
90-059 - Low
L90-659 ++ Low
92-002 - Low
C91-20 ++ Low

aTransconjugates isolated at an efficiency equivalent to that achieved with C#2: ++; Transconjugants isolated but at low efficiency: +; no

transconjugants isolated: -.

pCP29 containing transconjugants were also obtained
using erythromycin selection, but for growth to occur, the
erythromycin concentration had to be lowered to 1 pg ml-
1. This resulted in high background growth, indicating
that the erythromycin resistance gene ermF does not
impart strong resistance to F. columnare. Also, the E. coli
donor strain was not inhibited by 1 pg ml-! of erythromy-
cin, necessitating the use of 1 pg ml! tobramycin for
counter selection against the E. coli. Filters for conjugation
were incubated on Flavobacterium columnare Growth
Medium (FCGM), Ordal's, and Modified Ordal's (MO)
plates, and transconjugants were only isolated when
FCGM plates were used for this step.

Expression of gfp in F. columnare

Introduction of the Gfp gene into F. columnare strain C#2
under control of the map promoter on plasmid pAS36
resulted in expression of the gene at levels that could be
detected by both a fluorescence plate reader and by epif-
luorescence microscopy (Figure 1c). This result demon-
strates that gfp expression can be used to detect and
quantify expression of native F. columnare genes.

To increase the level of expression, the recently described
strong promoter from the F. johnsoniae ompA gene [28]
was also placed in front of gfp in pAS29 creating pAS43.
PAS43 was introduced into F. columnare strain C#2. The
resulting fluorescence was greater in cells containing gfp
driven by the ompA promoter than in cells containing gfp
driven by the map promoter (Figures 1c and 1e). The dif-
ference in Gfp fluorescence was quantified using the fluo-
rescence plate reader. Gfp fluorescence values and
standard errors of the mean were 41 + 0.64, 211 + 26 and
3,085 + 22 for strain C#2 containing plasmids pAS29 (no
promoter), pAS36 (map promoter) and pAS43 (ompA pro-
moter) respectively. The significance of the differences in
fluorescence levels detected between strains was assessed
using paired t-tests on log-transformed data. After adjust-
ing for multiple tests, all differences were found to be sig-
nificant with p-values less than 0.0001.

Mutagenesis attempts using Tn4351

Transposon mediated random mutagenesis was per-
formed using the Bacteroides transposon Tn4351 [22].
Tn4351 contains the erythromycin resistance gene ermF,
necessitating the use of erythromycin as the selective
marker. As with efforts to use erythromycin to introduce
pCP29 into F. columnare, antibiotic concentrations of 1 pug
ml! or lower were required for any growth to occur. At
these low concentrations, a significant amount of back-
ground growth was observed. Transposon mutagenesis
was attempted in three strains (C#2, AL-203-94 and Fc14-
56) and Tn4351 was successfully introduced into F. colum-
nare strain AL-203-94. Only two of ten colonies isolated
from plates containing 1 pug ml-! erythromycin contained
the transposon (Figure 2). While the two identified inser-
tions demonstrate that the transposon is capable of inte-
grating into the F. columnare genome, the high number of
false positives suggests that this ermF based transposon is
not a useful tool for the generation of mutants in this
organism.

Insertion mutagenesis by homologous recombination
Several attempts to make mutants by homologous recom-
bination with the ermF containing suicide plasmid
pLYLO3 [23] were unsuccessful. No colonies appeared at
erythromycin concentration greater than 1 ug ml-!, and
significant background growth occurred below this con-
centration (data not shown).

A cefoxitin based F. columnare suicide vector, pAS42, was
created by replacing Flavobacterium replicative functions
of pCP29 with a truncated gldJ sequence as described in
Methods. Using the mating protocol described below,
PAS42 was introduced into C#2 resulting in the successful
isolation of non-motile, cefoxitin resistant colonies (Fig-
ure 3). Mutants were isolated at an efficiency of roughly 1
x 106 cefoxitin-resistant mutants per recipient cell. This is
1,000-fold lower than the rate at which the pCP1 based
shuttle vector, pCP29, can be introduced to strain C#2.
Disruption of gld] was confirmed by PCR amplification
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A

Figure |
Demonstration of Gfp expression levels in F. columnare strain C#2 containing plasmids pAS29 (A and B) pAS36

(C and D) and pAS43 (E and F) using epifluorescence (A, C and E) and transillumination/phase contrast (B, D
and F) microscopy. The same field is shown for epifluorescence and phase contrast micrographs for each strain. Exposure

was varied in the pictures using transillumination to optimize each image, but for comparative purposes the excitation energy
and image exposure times were held constant in the three epifluorescence images. All six panels are drawn to the same scale.

1 293 AR e 849410 11 12

Figure 2
Demonstration of Tn4351 transposable element integration into the genome of F. columnare strain AL-203-94

following conjugative mating. Primers pr54 and pr56 targeting a 435 bp fragment of the tetX gene contained within the
transposon were used to screen for the presence of the transposon in F. columnare genomic DNA. PCR products were run on
a 1% agarose gel at 80 V for 45 min and visualized after staining with ethidium bromide. Lane |: | kb ladder, markers range
from 250 to 10,000 bp; Lanes 2—11: PCR product from genomic DNA extracted from colonies that grew on an Ordals agar
plate augmented with | pg ml-! of erythromycin and Lane 12: Tn435/ containing plasmid pEP4351 (positive control).
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Figure 3
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Photomicrograph of F. columnare colonies. Colonies were grown for 2 days at 27°C on Ordal's agar medium. (A) Wild-
type F. columnare C#2. (B) gld] knockout mutant FcAS44. Both panels are drawn to the same scale.

and sequencing of the novel junction formed by the inser-
tion of the mutagenesis vector in to the gldJ gene. PCR was
done using primers pr88 and pr93. Sequencing across the
novel junction was accomplished from both directions
using primers pr88 and pr104 (data not shown).

Discussion

Conditions for conjugal plasmid transfer from E. coli to F.
columnare

While some members of the genus Flavobacterium have
proven amenable to receiving plasmids via conjugal mat-
ing [21,24,25,29], no reports exist of the introduction of
plasmids into F. columnare. Here we report the first suc-
cessful introduction of plasmids into F. columnare using
vectors developed from the F. psychrophilum cryptic plas-
mid pCP1 [21]. These results extend the host range of
pCP1-based shuttle vectors to F. columnare.

Several factors appear to contribute to the successful trans-
fer of plasmids from E. coli to F. columnare. One is the use
of culture conditions for the initial growth of F. columnare
that allow the cells to grow to relatively high cell density
with minimal clumping or biofilm formation. Numerous
media have been described that support the growth of F.
columnare [30,31], but MO was chosen for the initial
growth step due to the rapid growth and minimal biofilm
formation observed with the use of this medium. While
transconjugants were obtained from cultures grown in
both Ordal's medium and FCGM, MO was deemed supe-
rior because of problems with low cell density, cell clump-
ing, and biofilm formation with Ordal's medium. Cell
clumping was not a problem with FCGM, but not all
strains grew to a high cell density in this medium.

A more important part of the mating protocol was the
medium used for the conjugal mating step itself. Ordal's,
MO and FCGM plates were all tested for the incubation of
the mating filters, but transconjugants were isolated only
when FCGM plates were used. In conjugal mating proto-
cols developed for other Flavobacterium species, the con-
centrated mixtures of donor and recipient cells are spotted
onto the mating plates directly [21,24,25]. With F. colum-
nare, the use of 47 mm diameter 0.45 um pore size nitro-
cellulose filters was necessary because the tightly adhering
mass of cells was difficult to remove from the agar surface,
but could easily be scraped from the surface of the filter.

The conjugation efficiency of 1.5 x 10-3 cefoxitin-resistant
transconjugants per recipient cell using pCP29 is greater
than what has been reported for F. psychrophilum [24] and
roughly equivalent to the highest rates reported for F.
johnsoniae [21]. The fact that eight of eleven F. columnare
strains screened took up pCP29 suggests that this protocol
can be used with many of the virulent strains of F. colum-
nare available for study, although rates of uptake varied
between strains and two strains did not take up the plas-
mid under the conditions tested (Table 1). This is in con-
trast to the method developed for F. psychrophilum where
only one strain has been shown to be capable of accepting
the plasmids, [24] possibly owing to differential DNA
methylation mechanisms or plasmid incompatibility.

Expression of gfp in F. columnare

Flavobacterium columnare cells must respond to varying
environments over the course of the infection process.
These include areas on the external and internal surfaces
of the fish as well as the surrounding environment. For
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example, studies using mucus scraped from the surface of
Atlantic salmon (Salmo salar L.) [32] suggest that F. colum-
nare regulate both biofilm production and extracellular
protease activity in response to exposure to fish mucus.
The mechanism of dispersal of F. columnare through the
host from initial, local sites of infection is also unclear.
Studies of the response of F. columnare to changing envi-
ronmental conditions would be aided by Gfp-expressing
strain, which would allow the direct visualization of either
biofilm formation or the infectious process by F. colum-
nare.

For such a strain to be useful, Gfp-expression levels must
be high enough for easy visualization. Promoters that
drive gene expression in other gram-negative bacteria gen-
erally do not function well in the Bacteriodetes [33],
including Flavobacterium species [21,25]. In Bacteroides fra-
gilis, analysis of housekeeping genes led to the description
of two consensus regions -7/-33 with the following
motifs: TAnnTITG/TTTG [20]. Recently, Chen et al. [28]
described a strong promoter from the ompA gene of F.
johnsoniae that contained these two consensus motifs and
led to high levels of fluorescence when used to drive gfp
expression. Mutation analysis was also used to describe a
putative ribosomal binding site (RBS) consensus
sequence: TAAAA found 2 to 12 bases from the gene start
codon [28].

The successful introduction of pCP29 into F. columnare
led to an evaluation of the shuttle vector as a tool for the
study of gene expression. To explore this potential, a pro-
moterless copy of the GFPmut1 gene [34] was cloned into
the Kpnl-Pstl sites of pCP29 creating pAS29. The Kpnl
restriction site was positioned just upstream of the begin-
ning of the gfp gene. This arrangement allowed for the
placement of different promoters upstream of gfp.

In this study, two promoters were assessed. The first was
the recently described F. johnsoniae strong promoter P,
[28]. The second promoter evaluated was the region
upstream of map, a gene which codes for a membrane
associated metalloprotease in F. columnare [35]. The pro-
moter region of this gene was chosen because protease
activity is a proposed virulence factor [17] and real-time
RT-PCR analysis suggests that the gene is constitutively
expressed in F. columnare (Staroscik and Nelson unpub-
lished data).

The P4 Tegion contains all three of the consensus
motifs (-33, -7, RBS) described above, while the native F.
columnare promoter map contains the RBS and -7 motifs
but not the -33 TTTG motif. The substantial increase in
Gfp fluorescence driven by the ompA promoter (P,4)
relative to the map promoter (P,,,,) is consistent with the
findings of others that while the -33, TTTG motif is not
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essential for gene expression, it is necessary for full activity
[20]. The presence of a native promoter in F. columnare
lacking the -33 consensus sequence suggests that the
absence of this motif is a strategy used by the organism to
drive low level constitutive expression of some genes.
Gene expression studies using constructs such as pAS36
and pAS43 should facilitate the study of gene expression
under environmentally relevant conditions and the
results with the map promoter suggest that gfp expression
can be used in the study of moderately expressed F.colum-
nare promoters. The availability of a plasmid containing
the gfp gene linked to a strong promoter should also open
the door to studies involving the direct observation of live
cells under a variety of conditions such as on the surface
of fish or in vivo during the infection process.

Transposon and site-specific homologous recombination
mutagenesis in F. columnare

Three resistance markers have been used for the genetic
manipulation of Flavobacterium species: The erythromycin
resistance gene ermF, the tetracycline resistance gene tetQ,
and the cefoxitin resistance gene cfxA. The cloning vectors
pCP11, pCP23, pCP29, pEP4351 and pLYLO3 all contain
ermF [21,23,36,37]. In addition to ermF, pCP23 and
pCP29 contain tetQ [36] and cfxA [37] respectively. While
ermF has been found to impart strong resistance to other
Flavobacterium species [21,24,25], the F. columnare strains
tested in this study remained sensitive to erythromycin
after introduction of ermF containing plasmids. The rea-
son(s) for the poor performance of ermF in F. columnare is
not known. It seems unlikely that promoter strength is the
issue since the region upstream of the ermF gene contains
the strong promoter -7/-33 consensus sequence
[21,24,25]. The poor performance of ermF suggests that
existing Flavobacterium vectors will need to be modified
for use in F. columnare.

The successful introduction of Tn4351 into F. columnare
strain AL-203-94 demonstrates that existing transposon-
based mutagenesis systems function in F. columnare. Nev-
ertheless, the high level of background growth due to the
low erythromycin levels required for growth suggests that
the existing transposon will need to be modified by the
addition of another resistance marker before it is an effec-
tive tool for the study of this organism. The modification
of the transposon and the identification of additional
antibiotic resistance genes functional in F. columnare
should be a high priority for future work.

Difficulty associated with high background growth was
also experienced with attempts to use the ermF based site
directed mutagenesis vector pLYLO3 to knock out specific
genes by homologous recombination. This led us to con-
struct a new cfxA based vector by removing the Flavobacte-
rium origin of replication from pCP29. This construct was
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used to isolate gldJ- motility mutants. While this effort was
successful, multiple mating attempts were required before
cefoxitin resistant, non-motile mutants were identified.
Subsequent efforts to disrupt other genes by this approach
have been successful, but the process was inefficient,
requiring multiple attempts before mutants were isolated
(Staroscik and Nelson unpublished data). Given the effi-
ciency with which pCP29 can be introduced into F. colum-
nare, these results suggest that homologous
recombination events are rare. This is consistent with
work in F. johnsonidge where insertion mutants of some
genes have been made by homologous recombination
[36], but the efficiencies have been quite low (Hunnicutt
and McBride personal communication) and attempts
with some genes have not succeeded [38].

In E. coli, the major homologous recombination pathway
is dependent on the activity of the genes recA, recB, and
recC [39-41]. The recently sequenced genomes of F. psy-
chrophilum [42] and F. johnsoniae (accession number
CP000685; unpublished data) reveal that while both con-
tain recA, neither contain recB or recC. The absence of
these genes is not unique to Flavobacterium [43], but their
absence may be part of the reason homologous recombi-
nation events are rare in members of this genus. Comple-
mentation of the motility mutant has yet to be
accomplished, demonstrating further the need to develop
additional selectable markers and cloning vectors for
members of the genus Flavobacterium.

Conclusion

The lack of robust methods for the genetic manipulation
of F. columnare represents a substantial barrier to under-
standing virulence mechanisms in this important fish
pathogen. The availability of the conjugation protocol
described in this study will facilitate work aimed at deep-
ening of our understanding of the virulence mechanisms
of F. columnare. While conditions for efficient random
mutagenesis still need to be resolved, the methods
described in this report represent a significant first step
towards the development of a robust set of genetic tools
for F. columnare. In addition to the method for introduc-
tion of foreign DNA into F. columnare, the new Gfp-based
reporter constructs should facilitate studies of gene expres-
sion and in vivo cell localization.

Methods

Bacterial strains and plasmids

The bacterial strains and plasmids used in this study are
listed in Table 2. Escherichia coli were routinely grown in
LB broth or plates made without the glucose [44] at 37°C.
To optimize mating conditions, F. columnare strains were
grown at 27 °C on a variety of media (Table 3). Liquid cul-
tures were shaken at 220 rpm. For E. coli, ampicillin was
used at a concentration of 200 pg ml-! and chloramphen-
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icol was used at 10 pg ml-!. For F. columnare, cefoxitin was
used at 10 pg ml!, erythromycin at 1 pg ml?, and
tobramycin at 1 pg ml! (for counter selection against E.
coli, when needed).

Bacterial mating

The E. coli donor strain used for conjugal transfer was S17-
1. For bacterial mating, both donor and recipient cells
were grown to mid-log phase, concentrated by centrifuga-
tion (5,500 x g 10 min), washed once with modified
Ordal's (MO) and resuspended in either MO (recipient
cells) or a 1:1 mixture of MO and 10 mM MgSO, (donor
cells). Concentrated donor and recipient cells were mixed
ataratio of 1:1 based on OD, readings obtained prior to
concentrating. The mixture was vacuum filtered onto a
0.45 pm pore-sized nitrocellulose membrane filter (Fisher
Scientific, Suwanee, GA). The filter was then placed face
up on an FCGM agar plate and incubated over night (18-
20 h) at 27°C. Following incubation, the cells were
scraped off the filter, resuspended in MO broth, and the
suspension homogenized with a 1 ml syringe and a 27
gauge needle. The homogenized suspension was spread
on Ordal's plates containing 10 pg ml! of cefoxitin to
select for transconjugants. Plasmid-containing F. colum-
nare colonies became visible after 48 h of incubation at
27°C.

DNA isolation, amplification, and electrophoresis

Kits and enzymes were used following the manufacturer's
instructions. Genomic DNA was extracted from 10 ml of
F. columnare cultures grown for 16 h in MO using the Qia-
gen DNeasy tissue kit (Qiagen, Valencia CA). Plasmids
were isolated from the relevant E. coli strains with
QIAprep Spin Miniprep kit. PCR was performed with the
Qiagen Taq PCR Master Mix Kit. A typical PCR reaction
contained the Qiagen kit components plus 50 to 100 ng
of template DNA and 100 nM of each primer. PCRs were
run for 25 cycles. Elongation time was calculated as 1 min
per kilobase of amplification product length. Annealing
temperatures were varied according to the primer melting
temperatures. Primers used in this study are listed in Table
4. Agarose gel electrophoresis was performed using stand-
ard techniques [45]. DNA sequencing was performed at
the University of Rhode Island Genomics and Sequencing
Center.

Construction of the pCP29 gfp expression vector

A promoterless copy of the green fluorescent protein gene
(gfp) was amplified from the plasmid pCE320 [46] with
the forward primer pr37 containing a Kpnl site and the
reverse primer pr38 containing a PstI site. The PCR frag-
ment was cloned into pCR4-TOPO vector (Invitrogen,
Carlsbad, CA) using electrocompetent TOP10 cells, creat-
ing plasmid pAMSTA39. pAMSTA39 was cut with Kpnl
and Pstl and the gfp fragment gel purified using the Qia-
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Table 2: Strains and plasmids used in this study
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Strain or plasmid Genotype or description

Source or reference

Bacterial Strains

E. coli
SI17-1 hsdR17 (r,- m,)recA RP4-2(Tcr::Mu-Kmr:Tn7 Strr)
TOPIO F-mcrA A(mrr-hsdRMA-mcrBC) $80lacAMI5 AlacX74 recAl araD 139 A(ara-leu)7697 galU galK rpsL  Invitrogen
(Strr) endAl nupG
F. columnare
C#2 Wild Type [13]
AL-203-94 Wild Type [13]
Fcl4-56 Wild Type [26]
94-060 Wild Type [26]
1191-B Wild Type [26]
94-078 Wild Type [26]
94-081 Wild Type [26]
90-059 Wild Type [26]
L90-659 Wild Type [26]
92-002 Wild Type [26]
C91-20 Wild Type [26]
FcAS44 gld| knockout mutant of C#2 This Study
Plasmids
pAMSTA39 PCR cloning vector with promoter-less gfp; Apr Km® This Study
pAS29 Promoter-less gfp containing E. coli-Flavobacterium shuttle vector; Ap" (Emr, Cfr) This Study
pAS36 Pap=gfP containing E. coli-Flavobacterium shuttle vector; Apr (Emr, Cfr) This Study
pAS42 1400-bp fragment of gld| in pCP29; Apr (Emr, Cfr) This Study
pAS43 Pompa-gfp containing E. coli-Flavobacterium shuttle vector; Ap” (Emr, Cf) This Study
pCE320 gfp-containing E. coli-Borrelia burgdorferi shuttle vector; Ap" [46]
pCR4-TOPO PCR cloning vector; Apr Km® Invitrogen
pCPII E. coli — Flavobacterium shuttle plasmid; Ap* (Emr) [21]
pCP29 E. coli — Flavobacterium shuttle plasmid; Ap" (Cff Emr) [37]
pEP4351 Apir dependent R6K oriV; RP4 oriT; Cmr Tc" (Emr); Tn4351 mutagenesis vector [53]
pCR4-TOPO PCR cloning vector; Apr Kmr Invitrogen

gen QIAEX II Gel Extraction Kit. The Kpnl/Pstl fragment
was ligated into pCP29 which had been cut with the same
enzymes creating plasmid pAS29 (Table 2). All ligations
were performed using T4 DNA ligase (Promega, Madison,
WI) according to the instructions of the manufacturer.

The promoter region of the membrane associated pro-
tease gene map [35] was PCR amplified from genomic
DNA isolated from F. columnare strain C#2 using primers
pr26 and pr35 both containing Kpnl sites. Primer pr35
also contained an Xhol site to allow restriction analysis of
the promoter orientation in the final construct. The PCR
fragment was cleaned using the Qiagen QIAquick PCR
Purification Kit and ligated into plasmid pAS29 that had
also been cut with Kpnl and treated with calf intestinal
alkaline phosphatase (CIAP; Promega), according to the
instructions of the manufacturer, creating plasmid pAS36.
This construct contains gfp driven by the map promoter.

A second pCP29 based gfp construct was created by plac-
ing the ompA promoter from F. johnsoniae [28] in front of
the gfp gene in pAS29. This was done using the primers
prd4, prd5, genomic DNA from F. johnsoniae strain
UW101 (NCBI Taxonomy ID 376686) and the procedure
described above. This construct, pAS43, contains gfp
driven by the ompA promoter. The nucleotide sequence of
the promoter regions of pAS36 and pAS43 was confirmed
by sequencing with primer pr56

Construction of a pCP29 based suicide vector

The E. coli-Flavobacterium shuttle vector containing the
cefoxitin resistance gene cfxA was converted into a homol-
ogous recombination-insertional mutagenesis vector by
the removal of the pCP1 fragment containing the origin
that allows the plasmid to replicate in Flavobacterium spe-
cies. This was accomplished by cutting pCP29 with the
restriction enzymes Smal and Sphl and isolating the 8,100
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Table 3: Media used in this study
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Ingredients (g L) Ordals/Cytophaga (Ord)? Modifled Ordals (MO)® FCGMc«
Tryptone 0.5 0.5 8.0
Beef extract 0.2 0.2
Yeast extract 0.5 0.5 0.8
NaCl 1.76d 5.0
Na,SO, 0.1474
NaHCO, 0.0084d
KCl 0.0254
KBr 0.0044
MgCl, x 6 H,0O 0.1874
MgSO, x 7 H,O 1.0
CaCl, x 2 H,0 0.0414 0.74
SrCl, x 6 H,0O 0.00084
H;BO, 0.00084
Sodium acetate 0.2 0.2
Sodium citrate 1.5
Agar (for plates) 10 10 10
2Ordal and Rucker [54]
bThis study. < Farmer [30]
dSalts were mixed in a 10% stock as NSS after Marden et al. [51]

bp fragment by gel purification. The gene chosen forinser- ~ Microscopy

tion mutagenesis by homologous recombination was the
motility gene gldJ [47]. Primers were designed using Gen-
bank sequences with accession number AAV52895. A
1,400 bp fragment of the gldJ gene was amplified by PCR
from F. columnare strain C#2 genomic DNA using primers
prd6 and pr47 containing Smal and Sphl sites respectively
(Table 4). The PCR fragment was cleaned and cut with
Smal and Sphl sites and ligated into the 8,100 bp fragment
isolated from pCP29. This resulted in the plasmid pAS42
(Table 4).

Table 4: Primers used in this study

For phase contrast microscopy, wet mounts using 5 to 10
pl of cultures were photographed using the ZEISS Axiop-
lan 2 Imaging System at the University of Rhode Island
Genomics and Sequencing Center [48]. Epifluorescence
microscopy was performed using the same system with
the FITC filter set. Micrograph images were processed
using the open source programs Imag]J [49] and The GIMP
[50].

Quantitative analysis of Gfp production
Gfp expression was measured in 50 ml cultures of F.
columnare grown at 27 °C shaking for 20 hr in MO. Cul-

Primer Sequence?

pr2é6 5'-GCTAGGTACCATTTTTACTTTTTAGTGTTTCTATAAAAG-3'

pr32 5'-CCCGAAGCAGGGTTATGCAGCGGAAAAATT-3'

pr33 5'-GCCGATTGCCGACTGGTTCAGGGAGCAAT-3'

pr35 5'-GCTAGGTACCTCGAGCCTGTACCCATAAGATTAATACTAAATAA-3'
pr37 5'-GCTAGGTACCATGAGTAAAGGAGAAGAACTTTTCAC-3'

pr38 5'-GCTAGCTGCAGCAGATCTATTTGTATAGTTCATCCA-3'

pr44 5'-GGTACCGGCAGCGCATACCAAAGAACACTTAGACAAGGCA-3'
pr45 5'-GCTAGGTACCTTTTTAATTACAATTTAGTTAATTACAAGCAAAA-3'
pr46 5'-GCTAGCCCGGGCACGATTGGAATAACACTCCATCTCAGC-3'
pr47 5'-GCTAGCATGCACCTACGCGAGACATAGCACATCT-3'

pr54 5-TTGGTGGTGGACCCGTTG-3'

pr55 5'-GCTGTTTCACTCGGTTTATTCTCA-3'

pr56 5'-ATCACCTTCACCCTCTCCACTGAC-3'

pr88 5'-TTAATGCAGCTGGCACGACAGGTT-3'

pr93 5'-AAACATTTCCCTCCTTAT-3'

prl04 5'-ACCTACTGAAAGTATGAAAGTAAAC-3'

arestriction sites on primers are underlined
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ture were concentrated 20-fold by centrifugation (5,500 x
g 10 min) and resuspended in a 10% concentration of
nine-salt solution, (NSS; a carbon-, nitrogen-, and phos-
phorus-free salt solution) [51]. Fluorescence was meas-
ured in 200 ul aliquots in a Spectra Max M2 plate reader
(Molecular Devices, Sunnyvale CA) with an excitation
wavelength of 485 nm and an emission wavelength of
538 nm. All experiments were performed with four repli-
cates. The significance of differences in expression levels
between strains were assessed with paired t-tests on log
transformed data. Significance levels were adjusted for
multiple tests using the Bonferroni method [52].
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