Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2-Aminophenyl)methanol

Caitlin F. Zipp, Manuel A. Fernandes,* Helder M. Marques and Joseph P. Michael

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
Correspondence e-mail: manuel.fernandes@wits.ac.za
Received 11 November 2011; accepted 13 December 2011
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.030 ; w R$ factor $=0.075$; data-to-parameter ratio $=8.7$.

The crystal strucure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$, displays $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which link molecules related by translation along the b axis, and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and further $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which link molecules related by the 2_{1} screw axis along the c axis. The resulting combination is a hydrogen-bonded layer of molecules parallel to (011).

Related literature

For the use of amines in the pharmaceutical industry, see: Morissette et al. (2004). For the use of amines in crystal engineering, see: Bernstein et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$
$M_{r}=123.15$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=22.6222$ (9) £
$b=6.0675$ (2) \AA
$c=4.7005(2) \AA$
$V=645.19(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.46 \times 0.20 \times 0.07 \mathrm{~mm}$

Data collection
Bruker APEXII CCD
diffractometer
4682 measured reflections
715 independent reflections 681 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.078$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad 1$ restraint
$w R\left(F^{2}\right)=0.075 \quad \mathrm{H}$-atom parameters constrained
$S=1.09$
H-atom parameters
$\Delta \rho_{\text {max }}=0.12 \mathrm{e} \AA^{-3}$
715 reflections
82 parameters
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.85	1.94	$2.791(2)$	172
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.91	2.28	$3.135(2)$	156
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.87	2.19	$3.0585(17)$	175
Symmetry codes: (i) $-x+1,-y+1, z-\frac{1}{2} ;$ (ii) $x, y-1, z$				

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

This work was supported by the National Research Foundation, Pretoria (NRF, GUN 2053652 \& 77122), the South African Research Chairs Initiative and the University of the Witwatersrand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2480).

References

Bernstein, J., Davey, R. J. \& Henck, J.-O. (1999). Angew. Chem. Int. Ed. Engl. 38, 3440-3461.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.
Morissette, S. L., Almarsson, O., Peterson, M. L., Remenar, J. F., Read, M. J., Lemmo, A. V., Ellis, S., Cima, M. J. \& Gardner, C. R. (2004). Adv. Drug Deliv. Rev. 56, 275-300.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

```
Acta Cryst. (2012). E68, o174 [ doi:10.1107/S1600536811053657]
```


(2-Aminophenyl)methanol

C. F. Zipp, M. A. Fernandes, H. M. Marques and J. P. Michael

Comment

Amines play an important role in various areas of chemistry. Amines are used as precursors to amide and peptide functional groups in organic chemistry. The acid-base properties of amines are important in the synthesis of salts. These properties, as well as their hydrogen bonding capabilities, make amines an important functionality in the pharmaceutical industry (Morissette et al., 2004). The hydrogen bonding capabilities of amines also make them an important component of the crystal engineer's arsenal (Bernstein et al., 1999).

The title compound (I) is capable of forming hydrogen bonds through the alcohol and amine groups (Fig. 1). In this structure, molecules related by translation along the b axis are linked by the $\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1$ hydrogen bond to form a C6 chain (Etter et al., 1990; Bernstein et al., 1995) along the b axis. In addition, molecules related by the 2 fold screw axis along c , are held together by the $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$ hydrogen bond and the $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1$ to form a chain of molecules which appear as a stack of molecules when viewed down the c axis (Fig. 2). The combination of these two hydrogen bonded chains results in a hydrogen bonded layer of molecules parallel to (011).

Experimental

The title compound was purchased from Sigma Aldrich and was recrystallized from dichloromethane and hexane (1:1) to yield colourless needles.

Refinement

With the exception of those involved in hydrogen bonding, all H atoms were first located in the difference Fourier map and then positioned geometrically, and allowed to ride on their parent atoms. Hydrogen bond lengths were set as follows for $\mathrm{C}-\mathrm{H}=0.95 \AA(\mathrm{CH})$ or $0.99 \AA\left(\mathrm{CH}_{2}\right)$. Hydrogen atoms involved in hydrogen bonding $(\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H})$ were located in the difference Fourier map and then allowed to ride on their parent atoms with unmodified $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distances. Isotropic displacement parameters for the H atoms were set as follows: 1.2 times $U_{\text {eq }}$ of the parent atom for C and N , and 1.5 times $U_{\text {eq }}$ of the parent atom for O . Though the molecule crystallizes in a polar space group it was not possible to determine the absolute conformation of the crystal. As a consequence all Friedel pairs were merged during the final refinements with a SHELXL97 MERG 4 instruction.

supplementary materials

Figures

Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

(2-Aminophenyl)methanol

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$
$M_{r}=123.15$
Orthorhombic, Pna2 ${ }_{1}$
Hall symbol: P 2c -2n
$a=22.6222$ (9) \AA
$b=6.0675$ (2) \AA
$c=4.7005(2) \AA$
$V=645.19(4) \AA^{3}$
$Z=4$
$F(000)=264$
$D_{\mathrm{x}}=1.268 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3105 reflections
$\theta=3.5-28.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Needle, colourless
$0.46 \times 0.20 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
4682 measured reflections
715 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

$w R\left(F^{2}\right)=0.075$	H-atom parameters constrained
$S=1.09$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0244 P)^{2}+0.1192 P\right]$
715 reflections	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
82 parameters	$(\Delta / \sigma)_{\max }<0.001$
1 restraint	$\Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3}$
	$\Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
C1	$0.38086(8)$	$0.4709(3)$	$0.5647(4)$	$0.0316(4)$
C2	$0.40551(8)$	$0.2625(3)$	$0.6243(5)$	$0.0306(4)$
C3	$0.37720(9)$	$0.1240(3)$	$0.8170(5)$	$0.0378(5)$
H3	0.3938	-0.0161	0.8583	0.045^{*}
C4	$0.32549(9)$	$0.1866(3)$	$0.9489(6)$	$0.0443(5)$
H4	0.3067	0.0889	1.0783	0.053^{*}
C5	$0.30074(9)$	$0.3917(4)$	$0.8937(6)$	$0.0450(5)$
H5	0.2653	0.4364	0.9855	0.054^{*}
C6	$0.32908(9)$	$0.5302(3)$	$0.7009(5)$	$0.0383(5)$
H6	0.3122	0.6704	0.6615	0.046^{*}
C7	$0.40968(8)$	$0.6224(3)$	$0.3546(5)$	$0.0348(5)$
H7A	0.4151	0.5445	0.1714	0.042^{*}
H7B	0.3839	0.7515	0.3207	0.042^{*}
N1	$0.45972(7)$	$0.1975(2)$	$0.5061(4)$	$0.0343(4)$
H1A	0.4637	0.0557	0.4904	0.041^{*}
H1B	0.4735	0.2644	0.3450	0.041^{*}
O1	$0.46612(5)$	$0.69530(18)$	$0.4600(3)$	$0.0350(4)$
H1	0.4872	0.7176	0.3123	0.053^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0345(9)$	$0.0258(8)$	$0.0344(10)$	$-0.0039(7)$	$-0.0059(9)$	$0.0007(8)$
C2	$0.0357(9)$	$0.0243(8)$	$0.0319(9)$	$-0.0036(7)$	$-0.0055(10)$	$-0.0008(8)$
C3	$0.0440(11)$	$0.0279(9)$	$0.0415(12)$	$-0.0051(8)$	$-0.0051(10)$	$0.0048(10)$

C4	$0.0448(11)$	$0.0428(11)$	$0.0451(12)$	$-0.0116(9)$	$0.0010(11)$	$0.0089(11)$
C5	$0.0360(11)$	$0.0488(12)$	$0.0501(13)$	$-0.0034(9)$	$0.0034(11)$	$0.0022(10)$
C6	$0.0356(10)$	$0.0335(10)$	$0.0458(13)$	$0.0011(8)$	$-0.0041(10)$	$0.0021(9)$
C7	$0.0386(10)$	$0.0281(9)$	$0.0377(11)$	$-0.0005(8)$	$-0.0042(9)$	$0.0035(9)$
N1	$0.0424(9)$	$0.0216(7)$	$0.0387(10)$	$0.0011(6)$	$0.0016(8)$	$0.0001(7)$
O1	$0.0387(7)$	$0.0284(6)$	$0.0380(8)$	$-0.0055(5)$	$0.0009(7)$	$0.0009(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.383(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.410(2)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.498(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.392(3)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.403(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.377(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.389(3)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$118.46(17)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.94(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$120.59(17)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$119.38(16)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.25(18)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$121.26(16)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.18(18)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.3(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.8
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.8
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$118.5(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.8
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.1(3)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.96(19)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-176.24(17)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$4.9(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$176.60(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.7(3)$

C5-C6	$1.393(3)$
C5-H5	0.9500
C6-H6	0.9500
C7-O1	$1.439(2)$
C7-H7A	0.9900
C7-H7B	0.9900
N1-H1A	0.8683
N1-H1B	0.9141
O1-H1	0.8534
C6-C5-H5	120.8
C1-C6-C5	$122.29(18)$
C1-C6-H6	118.9
C5-C6-H6	118.9
O1-C7-C1	$110.35(17)$
O1-C7-H7A	109.6
C1-C7-H7A	109.6
O1-C7-H7B	109.6
C1-C7-H7B	109.6
H7A-C7-H7B	108.1
C2-N1-H1A	113.8
C2-N1-H1B	120.1
H1A-N1-H1B	109.5
C7-O1-H1	105.4
C3-C4-C5-C6	$0.6(3)$
C2-C1-C6-C5	$0.1(3)$
C7-C1-C6-C5	$179.0(2)$
C4-C5-C6-C1	$-0.3(3)$
C6-C1-C7-O1	$114.52(18)$
C2-C1-C7-O1	$-66.6(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.85	1.94	$2.791(2)$	172
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.91	2.28	$3.135(2)$	156
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots 1^{\mathrm{ii}}$	0.87	2.19	$3.0585(17)$	175

Symmetry codes: (i) $-x+1,-y+1, z-1 / 2$; (ii) $x, y-1, z$.

Fig. 1

supplementary materials

Fig. 2

