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Abstract: Metal oxide semiconductor materials have a wide range of applications in the field of
solar energy conversion. In this paper, CuO was prepared directly on copper foam substrate by
anodic oxidation. The effects of current density and anodizing temperature on sample preparation
and performance were studied. Field emission scanning electron microscopy (FESEM) and X-ray
diffractometer (XRD) had been used to determine the morphology and phase structure of the sample,
and its optical and electrical properties were discussed through UV-vis spectrophotometer and
electrochemical tests. In addition, the influences of experimental conditions such as current density
and reaction temperature on the morphology and properties of CuO were systematically discussed.
The FESEM images showed that as the anodic oxidation temperature increase, the morphology of the
prepared sample changed from nanowires to leaf-like CuO nanosheets. According to the results of
XRD, the structure of prepared CuO was monoclinic, and the intensity of diffraction peaks gradually
increased as anodizing temperature increased. We found that the optimum current density and
anodizing temperature were 20 mA cm−2 and 60 ◦C, respectively. The results of electrochemical
indicated that the CuO electrode based on copper foam (CuO/Cu foam) prepared at the optimum
exhibited the highest specific capacitance (0.1039 F cm−2) when the scan rate was 2 mV s−1.
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1. Introduction

Solar energy is a precious source of clean energy that has the advantages of being abundant,
virtually pollution-free, and available in a variety of ways. Photothermal conversion, photoelectric
conversion, and photochemical conversion are common ways to make full and effective use of solar
energy [1,2]. Among many metal oxides, copper oxide (CuO) has attracted extensive attention, as a
typical P-type semiconductor material and narrow band gap (1.2 eV–1.9 eV). CuO has the advantage
of high visible light absorption efficiency, low corrosion resistance, good chemical stability, non-toxic,
and easy preparation [3–6]. CuO has been extensively applied to catalytic reactions [7], antibacterial [8],
gas-sensors [9], lithium-ion electrode materials [10], super-capacitors [11], solar cells [12], and other
fields. The preparation methods of CuO nanostructures are also varied and mature. The commonly
used preparation methods include thermal oxidation [13], anodization [14], wet-chemical [15], etc.
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Metal foams are new functional materials that have been applied more and more widely in recent
decades [16]. They are a kind of three-dimensional (3D) material with a large number of pores and a
metal or metal alloy as the framework [17]. Because of the larger specific area, it has great application
value in the field of catalysis [18]. Cao [19] reported the synthesis of stable lithium metal anode by
in situ growth and chemical etching methods. The results indicated that due to the large specific
surface area of CuO nanowires substrate, the stable Li metal anode exhibited high performance in
reducing local current density. Carrera-Crespo [20] reported the effect of thermal oxidation on the
CuO nanoneedles and its evaluation as photocathodes. La [21] used the method of electrochemical
anodization to prepare wire-like bundle of Cu(OH)2. By changing the experimental conditions such
as current density and electrolyte concentration, they found that the surface of the copper foil is
only covered with a Cu2O layer at low current density (<0.8 mA cm−2). As the current density
increase (>1 mA cm−2), the growth of Cu(OH)2 became more advantageous than the formation of
CuO. Li [22] reported that the synthesis of CuO with different morphologies at a constant current
density. The morphology of CuO was controlled by using different electrolyte solutions and annealing
atmosphere. They found that the CuO/Cu foam nanosheets had smaller charge transfer resistance.

This work evaluated the influence of current density and anodizing temperature on the
micromorphology and performance of samples. At room temperature, we succeeded in the synthesis of
CuO/Cu foam nanowire arrays. When the reaction temperature rose above 40 ◦C, the morphology of CuO
changed to nanosheets. Their optical absorption and chemical capacitance behavior were investigated.
The prepared CuO was uniformly and densely distributed on the Cu foam substrate. Since the
synthesized CuO was directly contact with Cu substrate, it was beneficial to reduce the resistance
between CuO and Cu foam, thus increasing the utilization rate of CuO. The three-dimensional (3D) open
network structure of Cu foam increased the contact area with the electrolyte solution and promoted
the diffusion of the electrolyte. Thanks to the special structure accelerated the oxidation–reduction in
CuO during electrochemical test, which was beneficial to enhance the electrochemical performance of
the CuO/Cu foam [23,24]. Shinde S.K. [25] reported the synthesis of nanoflower-like CuO/Cu(OH)2 by
SILAR method. The results showed that the maximum specific capacitance was 459 F g−1 in 2 mol
dm−3 KOH electrolyte when the scan rate was 5 mV s−1.

2. Experimental

Synthesis and Characterization of CuO Nanostructure

In this experiment, all the chemicals such as KOH, HCl and NaOH purchased from Sinopharm
Chemical Reagents Company. The commercial Cu foam was procured from Minquan Chemical
Glass Testing Instrument Co Ltd. (Wuhan, China). The water-bath kettle was procured from Yuhua
Instrument Co Ltd. (Gongyi, China). DC regulated power supply was procured from Hanshengpuyuan
Technologies Co Ltd. (Beijing, China). All solutions of the configuration used deionized water as the
solvent (conductivity 18.2).

The CuO nanostructure arrays were synthesized by anodizing Cu foam followed by annealing.
The preparation process is briefly described as follows: For the purpose of removing the lipid and oxide
layer that may exist on the surface of Cu foam, the pre-prepared commercial Cu foam (1.5 × 1.5 cm2)
was ultrasonically cleaned in acetone and HCl solution and deionized water for 10 min in turn.
The subsequent anodic oxidation process was carried out under a three-electrode system. In this
system, the Cu foam as the anode, a platinum foil was used as the cathode and the silver chloride
denotes the reference electrode. The electrolyte solution was KOH (2 mol dm−3) aqueous solution.
The time for anodizing the Cu foam was 20 min. So as to explore the effect of reaction temperature on the
morphology of the product, we used a thermostat to heat the electrolytic cell in a water bath. In order
to achieve precise temperature control, we used a thermostat water-bath kettle (YUHUA HH-S2) for
heating preservation. Before anodizing, the electrolytic cell would be placed in water bath for 10 min to
ensure the system constant temperature. DC regulated power supply (HSPY-36-03) was used to control
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different current during the experimental. Subsequently the prepared precursor sample was repeatedly
cleaned with absolute ethyl alcohol and deionized water, respectively, then placed in alumina boats
annealed at 200 ◦C for 3 h in a baking oven to eventually successfully prepared the CuO/Cu foam.
The effect of experimental parameters such as temperature and current density on the samples were
investigated systematically.

FESEM (Japan Hitachi SU-8010) was used to observe the morphology of CuO/Cu foam prepared
with different conditions. The phase structure was analyzed by XRD (Bruker) with Cu Kα radiation
(λ = 0.154178 nm). The specific parameters of scanning rate were 0.02◦ s−1, and the 2θ range was 30–80◦.
The UV-vis absorption spectrum of CuO/Cu foam was investigated using an UV-vis spectrophotometer
(Japan Shimadzu UV-2600). The electrochemical characteristics of the CuO/Cu foam electrodes were
tested by an electrochemical workstation (China Chenhua CHI-660E). The test of cyclic voltammetry
(CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD) were
used to investigate the electrical performance of the CuO/Cu foam electrodes. A three-electrode system
was used for the electrochemical performance. The working electrode was the CuO/Cu foam electrode
with an effective area of 2 cm2, platinum foil (Pt 1 × 1 cm2) as the counter electrode, and the last one
was silver chloride reference electrode (Ag/AgCl). The above tests were carried out in electrolyte
solution of NaOH (5 mol dm−3) at room temperature. CV and GCD potential windows were 0–0.4 V.

3. Result and Discussion

3.1. The Effect of Current Density on CuO Morphology

For the purpose of studying the influence of different current densities on the morphology of
samples, CuO nanostructures were obtained by applying anodized Cu foams with different current
densities at room temperature and then by heat treatment. Figure 1 shows the FESEM images of
CuO/Cu foam prepared at current density of 10, 15, 20, and 25 mA cm−2, respectively. Figure 1a clearly
shows that the short rod-shaped CuO formed on the surface of Cu foam when the current density
was 10 mA cm−2. As the current density increased, the length of CuO nanowires gradually increased.
As can be seen from Figure 1d, the tips of the CuO nanowires gradually aggregated and tended to be
shaped like a pagoda. However, according to the high magnification pictures, the diameter of a single
nanowire is about 10–20 nm. It can be observed from Figure 1c that the CuO nanowire arrays were
uniformly and densely dispersed on the Cu foam substrate.

Figure 1. FESEM images of the samples prepared at room temperature with different current density,
(a) 10, (b) 15, (c) 20, and (d) 25 mA cm−2.
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3.2. The Effect of Anodizing Temperature on CuO Morphology

Figure 2 displays the high/low magnification FESEM images of CuO/Cu foam prepared at different
anodizing temperature. It can be seen from the Figure 2 that when the anodizing temperature increased
from room temperature to 40 °C, CuO nanowires begin to gather at the top, being shaped like a pagoda.
As the temperature continued to rise to 60 °C, the morphology of CuO changed from nanowires to
nanosheets. From Figure 2c,d, it can be observed that the Cu foam substrate was completely covered
by the leaf-like CuO nanosheets. From the magnified images of FESEM, it can be clearly seen that a
single nanosheets that composed of the leaf-like CuO structure was about 10 nm in thickness and 5 µm
in length.

Figure 2. FESEM images of the samples prepared at 20 mA cm−2 current density with different
anodizing temperature (a) 25, (b) 40, (c) 60, and (d) 80 °C.

3.3. Phase Structure Analysis of CuO

Figure 3 shows the XRD patterns of the CuO/Cu foam prepared at 20 mA cm−2 current density
with different temperatures. There are three strong reflection peaks at 2θ = 43.58, 50.51, and 74.21◦,
which can indicate the (1 1 1), (2 0 0), and (2 2 0) crystal planes of Cubic Cu structure (JCPDS No. 02-1225).
The remaining reflection peaks could be identified as monoclinic CuO (JCPDS No. 89-2530) according
to the search information. The specific parameters of the monoclinic CuO unit cell were a = 4.6839 Å,
b = 3.4734 Å, c = 5.1226 Å. There are Cu peaks observed in the XRD spectrum. It is related to the
thin structure of the synthesized CuO and the small size of the surface [26]. As can be seen from
Figure 3, different diffraction peaks located at 2θ = 35.62, 38.64, and 39.09◦ corresponded to (0 0 2),
(1 1 1), and (2 0 0) crystal planes respectively. Figure 3b, the partial enlarged view, clearly demonstrates
the intensity of diffraction peaks at 35.62 and 39.09◦ gradually increased following elevated the reaction
temperature. This indicates that the growth of CuO crystal nucleus is more favorable along (0 0 2) and
(2 0 0) crystal planes, which also explains transition of the morphology of CuO in Figure 2.
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Figure 3. The XRD spectrum of CuO/Cu foam prepared with different anodizing temperature (a) and
partial enlarged view (b).

3.4. UV-Vis Absorption Spectra of CuO

Figure 4 shows the UV-vis spectra of CuO/Cu foam prepared at different current densities and
anodizing temperatures. Figure 4 demonstrates that we could observe a good optical absorption
spectrum in the wavelength of 200–800 nm, exhibiting good light absorption in the near ultraviolet and
visible light regions. Figure 4a illustrates that the light absorption capacity of the samples enhanced
as current density increases. However, as the anodizing temperature increases, the absorption
spectrum decreases. This may be caused by the different methods of nucleation as the reaction
temperature changes.

Figure 4. UV-vis absorption spectra of CuO/Cu foam synthesized with different conditions, different
current density (a), and different anodizing temperature at 20 mA cm−2 (b).

3.5. Properties of Electrochemical

In this section, we will discuss in detail the electrochemical performance of the CuO/Cu foam
electrode such as CV, EIS, and GCD. With the purpose of obtaining the best characteristic of the electrode,
we immersed the CuO/Cu foam electrode in the electrolyte solution for 20 min at the beginning of
measurement. Then, we performed a CV pre-scanning test on the CuO/Cu foam electrode at a voltage
scanning rate of 20 mV s−1 lasting for 20 cycles. Figure 5 demonstrates the CV curves of the CuO/Cu
foam prepared at 20 mA cm−2 current density with different anodizing temperatures, the scan rates are
2, 5, 10, 15, 20, 30, 40, 50 mV s−1, respectively. When testing the CV curves, the potential window is
0–0.4 V. The reason for choosing 0–0.4 V is that too high voltage will lead to electrolysis of water. It can
be observed from the Figure 5 that each group of CV curves contains an insignificant oxidation peak
and a broad reduction peak. It is completely different from the approximate rectangle CV curve of
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traditional Electric double layer capacitors (EDLCs), meaning that the electrochemical characteristic of
the CuO/Cu foam electrode is based on the quasi-reversible and continuous Faraday redox reaction.
Therefore, the pseudocapacitance characteristic of the CuO/Cu foam in alkaline solution were mainly
determined by the redox reaction of Cu ions, which can be explained by Equations (1)–(4) [23]:

1
2

Cu2O + OH− ↔ CuO +
1
2

H2O + e− (1)

1
2

Cu2O +
1
2

H2O + OH− ↔ Cu(OH)2 + e− (2)

CuOH + OH− ↔ CuO + H2O + e− (3)

CuOH + OH− ↔ Cu(OH)2 + e− (4)

Figure 5. Cyclic voltammetry (CV) at different scan rates of the CuO/Cu foam prepared via different
anodizing temperature (a) 25, (b) 40, (c) 60, and (d) 80 ◦C.

The specific capacitance of the CuO/Cu foam electrodes were calculated according to Equation (5).

Ca =

∫
I(V)dV

2υS∆V
(5)

I (V) represents the response current, V (V) is the relative potential of the Ag/AgCl electrode,
ν denotes the sweep speed, S (cm2) is the effective area of contact between electrode and electrolyte
solution during testing, and ∆V (V) is the value of the potential during the test. The specific capacitance
of CuO/Cu foam electrode as shown in Table 1.
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Table 1. Specific capacitance of CuO/Cu foam electrodes.

Scan Rates (mV s-1)
Temperature (◦C)

40 60 80

2 0.093263 0.103937 0.049606
5 0.069931 0.082675 0.037224

10 0.058045 0.072527 0.030095
15 0.052582 0.063057 0.027631
20 0.048352 0.059108 0.025253
30 0.04282 0.053433 0.022761
40 0.039119 0.04663 0.020696
50 0.03561 0.042637 0.019347

Figure 6 shows the CV curves of electrodes synthesized with different anodizing temperatures.
The scan rate of CV test is 20 mV s−1. According to the calculation of Equation (5), Ca of the CuO/Cu
foam electrodes are 0.048, 0.059, and 0.025 F cm−2, respectively. It can be seen from Figure 6 that Ca
increased with the increase in anodizing temperature, until reaching its maximum when anodizing
temperature reached 60 °C, but it started to decrease with the increase in temperature. These phenomena
can be attributed to the influence of the electrochemically active substance on CuO/Cu foam electrode.
At first, as the anodizing temperature increased, the active material on the electrode increased and
the leaf-like structure increased the contact area and promoted the improvement of electrochemical
performance. However, when the total amount of active substance is too high, the contact between the
electrolyte and electrode surface will be inhibited, resulting in a decrease in specific capacitance [24].
The anodic peak A1 and A2 arises from the process by which Cu2O (or Cu(OH)) is oxidized to CuO.
The reduction process of CuO or Cu(OH)2 may be the reason why occurs the cathodic peak C1 and
C2 [23]. All redox reaction process during the CV test can be explained by Equations (1)–(4).

Figure 6. CV of the electrodes prepared with different anodizing temperature at 20 mV s−1 scan rate.

Figure 7a shows the EIS diagram of CuO/Cu foam electrodes in 5 M NaOH electrolyte solution.
In an ideal state, the curve of impedance is nearly semicircular in the range of high frequency. It is
mainly caused by the oxidation–reduction reaction in Equations (1)–(4). The semicircular arc in
the range of high frequency shrinks, indicating that the transfer process of electron charge is rapid.
The larger the radius, the greater the transfer resistance [14]. It can be seen from Figure 7a that
as the anodizing temperature increases, the charge transfer resistance first decreases, but when the
temperature continues to increase from 60 ◦C, the resistance increases instead. The transfer resistance
of the CuO/Cu foam electrodes in the electrolyte is consistent with the results of specific capacitance in
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Table 1. However, it can be seen that the slope of the curve is relatively small in the low frequency region.
The ideal capacitor should be a vertical line. The smaller slope was caused by the existence of Warburg
impedance when the electrolyte solution diffuses inside the electrodes [11]. Figure 7b shows the GCD
diagram of electrodes synthesized by different anodizing temperature at 20 mA s−1 current density.
In order to understand the rate performance of the electrodes, the galvanostatic charge-discharge (GCD)
curve was discussed. The GCD curves are evaluated to understand the rate capability of CuO/Cu foam
electrode. The shape of GCD curves in the Figure 7b is obviously different from the triangular GCD
curves of EDLCs. The smooth and symmetrical GCD curves of CuO/Cu foam electrodes during the
process of charging and discharging show the excellent pseudocapacitance characteristics. As shown
in Figure 7b, with the anodizing temperature increase, the time of charge–discharge increases first and
then decreases. The GCD curves are not straight line during the process of charging and discharging,
which means that the reaction is Faraday redox reaction. The conclusion of GCD is the same as CV.

Figure 7. EIS of the CuO/Cu foam prepared with different anodizing temperature at 20 mA cm−2

current density (a) and GCD curves (b).

3.6. Growth Mechanism of CuO/Cu Foam

The synthesis principle of the CuO/Cu foam electrodes prepared by anodic oxidation was shown
in Figure 8 and Scheme 1. The anodic oxidation process can be briefly described as: immerse the Cu
foam in 2 mol dm−3 KOH electrolyte and apply a constant current for 20 min. At room temperature,
the Cu foam substrate was oxidized, and the ions of Cu2+ and Cu+ occurred when applying a constant
current. The ions were released into the KOH electrolyte. At the same time, Cu2+ was captured by the
OH- in the solution to generate a very small Cu(OH)2 nucleus. Meanwhile, the Cu(OH)2 nucleus can
grew on and on along the (1 1 1) crystal plane in strong alkaline conditions as the anodizing time and
current density increased, finally formed the structure of Cu(OH)2 nanowire arrays [27]. After calcining
at 20 ◦C for 3 h, Cu(OH)2 was dehydrated and converted into CuO nanowire arrays, as shown in
Scheme 1a. This is also the reason why nanowires gradually aggregate at the top as the current
density increase in Figure 1. Scheme 1b demonstrates the growth process of leaf-like CuO nanosheets.
At first the formation process of Cu(OH)2 nucleus was the same as above. However, when the reaction
temperature rose (above 40 ◦C), the Cu(OH)2 nucleus was more likely dehydrated and formed the CuO
nucleus. This is the reason why Cu foam become black rather than blue after anodization, when the
reaction temperature rises above 40 ◦C. Then, the CuO nucleus continuously grew along the (0 0 2) and
(2 0 0) crystal planes until it formed leaf-like CuO nanosheets, which explained the transformation
of CuO morphology in Figure 2 [28,29]. In order to ensure a complete reaction, the precursor was
heat-treated under the condition of heating at 200 °C for 3 h in an air atmosphere and ultimately forms
CuO nanostructures on the Cu foam substrate [30–34]. As shown in the figure below, the color of the
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Cu foam surface became black at the end of experiment. The entire reaction can be explained by the
following Equations (6)–(11):

Cu anodize
−−−−−→ Cu2+ + 2e− (6)

Cu anodize
−−−−−→ Cu+ + e− (7)

Cu2+ + 2OH− → Cu(OH)2 (8)

Cu+ + OH− → CuOH (9)

Cu(OH)2
∆
→ CuO + H2O (10)

CuOH ∆
→

1
2

Cu2O +
1
2

H2O (11)

Figure 8. The synthesis process of CuO/Cu foam electrode.

Scheme 1. The growth mechanism of CuO nanostructures. (a) at room temperature, (b) above 40 ◦C.

4. Conclusions

It was illustrated that the CuO/Cu foam nanostructures could be successfully synthesized by
anodic oxidation. It was proved that the optimum current density and anodizing temperature were
20 mA cm−2 and 60 ◦C, respectively. When the reaction temperature rose (above 40 ◦C), the Cu(OH)2

nucleus was more likely dehydrated and formed the CuO nucleus. The results of XRD showed the
CuO nucleus continuously grew along the (0 0 2) and (2 0 0) crystal planes, which explained the
transformation of CuO morphology. The growth mechanism of CuO/Cu foam had been shown in
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Scheme 1. We also found that the different morphologies of the prepared CuO nanostructures had
an impact on its photoelectric properties. The photoelectric performance of CuO/Cu foam also was
investigated. It can be identified that the light absorption of CuO was not good near the wavelength of
UV according to the Figure 4 of UV-vis spectrum. Therefore, subsequent composite modification should
be considered to improve its absorption of UV-vis light. The shape of CV and GCD curves revealed the
electrochemical characteristic of the CuO/Cu foam electrode was based on the quasi-reversible and
continuous Faraday redox reaction. The CuO/Cu foam electrode prepared at the optimum exhibited the
highest specific capacitance (0.1039 F cm−2) when the scan rate was 2 mV s−1. In view of the advantages
of low-cost, high specific surface, and excellent optical and electrical performance, CuO/Cu foam may
have broad application prospects in the fields of catalysts, sensors, and so on.
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