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ABSTRACT High-throughput sequencing can provide insights into epidemiology
and medicine through comprehensive surveys of viral genetic sequences in environ-
mental and clinical samples. Here, we characterize the plasma virome of Tanzanian
patients with unexplained febrile illness by using two high-throughput sequencing
methods: unbiased sequencing and VirCapSeq-VERT (a positive selection system). Se-
quences from dengue virus 2, West Nile virus, human immunodeficiency virus type
1, human pegivirus, and Epstein-Barr virus were identified in plasma. Both sequenc-
ing strategies recovered nearly complete genomes in samples containing multiple
viruses. Whereas VirCapSeq-VERT had better sensitivity, unbiased sequencing pro-
vided better coverage of genome termini. Together, these data demonstrate the util-
ity of high-throughput sequencing strategies in outbreak investigations.

IMPORTANCE Characterization of the viruses found in the blood of febrile patients
provides information pertinent to public health and diagnostic medicine. PCR and
culture have historically played an important role in clinical microbiology; however,
these methods require a targeted approach and may lack the capacity to identify
novel or mixed viral infections. High-throughput sequencing can overcome these
constraints. As the cost of running multiple samples continues to decrease, the im-
plementation of high-throughput sequencing for diagnostic purposes is becoming
more feasible. Here we present a comparative analysis of findings from an investiga-
tion of unexplained febrile illness using two strategies: unbiased high-throughput
sequencing and VirCapSeg-VERT, a positive selection high-throughput sequencing
system.

KEYWORDS UHTS, VirCapSeq-VERT, febrile illness, sequencing, virology

igh-throughput sequencing (HTS) has transformed outbreak investigation by en-
abling the rapid identification of known and novel pathogens. Culture remains
essential for mechanistic studies, as well as for the development of drugs and vaccines;
however, culture is more labor-intensive and may fail for infectious agents with
fastidious growth requirements (1). As the cost for data generation through HTS
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continues to decrease and platforms become smaller and more portable, there is an
urgent need for methods that simplify and focus data acquisition and analysis. We have
employed two complementary methods to address this challenge in diagnostic virol-
ogy: (i) a method for positive selection of the viral template prior to sequencing and (ii)
a simplified HTS analysis pipeline. We describe the results obtained with these methods
using plasma samples obtained from patients diagnosed with febrile illness in Dar es
Salaam, Tanzania.

Twelve plasma specimens from patients with unexplained febrile illness were used
for comparative analysis. Samples were collected from a larger cohort of adults attend-
ing outpatient departments in Dar es Salaam, Tanzania, between August 2013 and April
2014, enrolled in an observational cohort to determine the causes of fever. These 12
patients were considered to be at highest risk of having unidentified viral infections as
the cause for the febrile episode. Malaria was excluded as a cause of fever in these
patients following screening with a standard malaria rapid diagnostic test (mRDT) (SD
Bioline Malaria AG P.f,, Standard Diagnostics, Inc., Republic of Korea) that has a limit of
detection (LOD) at approximately 50 parasites/ul. This threshold is considered to cover
the pyrogenic threshold in adults in areas where malaria is endemic (2). Samples were
also screened for low-density parasitemia using an ultrasensitive mRDT (Allere Malaria
AG P.f, Standard Diagnostics, Inc.,, Republic of Korea) (LOD, 5 parasites/ul) and a
quantitative PCR (qPCR) targeting the var gene acidic terminal sequence (varATS) (LOD,
0.1 parasites/ul) (3-5). All twelve samples were negative for malaria parasitemia by
ultrasensitive mRDT and 11 of 12 were negative by gPCR. A single sample (patient 7)
was quantified near the LOD at 0.1 parasites/ul. This study was approved by the Ifakara
Health Institute Review Board (IHI/IRB number 12-2013) and the Medical Research
Coordinating Committee of the National Institute for Medical Research (NIMR/HQ/R.8a/
Vol. IX/1561) of Tanzania, and the Ethics Committee of the canton of Basel, Switzerland
(reference number EK: 1612/13).

Plasma samples for unbiased HTS were centrifuged at 10,000 X g for 10 min. The
supernatant was treated with 40 U of Turbo DNase (Ambion, Rotkreuz, Switzerland)
prior to RNA and DNA extraction and library preparation (6). RNA libraries for samples
1 to 6 were loaded on a HiSeq 4000 system (lllumina, San Diego, CA, USA) using a
multiplex of four samples per lane, while those from samples 7 to 12 were loaded on
a HiSeq 2500 system (lllumina, San Diego, CA, USA) using a multiplex of four samples
per lane. All DNA libraries were loaded on a HiSeq 4000 system (multiplex of six samples
per lane). Raw data were analyzed using an updated version of the ezVIR pipeline (6).
FastQ files for each sample were demultiplexed and checked for quality, and adaptors
were trimmed using Trimmomatic (v0.33) (7). The resulting files were filtered for low
complexity using TagDust (v2.31) (8) and host-subtracted using SNAP (v1.0beta.23) (9).
All remaining reads were then aligned to each virus contained in an in-house curated
viral database (6) (available at http://unige.ch/virology/home/db/ezvir), also using SNAP
(v1.0beta.23) (9). Genome detection metrics, including percent coverage, maximum
depth, and total nucleotide coverage are calculated for each detected virus, and results
are provided in a two-phase report. The sequence cross talk generated by multiplexing
libraries was checked using a 0.3% cutoff (10). PCR confirmation for the presence of
West Nile virus (WNV), dengue virus 2 (DV2), and human pegivirus (HPgV) RNA was
performed as described in Table 1.

For VirCapSeq-VERT libraries, total nucleic acid was extracted from plasma using the
NucliSens easyMAG automated platform (bioMérieux, Boxtel, The Netherlands). Indi-
vidual libraries were prepared with the Hyper Prep kit (KAPA Biosystems, Boston, MA,
USA) using unique barcodes. Libraries were pooled and hybridized with the VirCapSeqg-
VERT probe set prior to a final PCR and sequencing on the HiSeq 4000 system using the
equivalent of half a lane. Demultiplexed FastQ files were adaptor trimmed using
cutadapt (v1.8.3) (11), quality filtered and end trimmed with PRINSEQ software (v0.20.3)
(12), and cleaned of host sequences using Bowtie 2 mapper (v2.2.9) (13). Assembly of
remaining reads was performed using MIRA Assembler (v4.0) (14). Assembled contig-
uous sequences and unique singletons were subjected to homology searches against
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TABLE 1 PCR assays used to confirm viruses identified from each sequencing strategy
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PCR assay Target Product AT Design or
and virus? gene? Forward primer or probe (5'—3')c Reverse primer (5'—3')4 size (nt)e  (°Q)f referenced
VirCapSeq-VERT
DVv2 NS5 F: AACCTGGTCCATACACGCC R: CTACCACAAGACTCCTGCC 325 60TD  Designed from
HTS data
EBV (qPCR) EBER F: AAACCTCAGGACCTACGCTGC R: AGACACCGTCCTCACCAC 105 60 Modified from
reference 20
Probe: FAM-CCCGTCCCGGGTACAAGTCCC-
TAMRA
HIV-1 pol F1: CAGCAGTACAAATGGCAG R1: CCACACAATCATCACCTGCC 324 60TD  Designed from
HTS data
F2: GCAGTACAAATGGCAGTTTTC R2: CACAATCATCACCTGCCATC 319 60TD
HPgV group 1 NS3 F1: CGTSGTSMTYTGYGACGAGTGCCA R1: CCRCGCCGCTGCATVCGSAAYGC 533 50 21
F2: CAYGYDATCTTYTGYCACTCGAAGG R2: CRAAGTTBCCDGTGTAGCCDGTGGA 177 50
HPgV group 2 NS3 F1: GSGCNATGGGNCCNTAYATGGA R1: GTNACYTCVACNACCTCCTCYACCA 615 50 21
F2: GTGGTNATHTGYGAYGAGTGYCA R2: TCRCACTCMRCCTTKGARTGRCARAA 265 50
WNV NS5 F: TGGATGGAATGTGCGCGACAC R: TCGTGTGCCAATCAGACTGCC 331 60TD  Designed from
HTS data
Unbiased HTS
noncommercial
HPgV (qPCR) 5" NCR F: GGCGACCGGCCAAAA R: CTTAAGACCCACCTATAGTGGCTAAA 93 55 22

Probe: FAM-TGACCGGGATTTACGACCT
ACCAACCCT-TAMRA
Unbiased HTS
commercial”
DV2
WNV

aAbbreviations: DV2, dengue virus 2; EBV, Epstein-Barr virus; qPCR, quantitative PCR; HIV-1, human immunodeficiency virus type 1; HPgV, human pegivirus; WNV, West

Nile virus.

bNS5, nonstructural protein 5; EBER, EBV-encoded RNA; 5’ NCR, 5’ noncoding region; NS3, nonstructural protein 3.

cForward primers are indicated by F, F1, or F2 before a colon. FAM, 6-carboxyfluorescein; TAMRA, 6-carboxytetramethylrhodamine.

dReverse primers are indicated by R, R1, or R2 before a colon.

ent, nucleotides.

AT, PCR annealing temperature; TD, touchdown PCR (temperature decreased 0.5°C each cycle for 10 cycles).
9HTS, high-throughput sequencing.

hTropical fever core real-time reverse transcription-PCR (RT-PCR) from Fast Track Diagnostics (Sliema, Malta).

the entire GenBank nucleotide database using MegaBLAST. If sequences showed poor
homology, they were subjected to a second round of homology search against the viral
GenBank protein database using BLASTX. The filtered reads were mapped with Bowtie
2 to the viral genomes identified from MegaBLAST and BLASTX to determine genome
consensus sequence and breadth of coverage. The BAM files from mapping were used
to generate comparative coverage plots using Integrative Genomics Viewer (v2.3.55)
(15). The presence of candidate viral sequences found in VirCapSeq-VERT was investi-
gated with specific PCR assays using primers and assay conditions shown in Table 1.

VirCapSeq-VERT yielded from 1.4 million to 62.2 million sequences per sample
(average of 12.5 million sequences per sample). Together, RNA and DNA unbiased HTS
yielded from 127.3 million to 391.0 million (average, 230.8 million) sequences per
sample: 68.0 million to 134.7 million (average, 107.2 million) sequences per sample for
RNA and 45.4 million to 312.9 million (average, 123.7 million) sequences per sample for
DNA (Table 2).

Results were concordant across platforms. DV2 RNA was present in 4/12 samples,
consistent with an outbreak of this virus in Dar es Salaam, Tanzania, during the period of
sample collection (16). Human immunodeficiency virus type 1 (HIV-1) (2/12), WNV (2/12),
HPgV (2/12), and Epstein-Barr virus (EBV) (2/12) were detected in the remaining plasma
samples (Table 2). PCR confirmed the presence of nucleic acid from each of these viruses,
including several low-titer samples. WNV (48 reads by unbiased HTS; 45 reads by VirCapSeq-
VERT) was not detected by conventional PCR in sample 4; however, qPCR was positive
(cycle threshold [C,] value of 32). HPgV was not detected by nested PCR in sample 7 but
was positive by qPCR (C;- of 41). A weak gPCR result was obtained for EBV in sample 7 (45
reads by both sequencing methods; C; of 39). The detection of just three EBV reads by
VirCapSeq-VERT in sample 8 was mirrored by a gPCR C;- of 40; EBV was not detected using
unbiased HTS. A major advantage of both sequencing methods was the capacity to detect
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TABLE 2 Viruses identified by two methods of high-throughput sequencing on plasma samples from Tanzanian patients with febrile
illness

Unbiased HTS VirCapSeq-VERT
Terminal Terminal
Genome NCR Genome NCR
Total no. Virus(es) No. of coverage coverage Total no. of Virus(es) No. of coverage coverage Confirmation
Sample of reads® identifiedc viral reads (%) (%)9 reads identified viral reads (%) (%) (PCR result)
Sample 1 303,201,174 DV2 1,032,128 100 100 58,001,148 DV2 54,739,618 99.9 99.4 Positive
Sample 2 191,759,852 DV2 616,291 100 100 4,359,471 DV2 1,663,516 99.9 98.0 Positive
HPgV 27,953 95.8 100 HPgV 33,505 89.2 73.6 Positive
Sample 3 240,702,142 WNV 483 84.9 55.8 2,186,326 WNV 529 69.6 0.0 Positive
Sample 4 233,216,250 WNV 48 17.2 26.6 1,413,970 WNV 45 6.5 0.0 Positive
Sample 5 156,590,622 HIV-1 33,028 86.9 68.4 62,168,103 HIV-1 57,677,443 97.2 99.8 Positive
Sample 6 317,810,172 ND 2,646,613 ND
Sample 7 187,583,832 HIV-1 138 39.2 0.0 2,171,536 HIV-1 4,586 80.7 49.0 Positive
EBV 45 0.2 0.0 EBV 45 0.9 0.0 Positive
HPgV 263 51.6 36.1 HPgV 2,935 59.7 69.6 Positive
Sample 8 199,784,946 ND 2,601,036 EBV 3 0.04 0.0 Positive
Sample 9 206,125,028 DV2 7,736 99.8 95.9 2,807,056 DV2 538,387 99.9 98.0 Positive
Sample 10 391,029,362 ND 2,056,237 ND
Sample 11 214,938,600 ND 1,958,631 ND
Sample 12 127,295,376 DV2 5,144,223 100 100 8,104,818 DV2 5,355,684 99.9 98.2 Positive

aHTS, high-throughput sequencing.

bThe total number of reads is shown in boldface type for emphasis.

<DV2, dengue virus 2; HPgV, human pegivirus; WBV, West Nile virus; ND, no virus detected; EBV, Epstein-Barr virus.
dNCR, noncoding region.

viral coinfections, as highlighted by the nearly complete genomes of DV2 and HPgV
obtained from sample 2. We acknowledge that further investigation is required to deter-
mine the cause of fever in these patients, especially where multiple genomes were
detected. The recovery of nucleic acid using HTS is insufficient for determining a causal link
to disease; it is nonetheless valuable in defining potential viral candidates.

Resource management is another important consideration in HTS. VirCapSeq-VERT
obviates the need for sample preprocessing through DNase digestion or rRNA deple-
tion to reduce the signal from host genetic material. It also increases sensitivity and
reduces the complexity of bioinformatic analysis and computational power require-
ments. In this study, similar results were obtained using unbiased HTS with an average
total of 230.8 million reads per sample and with VirCapSeqg-VERT with an average of
12.5 million reads per sample. VirCapSeq-VERT, a method designed to capture coding
sequence, had enhanced depth of coverage across viral coding regions (Fig. 1). Aside
from HIV-1, and a low-titer HPgV in sample 7, unbiased HTS provided more complete
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FIG 1 Read coverage plot for VirCapSeq-VERT and unbiased HTS for HIV-1 (GenBank accession number AY322190) in plasma sample 5. Colored lines indicate
mismatches to the reference sequence (A [green], T [red], C [blue], and G [orange]). Sequencing depth is shown on the y axis in logarithmic scale. Nucleotide
positions of the reference genome are indicated above each plot, and coding regions (light green) are marked with arrows. UHTS, ultrahigh-throughput
sequencing.
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coverage of the noncoding sequences at the termini of viral genomes that are essential
for reverse genetics applications (Table 2). Unbiased HTS may also have advantages in
virus discovery. In previous work, we demonstrated that VirCapSeq-VERT could not
reliably detect viruses in which all potential probe hybridization sites vary by more than
40% (17). We have not encountered novel viruses with unbiased HTS that were missed
with VirCapSeq-VERT in analysis of mammalian materials; however, tilapia lake virus, a
virus that is decimating farmed tilapia worldwide, was discovered using unbiased HTS
(18) and would not have been detected with the first release of VirCapSeq-VERT. The
accuracy of data obtained by each sequencing method is highly dependent upon the
reference viral database (19). The VirCapSeq-VERT probe set is updated annually to
ensure coverage of new viruses; nonetheless, where VirCapSeq-VERT fails to yield a
candidate viral pathogen or if bacterial or other parasitic agents have not been
excluded, unbiased HTS should be considered.
HTS provides a comprehensive analysis of the plasma virome and is particularly well
suited to situations where an infectious etiology has yet to be determined. Currently,
the applicability of HTS in diagnostic medicine is limited by both cost and complexity
of analysis. However, as costs decrease and analysis platforms improve, unbiased HTS
and positive selection methods like VirCapSeq-VERT have the capacity to provide timely
and important microbiological information that can help guide the response to an
outbreak situation.
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