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a dataset comprised of binding 
interactions for 104,972 antibodies 
against a SARS-CoV-2 peptide
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The dataset presented here contains quantitative binding scores of scFv-format antibodies against a 
SARS-CoV-2 target peptide collected via an AlphaSeq assay that can be used in the development and 
benchmarking of machine learning models. Starting from three seed sequences identified from a phage 
display campaign using a human naïve library, four sets of 29,900 antibodies were designed in silico 
by creating all k = 1 mutations and random k = 2 and k = 3 mutations throughout the complementary-
determining regions (CDRs). Of the 119,600 designs, 104,972 were successfully built in to the AlphaSeq 
library and target binding was subsequently measured with 71,384 designs resulting in a predicted 
affinity value for at least one of the triplicate measurements. Data include antibodies with predicted 
affinity measurements ranging from 37 pM to 22 mM. To our knowledge, this dataset is the largest, 
publicly available dataset that contains antibody sequences, antigen sequence and quantitative 
measurements of binding scores and provides an opportunity to serve as a benchmark to evaluate 
antibody-specific representation models for machine learning.

Background & Summary
Protein modelling is an area of machine learning research that has attractive potential benefits to protein 
engineering. Given the magnificent size of the design space for a given protein, it is not feasible to measure 
phenotypic properties of all possible designs empirically. Machine learning methods can help constrain the 
design space and serve as a basis for recommending designs to test in the lab to save time and reduce cost1. 
Such approaches have been taken to engineer enzymes2, fluorescent proteins3, and antibodies4 among others5,6. 
Successful examples of machine learning-enabled protein engineering have relied on access to large, labelled 
datasets of protein sequences that are typically generated as part of high throughput experimental campaigns. 
When datasets and models have been made publicly available, the entire field has benefited from ensuing com-
parisons and benchmarks1,7.

Although these approaches have been demonstrated for the engineering of antibodies, there remains a scar-
city of labelled data available in the public domain to advance this area of research with respect to antibody 
binding. Large-scale curation efforts have resulted in databases of well over a billion antibody sequences without 
target or binding affinity values8. Other efforts have resulted in datasets with close to one thousand antibodies 
with labels – either target sequences9 or neutralization values10. Additional work in antibody binding prediction 
reports a subset of the data generated and used4. Outside of antibody binding, one group has published multiple 
manufacturability measurements for over 100 antibodies that have completed or advanced through the FDA 
approval pipeline11–13.

This lack of labelled data may be the result of differences in data requirements for training machine learn-
ing models compared to finding a design with the target phenotype in the absence of machine learning. Phage 
display, for example, is intended to provide the researcher with information on a small number of the top bind-
ers from a pool of >106 designs14,15. This type of data is unsuitable for training models because poor binding 
sequences are unknown and no quantitative binding measurements are generated. Methods that do provide 
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quantitative measurements, such as enzyme-linked immunosorbent assays16 and surface plasmon resonance17, 
rely on isolation of individual antibodies and therefore are significantly lower throughput and more expensive.

Recent methods using engineered yeast expression systems and next generation DNA sequencing overcome 
some of these challenges and can generate large scale datasets of quantitative protein-protein binding inter-
actions including antibody-antigen interactions18,19. We utilized such a technique, referred to as AlphaSeq, to 
generate the dataset described here. Importantly, we first conducted a phage display experiment to identify 
three candidates that bind to our target, a conserved peptide in coronaviruses. Those candidates were the seed 
sequences and in addition to designing all single mutants, we performed in silico randomization to introduce 
two or three random mutations in the complementary determining regions (CDRs) for 119,600 designs. As a 
result, we generated a dataset that covers a considerable breadth of sequence space and has a wide range of bind-
ing measurements that is suitable for training machine learning algorithms.

Methods
Figure 1 provides an overview of the experimental workflow.

target selection. Antibodies were targeted against a peptide in the HR2 region of the SARS-CoV-2 spike 
protein to which neutralizing antibodies have been observed20. Additionally, this sequence is reported to have low 
variability across coronaviruses and could maintain therapeutic value against viral variants21. The exact amino 
acid sequence targeted was PDVDLGDISGINAS.

phage display. A phage display panning experiment was performed by GenScript USA Inc. to identify can-
didate binders. A biotinylated target peptide, LCBiot-PDVDLGDISGINAS-OH, (vivitide, LLC) was provided to 
GenScript USA Inc. The human naïve phage library used by Genscript USA Inc. is marketed to be derived from 
300 healthy human donors, has a size of 1.1 × 1010 and is in Fab format.

alphaSeq antibody screening. A total of five antibody sequences in scFv format were evaluated in a 
proof-of-concept AlphaSeq experiment; three of those five sequences bound to the target and were carried for-
ward. All five antibody sequences were tested in both heavy-light (HL) and light-heavy (LH) chain orientation. In 
general, chain orientation had little to no effect on binding affinity with all but Ab-91-HL (3.39 nM) resulting in 
predicted KD values below 1 nM. The best chain orientation was selected for each antibody; HL was selected for 
Ab-14, LH was selected for Ab-91 and HL was selected for Ab-95.

in silico design of antibody libraries. Two heavy chains and two light chains were arbitrarily selected 
from the three antibody seed sequences listed in Table 1 for the design of the antibody library: Ab-14-VH, 
Ab-91-VH, and Ab-14-VL, Ab-95-VL, respectively. The goal of the in silico design process was to generate 29,900 
sequence variants for each chain out of the 120,000 total sequence budget, leaving 400 sequences for controls 
allocated for the binding experiment. K-point mutations, where k = 1, 2, and 3, were produced for the CDRs of 
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Fig. 1 Experimental workflow for the generation of the AlphaSeq data set. A SARS-CoV-2 target peptide was 
identified and used in a phage display campaign to identify candidate antibodies. These antibodies were then 
validated for compatibility with the AlphaSeq assay. Variant antibody pools were designed using validated 
candidates as seed sequences and then measured in the AlphaSeq assay.
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each chain. Point mutations were limited to amino acid substitutions; indels were avoided to ensure the amino 
acid sequence was constant length. Up to k = 3 mutations were chosen to guarantee there was at least one instance 
where one amino acid substitution occurred in all CDRs of a given chain at a given time. Martin Lab’s CDR rule 
set was applied to extract the CDRs from their approximate positions in each chain. The number of variants for 
k = 1 mutations was determined based on the combined number of amino acid positions in the CDRs of a given 
chain and the total number of possible amino acid substitutions in each position. All k = 1 variants were kept, 
ensuring that duplicates and original chain sequences were removed. Using the number of sequence variants for 
k = 1, a scaling factor of ~6 was applied to determine the number of variants to sample from the total number of 
k = 2 and k = 3 possible sequence variants, as shown in Table 2.

AlphaSeq data collection. Yeast media. Yeast peptone dextrose (YPAD), yeast peptone galactose (YPAG), and 
synthetic drop out (SDO) media supplemented with 80 mg/mL adenine were made according to standard protocols. 
Suppliers used for our yeast media are as follows: Bacto Yeast Extract (Life Technologies), Bacto Tryptone (Fisher 
BioReagents), Dextrose (Fisher Chemical), Galactose (Sigma-Aldrich), Adenine (ACROS Organics), Yeast Nitrogen 
Base w/o Amino Acids (Thermo Scientific), SC-His-Leu-Lys-Trp-Ura Powder (Sunrise Science Products), Yeast 
Synthetic Drop-out Medium Supplements (Sigma-Aldrich), L-Histidine (Fisher BioReagents), L-Tryptophan (Fisher 
BioReagents), L-Leucine (Fisher BioReagents), Uracil (ACROS Organics), and Bacto Agar (Fisher BioReagents).

Isogenic yeast transformation. AlphaSeq compatible plasmids encoding yeast surface display cassettes were 
constructed by Twist Bioscience and resuspended at 100 ng/µL. 100 ng of plasmid was digested with PmeI 
enzyme for 1 hr at 37 °C to linearize, leaving chromosomal homology for integration into the ARS314 locus at 
both the 5′ and 3′ ends as previously described18. Yeast transformations were performed with Frozen-EZ Yeast 
Transformation Kit II (Zymo Research) according to manufactures instructions. Yeast were plated on SDO-Trp 
plates and grown at 30 °C for 2–3 days. Successful transformants were struck out onto YPAD plates and grown 
overnight at 30 °C.

Protein expression validation – Flow cytometry. Yeast were inoculated in YPAD and grown overnight at 
30 °C. Yeast were labelled with FITC-anti-C-myc antibody (Immunology Consultants Laboratory, Inc.) in PBS 

Target PDVDLGDISGINAS

Seed ID Antibody Sequences

14-VH EVQLVETGGGLVQPGGSLRLSCAASGFTLNSYGISWVRQAPGKGPEWVSVIYSDGRRTFYGDSV 
KGRFTISRDTSTNTVYLQMNSLRVEDTAVYYCAKGRAAGTFDSWGQGTLVTVSS

14-VL DVVMTQSPESLAVSLGERATISCKSSQSVLYESRNKNSVAWYQQKAGQPPKLLIYWASTRES 
GVPDRFSGSGSGTDFTLTISSLQAEDAAVYYCQQYHRLPLSFGGGTKVEIK

91-VH EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVK 
GRFTISRDNAENSLYLQMNSLRAEDTALYYCAKVGRGGGYFDYWGQGTLVTVSS

91-VL QAVLTQPSSLSASPGASVSLTCTLRSGINVGTYRIYWYQQKPGSPPQYLLRYKSDSDKQQGSGV 
PSRFSGSKDASANAGILLISGLQSEDEADYYCMIWHSSAWVFGGGTKLTVL

95-VH EVQLVESGAEVKKPGASVKVSCKASGYTFTSYGISWVRQAPGQGLEWMGWISAYNGNTNYAQ 
KLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARVGRGVIDHWGQGTLVTVSS

95-VL SSELTQDPAVSVALGQTVRITCEGDSLRYYYANWYQQKPGQAPILVIYGKNNRPS 
GIADRFSGSNSGDTSSLIITGAQAEDEADYYCSSRDSSGFQVFFGAGTKLTVL

Table 1. Target and Antibody Seed Sequences. CDRs in bold.

Library ScFv Seed Scaling Factor k mutations
No. Sequences 
Designed

No. Sequences 
Present

% Present Per k 
mutations

% Present 
(Overall)

AAYL49 14 Heavy 6.06

1 665 594 89%

88.5%2 4,089 3,671 90%

3 25,146 22,188 88%

AAYL50 14 Light 6.15

1 627 552 88%

87.7%2 3,982 3,491 88%

3 25,291 22,180 88%

AAYL51 91 Heavy 6.35

1 684 521 76%

75.2%2 4,141 3,131 76%

3 25,075 18,820 75%

AAYL52 95 Light 6.82

1 551 548 99%

99.7%2 3,755 3,743 100%

3 25,594 25,526 100%

Table 2. Distribution and incorporation of mutations by library and k mutations. Additionally, there are seven 
seed sequences with no mutations.
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(Gibco) + 0.2% BSA (Thermo Fisher Scientific) for 30 minutes at RT. Yeast were pelleted and resuspended in 
PBS + 0.2% BSA and read on a LSRII cytometer.

DNA library construction. A 300 bp oligonucleotide pool synthesized by Twist Bioscience was resuspended 
at 20 ng/µL in molecular grade water. Libraries were PCR amplified from the oligonucleotide pool using KAPA 
DNA polymerase (Roche). The oligonucleotide amplification fragment was inserted into the seed scFv backbone 
using Gibson isothermal assembly (NEB), as well as a second DNA fragment containing a randomized DNA 
barcode. The assembled barcoded antibody DNA library was PCR amplified. Fragments were run on a 0.8% 
agarose gel and extracted using Monarch Gel Purification kit (NEB).

Yeast library transformation. MATa AlphaSeq yeast were grown for 6 hours in YPAG media to induce SceI expres-
sion, as described previously18. All spin steps were performed at 3000 RPM for 5 minutes. Yeast were spun down and 
washed once in 50 mL 1 M Sorbitol (Teknova) + 1 mM CaCl2 solution. Washed yeast were resuspended in a solution 
of 0.1 M LiOAc/1 mM DTT and incubated shaking at 30 °C for 30 minutes. After 30 minutes, yeast were spun down 
and washed once in 50 mL 1 M Sorbitol + 1 mM CaCl2 solution. Yeast were resuspended to a final volume of 400 µL 
in 1 M Sorbitol + 1 mM CaCl2 solution and incubated with DNA for at least 5 minutes on ice. Yeast were electropo-
rated at 2.5 kV and 25 uF (BioRad). Immediately following electroporation, yeast were resuspended in 5 mL of 1:1 
solution of 1 M Sorbitol:YPAD and incubated shaking at 30 °C for 30 minutes. Recovered yeast cells were spun down 
and resuspended in 50 mL of SDO-Trp media and transferred to a 250 mL baffled flask. 20 µL of resuspended cells 
were plated on SDO-Trp to determine transformation efficiency. Both the flask and plate were incubated at 30 °C 
for 2–3 days. After 2–3 days, transformation efficiency was determined by counting colonies on the SDO-Trp plate.

Nanopore barcode mapping. Genomic DNA from yeast libraries was extracted using Yeast DNA Extraction 
Kit (Thermo Fisher Scientific) following the manufacturer’s instructions. A single round of qPCR was performed 
to amplify a fragment pool from the genomic DNA containing the gene through the associated DNA barcode. 
qPCR was terminated before saturation to minimize PCR bias, generally between 15–20 cycles. The final 
amplified fragment was concentrated with KAPA beads, quantified with a Quantus (Promega), prepped with a 
SQK-LSK-110 ligation kit (Oxford Nanopore) and sequenced with a Minion R10 flow cell (Oxford Nanopore) 
following the manufacturer’s instructions. Each sequencing read was aligned to the set of expected antibody 
sequences from the in silico antibody library using BLASTN22 to determine the mapping between DNA barcodes 
and antibody sequence; only DNA barcodes with at least 2 reads observed were considered, and each DNA bar-
code was matched to the most common BLASTN antibody match among its constituent reads.

Library-on-library AlphaSeq assays. Two mL of saturated MATa and MATalpha library were combined in 
800 mL of YPAD media and incubated at 30 °C in a shaking incubator. Three technical replicates were performed 
for each assay (Table 3). After 16 hr, 100 mL of yeast culture was washed once in 50 mL of sterile water and trans-
ferred to 600 mL of SDO-lys-leu with 100 nM ß-estradiol (Sigma) for 24 hr at 30 °C in a shaking incubator. After 
24 hr, 100 mL of yeast was transferred to fresh SDO-lys-leu with 100 nM ß-estradiol for an additional 24 hr at 
30 °C in a shaking incubator. In addition to the antibody libraries described above, control yeast strains compris-
ing a small network of BCL2-family proteins as previously described18 were included in each experiment to act 
as a set of standards for which BLI-derived interaction affinities were known a priori.

Library preparation for next-generation sequencing. Genomic DNA was extracted using Yeast DNA 
Extraction Kit (Thermo Fisher Scientific) following manufacturer’s instructions. qPCR was performed to 
amplify a fragment pool from the genomic DNA and to add standard Illumina sequencing adaptors and assay 
specific index barcodes. qPCR was terminated before saturation to minimize PCR bias, generally between 23–27 
cycles. The final amplified fragment was concentrated with KAPA beads, quantified with a Quantus (Promega), 
and sequenced with a NextSeq 500 sequencer (Illumina).

AlphaSeq bioinformatics. Sequencing data were analyzed to identify the MATa and MATalpha barcode pairs 
present among diploid yeast. The observed number of sequencing reads for each MATa/MATalpha combina-
tion were normalized according to frequency among haploid yeast to account for uneven distribution of the 
input populations. Each aα pair was then assigned a score representing the ratio of observed sequencing reads 
to expected sequencing reads assuming random mating. A linear regression was performed comparing these 
normalized sequencing scores to known affinities for the control yeast strains and this regression was utilized to 
assign estimated affinities to all other aα pairs for each mating replicate.

Data records
Data structure and repository. A single dataset was generated during this study. This data set contains 
the output of two AlphaSeq assay performed as part of a single study and is deposited at Zenodo23 (https://doi.
org/10.5281/zenodo.5095284). The dataset contains the variables listed in Table 4.

Assay MATa library MATalpha Library No. Replicates

1 AAYL49, AAYL50 Target, Neg Ctrl 1, Neg Ctrl 2, Neg Ctrl 3 3

2 AAYL51, AAYL52 Target, Neg Ctrl 1, Neg Ctrl 2, Neg Ctrl 3 3

Table 3. Composition of AlphaSeq assays.
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Data sets and file types. The data are stored in a single.csv file. All data can be downloaded from Zenodo23.

technical Validation
Library coverage. To ensure sufficient proportions of designed sequences were assembled into each library 
and to confirm no incorporation bias based on number of mutations, we evaluated the percentage incorporation per 
k mutations per library (Table 2). The intra-library variation is small, never exceeding 2%, indicating no bias due to 
number of mutations. Because each library is constructed separately, it is expected that the inter-library differences 
in incorporation will be greater than that of the intra-library range. This is the case with incorporation percentages 
ranging from 75.2% to 99.7%. Given these observations, we conclude the libraries are constructed sufficiently.

reproducibility. To assess variation attributable to the AlphaSeq process, each yeast mating experiment was 
performed in triplicate, with separate determination of Kd values for each technical replicate. Figure 2a includes 
matrices with pairwise Pearson Correlation values for each pair of replicates within a given library. The Pearson 
Correlation ranges from 0.66 (AAYL52 Rep 1 vs Rep 2) to 0.93 (AAYL50 Rep 1 vs Rep 3). Figure 2b presents a 
visualization of the pairwise comparison of each replicate within AAYL49. The observed phenomena of better 
correlation at lower predicted affinity values holds true across each library. Affinity measurements, especially 
sub-micromolar affinities, are highly reproducible between AlphaSeq replicates.

analysis of standards. Control yeast strains comprising a small network of BCL2-family proteins, 
as previously described24,25 were included in each experiment to act as a set of standards for which bio-layer 
interferometry-derived interaction affinities were known a priori. Figure 3a shows the correspondence between 
known Kd values and AlphaSeq-predicted affinity values for these PPIs, with a computed linearity of R2 = 0.85.

Analysis of binding affinity for 1/2/3-site variants. To further validate the assay results by identifying 
expected patterns, AlphaSeq-derived binding affinities were compared for all antibody sequences, binned by the 
number of mutations separating each antibody from its seed sequence (1, 2 or 3). Results are shown in Fig. 3b; as 
expected, median affinity decreases with each additional mutation (2.08 log10 nM, 2.70 log10 nM, 3.21 log10 nM 
respectively for 1, 2, 3 mutations) while variance increases with each additional mutation (interquartile range 
1.69 log10 nM, 2.06 log10 nM, 2.09 log10 nM). In other words, each added mutation increases the probability of 
breaking the antibody but there is also more room for improvement over the wild type.

Usage Notes
Binding to negative controls. The inclusion of MATα yeast expressing no POI serves as an opportunity 
to identify MATa yeast with non-specific binding. These negative control yeast strains: AlphaNeg1, AlphaNeg2, 
and AlphaNeg3 are expressing AGA2 with an N-terminal HA epitope tag and C-terminal Myc tag without a POI. 
As such, many of the entries within the dataset represent interactions between MATa yeast with a MATα yeast 
expressing a negative target. The values associated with these measurements range from 1.03 log10 nM to 7.14 
log10 nM for assay 1 and 1.35 log10 nM to 7.32 log10 nM for assay 2. As these values are higher than the distribution 
of values for on-target binding, they serve as an additional confirmation that the pred_affinity measurements are 
resultant of on-target binding. The binding affinities measured against negative controls represent some combina-
tion of nonspecific yeast mating and molecular artifacts introduced to the barcodes during PCR and sequencing 
and can act as an empirical readout of the limit of blank for this dataset. Note that given the increase in technical 
variation observed with increasing pred_affinity values, it is not recommended to background subtract these 
values from the on-target pred_affinity measurements.

Normalization among replicates and assays. Each assay and replicate contains each of the three seed 
sequences and can be used to normalize the data among the assays or replicates. These sequences can also be 
included in future assays to allow for integration of additional data. Additionally, the regression used to transform 
sequencing abundances to predicted affinity values is performed once for each replicate and then applied to the 

Variable Name Description

POI (Protein of Interest) Alphanumeric label corresponding to amino acid sequence

Sequence Single letter amino acid representation of scFv measured.

Target Protein target represented by a text label for which the measured antibody interacted with. Options are defined 
target or negative controls 1–3.

Assay Unique assay identifier, either 1 or 2

Replicate Unique replicate identifier, either 1, 2 or 3

Pred_affinity
Value representing the score from the AlphaSeq assay, as described in the methods section. These values 
estimate the protein-protein dissociation constant in nanomolar, on a log scale, and are the result of empirical 
measurement. Lower values indicate stronger binding.

HC, LC Single letter amino acid sequence of the heavy chain (HC) or light chain (LC)

CDR[H/L][1/2/3] Single letter amino acid sequence of a CDR region where H indicates heavy chain, L indicates light chain and the 
numerical value represents either CDR 1, CDR 2 or CDR 3.

Table 4. Variables and associated descriptions.

https://doi.org/10.1038/s41597-022-01779-4


6Scientific Data |           (2022) 9:653  | https://doi.org/10.1038/s41597-022-01779-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

entire replicate; relative ranking of interactions within a replicate are insensitive to any technical variation in that 
calculation, but such error will propagate to all quantitative predicted affinity measurements in that replicate.

Sequences without a pred_aff value. Data entries in which a sequence and target pair is specified but 
does not have a pred_aff value indicate a poor binding interaction. These antibody sequences are observed in 
DNA sequencing of the MATa haploid yeast population, but not among diploid yeast, affirming the sequence 
is present in the MATa library but no mating was observed. There are multiple options for how to treat these 
entries in downstream applications, including removing them from the dataset. While not conclusive, absence of 
diploids is strong evidence of poor binding affinity; imputing affinity values to indicate as such may be advanta-
geous. Values could be imputed, for example, as the maximum pred_aff value or as the median pred_aff value of 
sequences not having measurements in all replicates.
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Fig. 2 Reproducibility of AlphaSeq measurements. (a) Pearson correlation among technical replicates for 
each of the four libraries. Darker blue represents greater correlation. (b) Pairwise comparison for each pair of 
replicates from library AAYL49. Sequences without replicate analyses are not plotted.
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Fig. 3 Analysis of standards and identification of expected data patterns. (a) Correspondence between known 
Kd values and AlphaSeq-predicted affinity values for a known PPI network. (b) Box-and-whisker plot showing 
the distribution of AlphaSeq-predicted affinity values for each variant against the target, binned by number of 
mutations within the antibody sequence.
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Code availability
Code associated with the randomization of antibody designs is available on GitHub (https://github.com/mit-ll/
Insilico_Ab_Variant_Generator).

Code used for sequence analysis is functionally similar to code that has previously been released18. This code 
can be accessed on GitHub (https://github.com/dyounger/yeast_synthetic_agglutination).
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