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Abstract

Kinases play key roles in cell signaling and represent major targets for drug development, but the regulation of their
activation and their associations with health and disease have not been systematically analyzed. Here, we carried out a
bioinformatic analysis of the expression levels of 459 human kinase genes in 5681 samples consisting of 44 healthy and 55
malignant human tissues. Defining the tissues where the kinase genes were transcriptionally active led to a functional
genomic taxonomy of the kinome and a classification of human tissues and disease types based on the similarity of their
kinome gene expression. The co-expression network around each of the kinase genes was defined in order to determine the
functional context, i.e. the biological processes that were active in the cells and tissues where the kinase gene was
expressed. Strong associations for individual kinases were found for mitosis (69 genes, including AURKA and BUB1), cell cycle
control (73 genes, including PLK1 and AURKB), DNA repair (49 genes, including CHEK1 and ATR), immune response (72 genes,
including MATK), neuronal (131 genes, including PRKCE) and muscular (72 genes, including MYLK2) functions. We then
analyzed which kinase genes gain or lose transcriptional activity in the development of prostate and lung cancers and
elucidated the functional associations of individual cancer associated kinase genes. In summary, we report here a systematic
classification of kinases based on the bioinformatic analysis of their expression in human tissues and diseases, as well as
grouping of tissues and tumor types according to the similarity of their kinome transcription.
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Introduction

Much of our knowledge on the functions of genes, both in health

and disease, is derived from molecular biological experiments with

specific model systems, which often provide a biased and context-

specific view of gene functions. In in vivo in human tissues, gene

function often varies from one organ to another as well as across

different disease states. The 518 human kinases represent an

intensively studied class of proteins which may regulate the activity of

up to a third of all human proteins by phosphorylation [1]. Because

of their central role in cell signalling, kinases are important targets for

drug development, particularly in cancer [2,3,4,5]. The role of

kinase genes in cancer has been systematically studied at the genomic

DNA level. For example, a recent cancer gene census [6] lists 33

kinases that may undergo genetic alterations in cancer. Numerous

reports have also been published on the differential expression of

kinase genes and proteins in specific types of cancers, but these results

are highly biased towards the most commonly studied kinase genes

and towards common cancer forms. Furthermore, published data

are often contradictory, precluding an assessment of the overall

importance of kinases across different diseases. Kinase genes are

known to be strongly regulated at the protein level, but

transcriptional level regulation has not been comprehensively

studied.

Meta-analyses of large publicly available microarray data

sources, such as GeneExpressionOmnibus [7] and ArrayExpress

[8] have been shown to facilitate the analysis gene expression

across healthy and disease states [9,10,11]. However, due to the

variability of microarray platforms from one study to another,

most investigators have analyzed each of the multiple datasets

separately [12,13,14,15,16,17], focusing on e.g. cancer-normal

comparisons within a tissue type. We reasoned that a direct

systematic comparison of kinase gene expression levels across all

cells, tissues and disease states would be more informative. We

have previously developed and reported a methodology for

integrating very large quantities of human expression data into a

unified format in order to create a comprehensive reference

database of the human transcriptome, GeneSapiens [18]. Here,

we made use of this methodology in order to perform the first

systematic study of kinase gene expression levels and co-expression

networks across thousands of healthy and malignant tissues.

Results

Definition of the transcriptional activity of kinase genes
The analysis focused on 459 genes encoding proteins with

protein kinase activity (Table S1) for which sufficient expression

data were available in the GeneSapiens database [18]. Expression
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levels of kinases were first analyzed across 55 major tumor types

(n = 4078 samples) and 44 healthy tissues (n = 1603 samples)

(Table S2). Expression of kinase genes across these 99 tissue types

was first analyzed in a binary fashion, defining those tissues and

tumor types where each kinase gene was transcriptionally active.

Previously such binary level analysis has been shown to be a useful

method to reduce noise [19,20]. A kinase gene was defined to be

transcriptionally active in a tissue if its median expression in the

tissue was more than the predefined background expression level

(Figure S1) across all healthy tissue types. We defined the

background gene expression activity for each kinase across the

1603 samples representing the healthy human transcriptome (see

methods section and Figure S1). Any kinase gene whose expression

levels in healthy or tumor tissues exceeding this range were

nominated as ‘‘transcriptionally active’’ (Figure 1, Figure S3) in the

corresponding tissues. Thus, from this analysis we were able to

define which tissue and tumor types most likely systematically

expressed each kinase gene at an active level in majority of the

samples of the tissue type and thus potentially contributing to the

biological functions active in that tissue.

Clustering of the binarized expression levels of kinase genes

along both the gene and tissue dimensions revealed distinct

transcriptionally active kinome profiles and a classification of tissue

types based on such activity profiles (Figure 1A–B). For example,

kinome gene expression activity levels distinguished a group of

‘‘Healthy’’ tissues, of which 92.6% were normal tissues, with

distinct subgroups of neuronal and muscular tissues. The group

‘‘Immunological and hematological’’ was almost entirely com-

posed of (94.7%) immunological and hematological tissues. The

‘‘Solid cancer’’ group consisted of 94.7% of solid tumor samples,

with subgroups of non-epithelial and epithelial cancers. Epithelial

tumors could also be further divided into squamous and

adenocarcinomas. Additionally, one mixed group was formed

(50% healthy and 50% cancer).

Conversely, several groups of kinases having distinct transcrip-

tional activity patterns across various tissue groups were identified

(Figure 1A, Table 1). For example, one of the most prominent ones

was mainly active in solid cancers and immunological/hematolog-

ical tissues. Kinase genes belonging to this group were transcrip-

tionally active in 88.7% of solid cancers and in 65.8% of

immunological/hematological tissues. In the healthy and mixed

tissue groups the percentages were 20.8% and 44.2%, respectively.

This group of kinases was named ‘‘proliferation’’ kinase genes.

Similarly, kinase genes mainly active in immunological/hemato-

logical tissues were identified (63.3% activity in these tissues vs, 11.3-

16.7% in other tissue groups). Other identified example groups of

kinase genes include ‘‘neuronal, ’’non-epithelial’’, ‘‘epithelial’’ and

‘‘generally’’ active (see Table 1 for average activity levels and

Figure 1). Example kinases for the identified groups were AURKA

[21] for proliferation kinases, MATK [22] for immunological/

hematological kinases, PRKCE [23] for neuronal kinases, PTK2 [24]

for non-epithelial kinases, ERBB2 [25] for epithelial kinases and

RPS6KC1 [26] for general kinases. Measured mRNA expression

levels for these example kinase genes are shown in Figure S2. Table

S3 provides transcriptional activity information for all 459 kinases

across 99 tissue types allowing further study of both individual

kinase genes as well as healthy versus cancer comparisons between

tens of tissue-malignancy pairs.

Co-expression network analysis to determine the
functional context of kinase genes

We then performed an analysis of the putative functional

context associations for each kinase gene by defining their gene co-

expression networks. This analysis was done with mRNA

expression levels of kinases genes, not with the binarized data.

The network of co-expressed genes around each kinase gene was

calculated in a consecutive fashion, including up to a maximum of

five co-expression links (see methods) originating from the kinase

gene. Altogether, a total of 70.9 million correlations were

processed. We then searched for statistically significant relative

enrichments of Gene Ontology biological processes (GO-BP) [27]

in the co-expression network around each kinase gene, resulting in

putative functional context associations for each kinase gene

(Figure 2, Figure S4). Complete information of all associations to

each GO-BP class is given in the Table S4. Data for Figure 2A are

given in the Table S5. Pearson correlation coefficients between the

kinase genes and specific marker genes of well known biological

functions were calculated to further validate the suggested

functional associations of the kinase genes (Figure 2B). Expression

of MKI67 [28] and PCNA [29] genes, two well-established cell

proliferation markers, showed the highest correlations with kinases

strongly associating to mitosis and cell cycle. Similarly, LDHC

(germ-cell specific marker) [30], PTPRC (marker for hematopoi-

esis) [31], VCAM1 (endothelial/vascular cell marker) [32], KRT19

(epithelial marker) [33], MAG (neuronal cell marker) [34] and

CAV3 (myocyte marker) [35] correlated with the kinase genes with

corresponding functional associations.

We then elucidated the functional context associations of the

kinase gene groups identified from the transcriptional activity data

(Figure 1A, Table 1). Almost all kinase genes of the ‘‘proliferation’’

group (Figure 3) associated with DNA repair, cell cycle control,

mitotic chromosome handling, chromatin handling and regulation

of cell growth. These associations arise since the kinases were

transcriptionally active in rapidly proliferating tissues (cancers and

hematological tissues). These include the well-known mitotic

kinase genes (AURKA [36], BUB1 [37], PLK1 [38], TTK [39],

CDC2 [40], PBK [41], BUB1B [42], PLK4 [43], NEK2 [44],

CHEK1 [45], AURKB [46], CDK2 [46]), but also several novel ones

(MASTL, MELK, DYRK2, PRKDC) which are not yet experimen-

tally proven to be mitosis and/or cell cycle related. Similarly

analysis of the ‘‘Nervous’’ kinase genes (Figure 3) gave associations

with synaptic function, nervous system development & function.

Kinase genes from ‘‘immunological’’ group had more diverse

associations but included immune response, B-cell, myeloid cell

and T-cell proliferation & differentiation, response to stimulus and

RNA splicing (possibly related to heavy splicing activity of

immunoglobulin genes). ‘‘Non-epithelial’’ kinase genes were

associated with cytoskeleton organization, cell adhesion, mesoder-

mal and epidermal development. Dominant functional context of

‘‘Epithelial’’ kinase genes was epidermal development. ‘‘General’’

kinase genes had associations with many diverse biological

processes, suggesting a group of kinases with many different

functions.

Gains and losses of kinase activity in prostate and lung
cancers

After establishing the overall validity of interpretation of

transcriptional activity levels (Figure 1A–B) and functional context

associations (Figure 2A–B, Figure 3A–B) we studied which kinase

genes gained and which lost transcriptional activity in malignant

tissues as compared to the corresponding normal tissues (Figure 4,

Figure 5) and how these cancer-related changes compared with

the potential biological processes discovered for these genes.

Comparing the transcriptional activity profile of healthy prostate

with prostate cancer (PRCa) reveal that 37 kinase genes had

gained and 31 lost transcriptional activity in malignant prostate

cancers (Figure 4). This represents 14,8% of all the kinases

indicating that for most kinases prostate cancers and normal
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tissues are rather similar, as reflected in the kinome clustering data

(Figure 1). The kinase genes gaining activity in prostate cancer

were associated with DNA replication, cell cycle control, mitotic

chromosome handling and regulation of cell growth. Among these

genes BUB1 [37] is the best known to be mitosis related, but also

MASTL had strong associations with mitosis and cell cycle. It does

not have an experimentally proven role in mitosis except of one

observation where it was recognized as part of the mitotic gene

signature predicting poor survival in luminal breast cancer [47].

CHEK1, a kinase with a key role in maintaining genome integrity

[48], and MELK, a kinase known to associate with embryogenesis

and the undifferentiated state of cells [49], both lost their

transcriptional activity in prostate cancer despite of being strongly

associated with mitosis in the general gene co-expression network

analysis. This indicates potentially important functions for these

genes in prostate cancer. For example, the loss of CHEK1

transcriptional activity may link to the recently reviewed deficient

DNA repair process in PRCa [50]. The most prominent functional

associations of kinase genes whose expression was lost in prostate

cancer were linked to cytoskeletal organization, cell adhesion and

mesodermal development (Figure 4). Among these genes DDR2

[51] has previously shown to mediate contact inhibition of cancer

cells.

Among the 37 kinase genes gaining activity in PRCa in

comparison to healthy prostate there were 22 kinase genes

(MASTL, CCRK, NEK6, MAP3K13, DCLK1, CSNK1G3, ATR,

SBK1, TESK2, BRSK2, FGFRL1, VRK1, PRKCZ, PKN2, LMTK3,

CDK3, NRBP2, MAP4K3, MARK1, MARK4, TSSK4, ENSG

00000121388) without previous association to PRCa based on

the Pubgene [52]. The remaining 15 kinase genes (NEK3, STK39,

LIMK1, TRIB3, STK36, BUB1, RIPK2, MARK2, MAP3K5, PRKCD,

ENSG00000143674, MAP2K6, ALK, PDIK1L and ICK) had 3–17

co-occurrences with PRCa in PubMed.

A similar comparison between healthy lung and lung adeno-

carcinoma revealed that 55 kinase genes gained and 51 lost

transcriptional activity in the cancer, corresponding to a total of

23,1% of the studied kinase genes (Figure 5). This is reflected in

the large difference of the transcriptionally active kinome between

the healthy lung and lung adenocarcinoma (Figure 1B). Among

the 55 kinase genes gaining transcriptional activity, the functional

association to cell cycle control was found to be even more

prominent than in PRCa (Figure 4). EGFR was found to be

transcriptionally active in very many epidermal tissues, including

healthy and malignant lung tissues, which is as expected from one

of the most influential epithelial growth factor receptors. ALK is

also among the kinases that gain activity in lung adenocarcinomas,

lung carcinoid tumors and squamous cell lung carcinomas in

comparison to healthy lung. Its main functional associations relate

to DNA repair, DNA replication, mitotic chromosome handling

and mRNA splicing.

Exploration of poorly known kinases genes for their
transcriptional activity and functional context
associations

Transcriptional activity levels and functional context associa-

tions make it possible to explore and annotate the entire kinome,

and hence provide potential starting points to predict context-

specific functions of relatively poorly understood kinase genes. For

example, VRK1 was found to be transcriptionally active in both

healthy and malignant hematological tissues (Figure 6A). Previ-

ously it has found to differentiate Imatinib responders among

CML patients [53], but otherwise its role in hematological tissues

is not well known. It is also active in almost all tumors of

connective and muscular system (sarcomas, head and neck and

melanoma), with a previously shown role in head and neck

squamous cell carcinomas [54]. The most prominent difference in

transcriptional activity between healthy and malignant tissues for

VRK was seen in gynecological cancers, including breast, cervical,

ovarian and uterine cancers. VRK1 had strong functional context

associations to cell cycle control, mitotic chromosome handling

and chromatin handling biological processes and it has recently

been associated with mitosis and performs similar functions as

AURKA [54,55,56] and its role in cell proliferation has been shown

with siRNA experiments [57] (Figure 6B). Previously, VRK1 had

not been associated with all of these cancers even though it is part

Table 1. Average percentage of tissues of each distinct tissue group where kinase genes of the identified groups are
transcriptionally active.

Kinase group Healthy
Healthy
(neuronal)

Healthy
(muscular) Mixed

Solid
cancer

Solid cancer
(epithelial)

Solid cancer
(non-epithelial) Immunological

Proliferation 20.8% 12.5% 6.3% 44.2% 88.7% 87.8% 87.1% 65.8%

Immunological 14.5% 12.5% 13.5% 12.6% 16.7% 16.7% 11.3% 63.3%

Neuronal 26.2% 55.4% 25.6% 8.6% 5.4% 8.5% 9.7% 5.5%

Non-epithelial 32.3% 29.0% 28.6% 28.3% 32.2% 19.5% 52.4% 12.2%

General 78.2% 70.0% 100% 75.0% 75.5% 84.0% 68.7% 52.6%

Epithelial 36.9% 10.4% 12.5% 57.1% 37.7% 58.8% 9.4% 18.9%

doi:10.1371/journal.pone.0015068.t001

Figure 1. A) Kinase transcriptional activity over 44 healthy and 55 malignant tissues. The number of samples per tissue is given in
parentheses. The x-axis contains 459 kinase genes. Black indicates transcriptional activity of the kinase in the tissue. The figure has been clustered in
both dimensions (binary distance measure with complete linkage). Several tissue groups can be identified (marked as color bars on the right side of
the image). Correspondingly several groups of kinases can be identified having a distinctly different activity profile in tissue groups (colored vertical
bars, with kinase gene names of the identified groups shown below). B) Tree of tissues as defined their by transcriptionally active kinome
(same as on the left side of image in panel A). The four main groups of tissues are mainly solid healthy tissues (92.6%), immunological &
hematological (94.7%), solid cancer tissues (94.7%) and a mixed one. Within these groups there are some more specific clusters like neuronal and
muscular on the healthy side and non-epithelial and epithelial on the cancer side. Epithelial cancers also show visible tendency to cluster to adeno
and squamous groups according to their transcriptionally active kinome.
doi:10.1371/journal.pone.0015068.g001
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of the signature depicting poor survival of luminal breast cancer

patients [47].

An almost completely unknown kinase gene from an open

reading frame of chromosome 21 was C21orf7 (also known as

TAK1L), which we decided to study in more detail. C21orf7 was

found to be transcriptionally active in immunological tissues,

especially in several lymphomas and in mesenchymal- and adult

stem cells (Figure 6A). This corresponds to what is previously

known about this gene, an association to differentiating stem cells

[58] and strong expression in peripheral leukocytes [59].

Additionally, it was found to be transcriptionally active in

adrenocortical-, renal- and hepatocellular carcinomas. The

functional context associations link this gene firmly in the B- and

T-cell signalling and differentiation as well as to immunoresponse,

in line with a prominent transcriptional activity in immunological

tissues (Figure 6D). The functional annotations also link this gene

with signal transduction, metabolism, mesodermal development

and cytoskeleton organization, perhaps elucidating some of the

biological processes to which the gene associates in stem cells [58].

Another relatively unknown kinase gene IGFN1 (ENSG

00000163395) is previously known only to down-regulate protein

synthesis during the denervation of skeletal muscle as well as to

provide structural support for the skeletal muscle sarcomere

[60,61]. Our analysis revealed it to be transcriptionally active in

various healthy tissues like pancreas, testis, striated muscle, ovary

and uterus. Additionally, lung carcinoid tumor had transcriptional

activity without activity in the most corresponding healthy tissue.

Functional context associations reveal this kinase gene to be

mainly related to muscle contraction, muscle and heart develop-

ment, epidermal development, translation, skeletal cytoskeleton

organization and cellular calcium ion homeostasis (Table S3, S4

and S5). Interestingly, there are previous indications that

neuroendocrine carcinomas have a higher tendency to differen-

tiate towards skeletal muscle [62,63], perhaps explaining the

observed transcriptional patterns in the lung carcinoid tumor.

Discussion

We assessed the transcriptional activity levels of human kinase

genes across 99 tissues and tumor types bioinformatically, and

were able to show how the transcriptionally active kinomes are

distinct from one tissue type to another and between cancer and

normal tissues. While there are hundreds of studies on the

expression of individual kinase genes or proteins in specific sample

types, this represents to our knowledge the first systematic attempt

to compare mRNA expression levels across all kinases and across

all major tissue and tumor types with similar methodology. Based

on the definition of the transcriptionally active kinome, we

observed five broad categories of tissue types, including hemato-

logical-immunological, other normal tissues, as well as epithelial

and non-epithelial cancers (Figure 1B). Epithelial cancers were

further divided into squamous- and adenocarcinomas. These

observations characterize expression activities of the kinase genes

systematically across the full spectrum of normal and malignant

diseases. The results suggest that the transcriptional activities of

kinases can cluster tissue types in a biologically meaningful way,

despite the fact that the activity of kinases is strongly regulated by

post-translational events.

We also estimated the biological context of kinase genes from

the analysis of their transcriptional co-expression environment

[64,65]. Biological processes that were linked to specific actively

transcribed kinases included immune response, neuronal, cell

proliferation, mRNA translation and muscle function. The group

of ‘‘proliferation’’ associated kinase genes was linked to cell cycle

control, mitotic chromosome handling, DNA replication, DNA

repair and regulation of cell growth whereas example kinase genes

associating to these processes were well known mitosis related

kinases AURKA [21], BUB1 [37] and TTK [66]. ‘‘Neuronal’’ kinase

genes were associated to GO-terms nervous system development &

differentiation and synaptic function whereas example kinase

genes associating to these processes were PRKCE [23] and EPHA4

[67], both known for nervous system related functions. Functional

context associations arising from gene co-expression analysis do

not suggest new GO annotations for genes. However, they reveal

the biological processes of the poorly known kinase genes based on

the known functions of other genes that are coordinately expressed

with the gene of interest. The method of co-expression analysis

used here finds systematic functional associations that are

consistent and shared across the different tissue and tumor types.

There could be additional highly tissue-specific functions that

could be identified using co-expression analysis within a specific

tissue/tumor type. Overall, classification of kinases based on

transcriptional activity and functional associations complements

the established structural homology classification by Manning et

al.[68]. Importantly, there is very little similarity based on kinome

protein structure and the expression patterns of the kinases

indicating that knowing these two properties of kinases is

important for understanding the biological and therapeutic

implications of this group of genes.

For example, a mitosis related kinase gene VRK1 was found to

be active in many hematological tissues as well as in the many

tumors of connective and muscular tissues (sarcomas, head & neck

and melanoma) and in most gynecological cancers (uterine,

ovarian and breast cancers) (Figure 6A–B). Functional associations

reflected what is already known about VRK1, like its association to

cell cycle control and mitosis with similar functions as AURKA

[54,55,56]. It has also been established that VRK1 and p53 form

an autoregulatory loop where active wt-p53 inhibits VRK1 but

altered p53 is unable to do so [71].

C21orf7, also known as TAK1L and TGF-beta activated kinase

like gene is a rather poorly known kinase gene [58–59]. Its name

originates from sequence homology with TAK1, which belongs to

the nuclear hormone receptor family. However, there is no

information regarding functional similarities between TAK1L and

TAK1. Analysis of its transcriptional activity confirmed TAK1L to

be a hematological- and stem cell-specific gene with gene co-

expression analysis associations indicating potential involvement in

T- and B-cell differentiation, immune response as well as

Figure 2. A) Functional associations of human kinase-encoding genes. The x-axis contains 459 kinase genes and the y-axis contains GO-BP
classes. For the sake of clarity only those biological processes (GO-BP) enriched in the co-expression environment of at least 15 kinases are shown
(301). Detailed information of all GO-BP class associations of the kinase genes are given in the Supplementary tables. The x-axis has been clustered
with binary distance measure with complete linkage. The y-axis has been clustered in terms of semantic similarity of the GO-BP classes. The
predominant biological interpretations of each cluster are given on the right side of the image. The analysis of the co-expression space made it
possible to elucidate in what kind of biological processes kinase genes are expressed. B) Pearson correlation coefficients of functional and
tissue specific marker genes with the expression levels of each kinase gene. Below the figure are listed the gene names in two groups
kinase genes. The group on the left is associated with cell cycle and mitotic chromosome handling and has elevated correlation to MKI67 and PCNA.
The group on the right is associated to epidermal development and has elevated correlation to KRT19.
doi:10.1371/journal.pone.0015068.g002
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homeostasis and mesodermal development (Figure 6C-D). TAK1L

has been previously reported to be one of the genes overexpressed

in mesenchymal stems cells during osteogenic differentiation [58]

and having highest expression in peripheral leukocytes [59].

Interestingly, we observed transcriptional activity in some solid

tumors, such as uterine sarcoma, renal-, adrenocortical- and

hepatocellular carcinomas, with little or no expression in the

corresponding normal control tissues. This could reflect a role for

this gene in tumor progression, perhaps via de-differentiation and

tumor stem cell involvement.

Analysis of IFGN1 revealed known functional roles for this gene,

including relation to muscle development and contraction as well

as protein translation [60,61]. However, the co-expression

environment analysis gave additional information that this kinase

gene may also play a role in epidermal development, keratiniza-

tion in particular. Systematic analysis of its transcriptional activity

also revealed that it is active in various other healthy tissues like

pancreas, testis, ovary, uterus and striated muscle as well with a

potential role in carcinomas with neuroendocrine differentiation

like in lung carcinoid tumor.

As this study provides information on the systematic transcrip-

tional activity levels of all kinases in all tissues, as well as functional

associations of each kinase, we have released all the data on tissue

and disease links as well as predicted functional roles of the kinases

in the supplementary data to support the utilization of these

insights by the scientific community interested in specific kinases

(Table S3, S4 and S5).

The transcriptional levels of the kinase genes as well as their

predicted functional associations are likely to be essential when

exploring the role of kinases in disease and when defining

indications where kinase activity in a disease tissue is higher than

that in any normal tissue. This could provide a basis for specific

therapeutic targeting.

The kinase genes gaining transcriptional activity in PRCa when

compared to healthy prostate were associated with cell cycle

control, mitotic chromosome handling and DNA replication; while

kinase genes were losing transcriptional activity in PRCa were

associated with cytoskeleton organization, cell adhesion, meso-

and epidermal development. Altogether 22 kinase genes previously

not associated to PRCa were shown to be transriptionally active in

PRCa but not in healthy prostate. These kinase genes include

CCRK which is established cell cycle related kinase [69], MASTL

which is a relatively unknown kinase gene associated with mitosis

through co-expression analysis and NEK6 which is also an

established mitosis related kinase [70]. Changes between healthy

lung and lung adenocarcinoma (Figure 5) were more prominent

than in the case of prostate suggesting that lung cancer progression

involves a deeper deregulation of its kinome transcriptome than in

prostate cancer (B).

Also, systematic analysis of kinase transcriptional activities

across all healthy tissues could help to prioritize for further study

those kinases, whose activation is most disease specific, and hence

whose inhibition would theoretically cause fewer side effects. For

example, EGFR was found to be transcriptionally active in healthy

skin (hair follicles), adrenal gland, bladder, lung, esophagus and

colorectal, bronchus, kidney, mesenchymal and adult stem cells in

addition to CNS and some gynecological tissues. Currently

identified side effects of the various anti-EGFR therapies include

skin rash due to the changes in keratinocyte and hair follicle

maturation [72], interstitial lung disease and other respiratory

problems [72,73]. Gastrointestinal toxicity [73] and hypomagne-

semia have been reported due to the EGFR blockade in kidneys

[72]. These correspond well with the observed healthy tissues

having a transcriptionally active EGFR. ERBB2/HER-2 was found

to be transcriptionally active in various healthy tissues, including

heart, colorectal, esophagus, kidney, bladder, bronchus and lung.

The most common adverse effects of anti-ERBB2 therapy are

cardiotoxicity and intestinal problems like diarrhea [73] with some

indications of respiratory problems [74,75]. Obviously, there are

many reasons for side effects in the human body, and these cannot

be reduced simply to transcriptional levels of the genes.

Nevertheless, these examples give some indication of the potential

of this transcriptomics approach to predict normal tissue effects of

kinase inhibitors.

Results presented in this paper rely to a large extent on the

GeneSapiens database [18] (www.genesapiens.org), which pro-

vides integrated gene expression data and gene co-expression

environment analysis [18,76]. Transcriptional activity levels of

kinases were estimated by taking advantage of the genome-wide

data coverage of GeneSapiens to determine the overall body-wide

background levels for the transcriptional activity of each kinase

gene. This is a distinct advantage of the present method, which

takes into account the transcriptional variability of genes across the

body, not just between e.g. a cancer of one organ and the

corresponding normal tissue as is typically done in biomedical

studies. Systematic use of integrated gene expression data, such as

GeneSapiens, allows the definition of universal cutoff points for

transcriptional activity across all tissue types, which then makes it

possible to identify active gene expression regulation in a tissue

even when the relative expression increase between tissues to be

compared is only modest. Human tissues have distinct transcrip-

tionally active kinomes with functional associations supporting the

results. Most of the known kinases were active in previously

reported tissue types and had expected functional associations.

The present study was designed for systematic global character-

ization of kinase gene transcriptional activity and functional

context associations, therefore it is not optimal to directly pinpoint

the most obvious therapeutic targets of each cancer type.

Expression levels were binarized (on/off) for the global

comparisons across all tissue and tumor types in order to facilitate

computations, data interpretation and to reduce noise [19,20].

The co-expression environment was analyzed from the actual

measured mRNA expression levels, not from binarized data. Co-

expression analysis using Pearson correlations has been previously

shown to be a useful technique to facilitate understanding of gene

functions [64,65,77]. Our present analysis focused on generic co-

expression associations. An interesting future aspect for co-

expression environment analysis is to define the gene co-expression

Figure 3. Functional context associations of example kinase gene groups (Figure 1). A) The y-axis contains GO-biological processes in the
same order as in Figure 2. ‘‘Immunological’’ kinase genes (marked with red) associate mainly to B-cell, T-cell and myeloid cell proliferation &
differentiation as well as to immune response. ‘‘Neuronal’’ kinase genes (marked with grey) associate strongly to neuronal functions. ‘‘Proliferation’’
kinase genes (marked with orange) associate very strongly to cell cycle control, mitotic chromosome handling, DNA replication, DNA repair and
regulation of cell growth. ‘‘Non-epithelial’’ kinase genes (marked with yellow) associate most to cell adhesion, cytoskelton organization, epidermal
development and mesodermal development. Functional associations of kinase genes active in most of 99 analyzed tissues (‘‘General’’, marked with
blue) seems to cover almost all processes present in the analysis with marginally more in RNA splicing, muscle contraction and myeloid cell
proliferation & differentiation. As assumed, ‘‘Epithelial’’ kinase genes associate strongly to epidermal development. B) The average frequency of
kinase genes per group associating to each functional category.
doi:10.1371/journal.pone.0015068.g003
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network and subsequent functional associations in a tissue-specific

manner. This would provide more specific functional associations

and allow more detailed understanding of functions related to

chances in transcriptionally active kinome between e.g. healthy

and malignant counterparts. Obviously, any bioinformatic esti-

mation of the transcriptomic activity is highly dependent on the

thresholds applied, and laboratory validation of the results is

needed. Original non-binarized gene expression data of all

presented kinases can readily be explored at www.genesapiens.

org. Example figures of bodywide expression levels of

specific kinases, including AURKA, PTK2, MATK, ERBB2, PRKCE

and RPS6KC1, which were discussed above, are shown in

Figure S2.

In summary, we have shown how the definition of transcrip-

tional activity of kinases and their co-expression environment will

help identify potential functional roles of the kinases in health and

disease. To our knowledge this is first systematic characterization

of the human kinome across major human tissue and cancer types

at the transcriptional level, together with functional associations

with other transcribed genes. Major tissue classes having a distinct

transcriptionally active kinome were found to be 1) healthy tissues,

with subgroups of neuronal and muscle tissues, 2) immunological/

Figure 4. Gain and loss of transcriptional activity between healthy prostate and prostate cancer. On the x-axis (clustered with binary
distance and Ward linkage) are 68 kinases whose transcriptional activity is either gained (green color) or lost (red color) in prostate cancer when
compared to healthy prostate. On the y-axis are functional context associations of the kinases in the same semantically defined order as in Figure 2.
This analysis allows identification of kinases whose transcription is elevated to active level or kinases whose biologically active level is most likely lost
as well as the functional context to which the kinases are associated. Some notable changes in the kinome transcriptome include the losses of
transcriptional activity of BMX, NRK, ILK, DDR2, AXL and RYK which all associate to processes like cytoskeleton organization, cell adhesion, meso- and
epidermal development. Similarly, there is a group of kinases with gained transcriptional activity (MASTL, VRK1, BUB1, ALK, PDIK1L, ATR, LIMK1, TRIB3,
CSNK1G3) associating to cell cycle control, mitotic chromosome handling, DNA replication and regulation of cell growth.
doi:10.1371/journal.pone.0015068.g004
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hematological tissues, 3) solid tumors with subgroups of epithelial

and non-epithelial tumors and 4) a mixed class. The most readily

indentified functional associations for a group of kinases included

proliferation related processes, neuronal process, muscle tissue

processes, DNA replication and repair, transcription and transla-

tion regulation, immunological response and development pro-

cesses of various tissue types. This ‘‘body-wide’’ approach for

transcriptomic analysis of gene activity and functional context

could readily be expanded to other biologically and medically

interesting gene sets.

Methods

Definition of kinase genes
Human protein kinase genes were selected from the Panther

database version 6.1 [78,79]. This set of protein kinases (529) was

further filtered in terms of expression data availability from

GeneSapiens database [18] for a total of 459 protein kinases

(Table S1). Kinase genes had a minimum of 2583 common values

with each other over 5681 samples covering 99 distinct healthy

and pathological tissues (Table S2).

GeneSapiens database
Expression data were fetched from the GeneSapiens database

[18] with additional data from GEO studies GSE15459,

GSE12452, GSE9843, GSE10927, GSE8167, GSE9576,

GSE12102, GSE13314 and GSE9844 to extend the tissue

coverage of the GeneSapiens data. GeneSapiens contains

integrated gene expression data from 9783 samples covering 175

types of healthy and pathological human tissues. Data in

GeneSapiens have been integrated and normalized as described

by Kilpinen et al. [18] and Autio et al. [76]. Additional data were

integrated by using MAS5 and EQ normalization as previously

described [18,76] and AGC normalization [18,76] by using gene

and array specific correction factors used in GeneSapiens database

construction [18]. This process rendered the new data directly

comparable with existing GeneSapiens data.

Figure 5. Gain and loss of transcriptional activity between healthy lung and lung adenocarcinoma. On the x-axis (clustered with binary
distance and Ward linkage) are 106 kinases whose transcriptional activity is either gained (green color) or lost (red color) in lung adenocarcinoma
when compared to healthy lung. On the y-axis are functional context associations of the kinases in the same semantically defined order as in the
figure 2. This analysis allows identification of kinases whose transcription is elevated to active level or kinases whose biologically active level is most
likely lost as well as the functional context to which the kinase genes are associated. Some notable changes in the kinome transcription include a
major gain of kinases associating to DNA replication, cell cycle control, mitotic chromosome handling and regulation of cell growth.
doi:10.1371/journal.pone.0015068.g005
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Definition of active transcription
Expression levels of each gene were analyzed to define tissues

where it is actively transcribed. In other words, each gene was

tested in each tissue to see whether its expression level was above

the defined background noise levels. The gene was defined to be

transcriptionally active in a tissue if its median expression in the

tissue was more than the predefined background expression level

(Figure S1). Background expression level for each gene was

calculated as follows: expression level entropy of sample

annotation class labels was calculated in a sliding window (with

width of 5% of maximum expression value) from zero expression

to maximum level. The midpoint of the window with the highest

entropy level was recorded. The variance of the data below this

midpoint was calculated, and 2 x standard deviation was added to

the midpoint to reach the background cutoff level. 2 x SD results

in 95% coverage of the assumed normal distribution of the

background expression the gene. Thus, every gene defined as

transcriptionally active has a p-value # 0.025 against the null

hypothesis that it derives from the background expression (which

should be not be defined as transcriptionally active). Selection of a

higher threshold leads to more stringent conditions of defining

genes as transcriptonally active, which eventually degrades the

resolution of the digitalized expression levels’ ability to separate

tissues. 2 x SD was found to be reasonable compromise between

reliability and sensitivity.

Co-expression network analysis
To define functional context associations of kinase genes we

calculated a genomic co-expression network across 5712 samples

(31 samples included here were omitted from transcriptional

activity level calculations due to the incomplete annotation) for

each of the kinase genes. The genes (n = 11 906) were chosen so

that all genes had enough values in common to calculate

correlation coefficient. We then calculated Pearson correlation

coefficients between all genes. The correlation network around

each of the kinases was then analyzed to identify prominent genes

related to the kinases. This analysis was based on random walking

along defined correlation links (edges) between genes (nodes). For

each kinase, we performed 500 random walks, each 5 steps long,

originating from the kinase in question, collecting all genes (nodes)

encountered. Steps were not allowed to go directly backwards and

each step was allowed to randomly choose only from valid

correlation links. The validity of correlation links was defined on a

gene-by-gene basis as follows. Valid links for each gene were those

having a correlation value in the top 99.9 percentile of all

correlations for that gene. This was done since the variability of

correlation coefficients hindered efforts to define a single

universally applicable cutoff level. Thus, for each kinase we

identified a frequency distribution of genes that were encountered

in the near vicinity at its co-expression network. Overall, this co-

expression network analysis method took into account the

topology of co-expression network and the highly dynamic range

of correlation coefficients between the genes. Genes identified in

the co-expression network of each kinase were subsequently

analyzed in terms of Gene Ontology biological process (GP-BP)

class enrichments.

Functional context associations of kinase genes
Genes in the co-expression network around each kinase were

analyzed for significant enrichments of GO-BP classes by using R

library GOSim [80]. All enrichments with p-value ,0.01 were

accepted. This analysis resulted in a list of significantly enriched

GO-BP classes in the co-expression network around the kinase, thus

associating each kinase with GO-BP classes. For visualization, only

those GO-BP classes associating with at least 15 kinase genes were

selected (301 GP-BP classes). The order of GO-GP classes (y-axis) in

Figures 2–5 is defined by clustering GO-BP classes by using

semantic similarity between the GO-BP classes over the entire

diacyclic graph (DAG) of GO-BP ontology (GOSim library [80],

Lin semantic similarity measure [81] and Ward linkage method).

Supporting Information

Figure S1 Schematics of defining transcriptionally
active level of gene (ERBB2 shown as an example). A–B

entropy of tissue type distribution is calculated in a sliding window

(window width 5% of the maximum of the gene) and expression

level with maximum entropy is identified C) standard deviation of

data points below the identified level is calculated D) Background

level is defined to be 2 x standard deviation + the expression level

with maximum entropy. The gene is defined to be transcriptonally

active in a tissue if the median of tissue is above the background

activity level.

(EPS)

Figure S2 Bodywide expression profiles of six example
kinases from GeneSapiens. Green boxes are healthy tissues

while red boxes are malignant tissues. Median expression level of

the gene in question is indicated by black line, boxes extend from

25th to 75th percentiles, while whiskers extend to the 1.5*IQR.

Data points beyond are shown as individual points. A) AURKA

shows generally increased expression in cancers and in some

proliferation active healthy tissues B) PTK2 is mainly expressed in

mesenchymal and neuronal tissues highlighting the non-epithelial

classification of the kinase gene C) MATK is expressed in

immunological/hematological tissues D) ERBB2 is expressed

mainly in epithelial tissues E) PRKCE is relatively specifically

expressed in both central- and peripheral nervous system F)

RPS6KC1 is expressed in various healthy and malignant tissues.

(EPS)

Figure 6. Transcriptional activity level across 44 healthy and 55 malignant tissues and functional context associations of individual
kinases. A) Transcriptional activity levels of VRK1. Vertical ordering of tissues is based on the anatomical system from which the tissue originates
(colored bar on the left). The left column shows transcriptional activity levels across 44 healthy tissues (white = transcriptionally non-active, black =
transcriptionally active). The right side shows transcriptional activity levels across 55 malignant tissues. B) Functional context associations of the VRK1.
Barplot shows the fraction of GO-BP classes of each functional category being associated to the gene through its co-expression environment.
According to the analysis VRK1 seems to be in generally transcriptionally active in both healthy and malignant hematological tissues. It is also active
in almost all tumors of connectivity and muscular system (sarcomas, head and neck and melanoma). The most prominent difference between healthy
and malignant tissues is in female specific tissues as the gene is transcriptionally active in all histological subtypes of breast, cervical, ovarian and
uterine cancers, but not in any of the corresponding healthy tissues. VRK1 has strong functional context associations to cell cycle control, mitotic
chromosome handling and chromatin handling. C) C21orf7 is transciptionally active in immunological tissues, especially in several lymphomas. It is
also active in mesenchymal and adult stem cells. Additionally, there is a possible ectopic expression of this otherwise lymphoid and stem cell specific
gene in few distinct carcinomas. D) The functional context associations lands gene firmly to the B- and T-cell signaling and differentiation as well as to
immuno response, response to stimulus and homeostasis related processes.
doi:10.1371/journal.pone.0015068.g006
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Figure S3 Zoomable eps version of the Figure 1 A)
Kinase transcriptional activity over 44 healthy and 55
malignant tissues. The number of samples per tissue is given in

parentheses. Black indicates transcriptional activity of the kinase in

the tissue. Figure has been clustered in both dimensions (binary

distance measure with complete linkage). Several tissue groups can

be identified (marked as color bars on the right side of the image).

Correspondingly several groups of kinases can be identified having

distinctly different activity profile in tissue groups (colored vertical

bars). B) Tree of tissues as defined by transcriptionally active

kinome (same as on the left side of image in panel A). Four main

groups of tissues are mainly solid healthy tissues (92.6%),

immunological & hematological (94.7%), solid cancer tissues

(94.7%) and mixed one. Within these groups there are some more

specific clusters like neuronal and muscular in healthy side and

non-epithelial and epithelial on the cancer side. Epithelial cancers

also show visible tendency to cluster to adeno and squamous

groups according to their transcriptionally active kinome.

(EPS)

Figure S4 Zoomable eps version of the Figure 2 A)
Functional associations of human kinase-encoding
genes. The x-axis contains 459 kinase genes and the y-axis

contains GO-BP prosesses. For the sake of clarity only biological

processes (GO-BP) enriched in the coexpression environment of at

least 15 kinases are shown (301). X-axis has been clustered with

binary distance measure with complete linkage. Y-axis has been

clustered in terms of semantic similarity of the GO-BP classes. The

predominant biological interpretations of each cluster are given on

the right side of the image. The analysis of the coexpression space

made it possible to elucidate in what kind of biological processes

kinase genes are expressed. B) Pearson correlation coefficients of

functional and tissue specific marker genes with the expression

levels of each kinase.

(EPS)

Table S1

(TXT)

Table S2

(TXT)

Table S3

(TXT)

Table S4

(TXT)

Table S5

(TXT)
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