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SUMMARY

Single-cell RNA-sequencing (scRNA-seq) and single-nucleus RNA-sequencing
(snRNA-seq) studies have provided remarkable insights into understanding the mo-
lecular pathogenesis of Alzheimer’s disease.We recently developed scREAD, a data-
base to provide comprehensive analyses of all the existing AD scRNA-seq and
snRNA-seq data from the public domain. Here, we report protocols for using the
scREAD web interface and running the backend workflow locally. Our protocols
enable customanalyses ofADsingle-cell and single-nucleus geneexpression profiles.
For complete details on the use and execution of this protocol, please refer to
Jiang et al. (2020).
BEFORE YOU BEGIN

Preparing to use the scREAD website

Timing: 5 min

1. We recommend using Chrome, Safari, Microsoft Edge, or Firefox web browser to access scREAD

(https://bmbls.bmi.osumc.edu/scread/). Microsoft Internet Explorer is not supported.

2. If you would like to submit data to scREAD, prepare raw scRNA-seq or snRNA-seq gene expres-

sion data in text format, in which rows represent genes, and columns represent cells.
Preparing local environment to run the scREAD workflow

Timing: 30 min

3. Install R, version 3.6 or greater. The required R dependencies are listed in the key resources table

section below.

4. Raw scRNA-seq or snRNA-seq expression data mainly has three formats:

a. A single .txt, .tsv or .csv formatted gene expression matrix, in which each row represents a

feature (gene), and each column represents a cell.
Feature Cell1 Cell2 Cell3 Cell4 Celln

Feature 1 0 2 7 3 .

Feature 2 0 4 6 0 .

Feature 3 2 0 2 0 .
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b. A hierarchical data format (hdf5) feature-barcode matrix, generally named as filtered_featur-

e_bc_matrix.h5 in the 103 Genomics CellRanger output folder.

c. The Hdf5 format consists of a matrix and metadata. The matrix contains barcodes (barcode

sequences), data (Nonzero UMI counts in column-major order), indices (0-based row index),

indptr (0-based column index) and shape (a tuple contains matrix dimensions, (# row, # col-

umn); and the metadata contain diverse attributes.

The Hdf5 file hierarchy example (https://support.10xgenomics.com/single-cell-gene-expression/

software/pipelines/latest/advanced/h5_matrices) :

(root)
Barcod

AAACA

AAACA

AAACA

AAACA

Ensemb

ENSG0

ENSG0

ENSG0

ENSG0

.

2 S
└── matrix [HDF5 group]

├── barcodes

├── data

├── indices

├── indptr

├── shape

└── features [HDF5 group]
e

TACAA

TACAA

TACAA

TACAA

l_id

000024

000023

000018

000023

TAR Pr
├─ _all_tag_keys

├─ target_sets [for Targeted Gene Expression]

│.└─ [target set name]

├─ feature_type

├─ genome

├─ id

├─ name

├─ pattern [Feature Barcode only]

├─ read [Feature Barcode only]

└─ sequence [Feature Barcode only]
d. The three gzip files recording information of barcodes (barcodes.tsv), features (genes.tsv), and

gene expressions (matrix.mtx) in the 103 Genomics CellRanger output folder.

Barcodes file (Barcodes.tsv)
AACG-1

AAGC-1

ACAG-1

ACGA-1
Features (genes.tsv)

The first column represents the Ensembl gene id, and the second column represents the gene

symbol.

.

Gene_symbol

3485 MIR1302-10

7613 FAM138A

6092 OR4F5

8009 RP11-34P13.7

.
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Gene expression matrix (matrix.mtx)
Gene id

498

5423

6374

12932

REAGE

Deposit

AD scR
(Grubm

scREAD

All code

The inte
calculat
multiple
overlap

Softwar

Chrome

Safari

Microso

Firefox

R (>=3.

IRIS3 (v

Seurat (

Harmon

Polychr

SCINA

RColorB

ggplot2

tidyvers

cowplo

RMySQ

future (v

MAST (
i. The first column ‘‘gene id index’’ represents the row number of genes in the genes.tsv.

ii. The second column ‘‘cell id index’’ represents the row number of cell-barcode in the bar-

codes.tsv.

iii. The third column represents the total Unique Molecular Identifier (UMI) count in each cell

and gene combination.
index Cell id index UMI count

1 1

1 6

1 3

1 1
scREAD maintenance and sustainability plan

Currently, scREAD only contains the scRNA-seq and snRNA-seq data sets as of September 22nd, 2020.

We will routinely collect more publicly available AD scRNA-seq and snRNA-seq data. You may also con-

tact us through emails and let us know about your dataset of interest to be added in scREAD. We will

continue to develop scREAD to support integrative analysis of single-cell multimodal omics data and

spatial transcriptomics data. We appreciate any suggestions or feedback from you.

. . .
KEY RESOURCES TABLE
NT or RESOURCE SOURCE IDENTIFIER

ed data

NA-seq data
an et al., 2019)

GEO GSE138852

database (Jiang et al., 2020) https://bmbls.bmi.osumc.edu/scread/

for the scREAD protocols GitHub https://github.com/OSU-BMBL/scread-protocol

ractive tutorial for optional step:
ing overlapping DEGs from
comparisons to find

ping genes

Google Colab https://colab.research.google.com/drive/
1lInXa6jD4yc7RGJc0EWDfy5NNoXT1qye?
usp=sharing

e and algorithms

Google https://www.google.com/chrome/

Apple https://www.apple.com/safari/

ft Edge Microsoft https://www.microsoft.com/en-us/edge

Mozilla https://www.mozilla.org/en-US/

6) R Project https://www.r-project.org/

1.2.4) (Ma et al., 2020) https://bmbl.bmi.osumc.edu/iris3/

v3.2) (Stuart et al., 2019) https://satijalab.org/seurat

y (v0.1) (Korsunsky et al., 2019) https://github.com/immunogenomics/harmony

ome (v1.2.5) R CRAN https://cran.r-project.org/web/packages/
Polychrome

(v1.2.0) (Zhang et al., 2019) https://github.com/jcao89757/SCINA

rewer (v1.1-2) R CRAN https://cran.r-project.org/web/packages/
RColorBrewer

(v3.3.2) R CRAN https://ggplot2.tidyverse.org/

e (v1.3.0) R CRAN https://www.tidyverse.org/

t (v1.0.0) (Wilke et al., 2021) https://github.com/wilkelab/cowplot/tree/1.1.1

L (v0.10.21) R CRAN https://cran.r-project.org/web/packages/RMySQL

1.21.0) R CRAN https://cran.r-project.org/web/packages/future

v1.16.0) (Finak et al., 2015) https://www.bioconductor.org/packages/
release/bioc/html/MAST.html
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Figure 1. Overview of the scREAD homepage

(A) The pie charts represent four factors of distribution: species, control/disease condition, brain region, and gender

from the left side to the right side, respectively. Each color in each pie chart represents one element, and the number

represents the distribution ratio for each element under each factor for 73 datasets.

(B) The table shows the general information of all 73 datasets. Users can select filters and the table will be updated

accordingly. Clicking a row in the table will pop up the dataset overview panel, and users can navigate to the dataset

details page through the link.
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STEP-BY-STEP METHOD DETAILS

Checking AD studies summary statistics

Timing: 10 min

This section allows one to browse the overall summary statistics, including species, disease condi-

tion, brain regions, and gender. The researcher can thenmake an informed decision of which dataset

of interest one should navigate to.

The current release of the scREAD collected datasets from 15 studies in total. Based on themetadata

provided from the original papers, we constructed the original samples into 73 datasets, each of

which corresponds to a specific species (human ormouse), gender (male or female), brain region (en-

torhinal cortex, prefrontal cortex, superior frontal gyrus, cortex, cerebellum, subventricular zone, su-

perior parietal lobe, or hippocampus), disease or control, and age stage (7 months, 15 months, or

20 months for mice, and 50–100+ years old for human).

1. Navigate to https://bmbls.bmi.osumc.edu/scread/, and the dataset summary should be listed

(Figures 1A and 1B).

2. You can either click on one of the pie charts or select filters from the dataset summary table,

including species, sample condition, brain region, and gender. The content of the table will be

updated accordingly.

3. You can click any row in the table, and a dataset overview panel will pop. You can further navigate

to the dataset details page through the link.
4 STAR Protocols 2, 100513, June 18, 2021
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Figure 2. Example DGE analysis searching result of the GAD1 gene, a marker gene of inhibitory neurons

Users can select filters and the table will be updated accordingly.
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Searching genes of interest from the differential gene expression (DGE) analysis results

Timing: 20 min

This section allows one to search a gene of interest from DGE analysis results across multiple com-

parisons. For detailed gene information, the researcher can check from the link to the dataset ID of

interest (Figure 2).

4. To search genes of interest from DGE analysis results across multiple datasets, type the gene

symbol in the search box, and click on the search button. You can select filters to specify dataset

sources or decide which comparison types should be displayed.

5. The query results are returned from multiple DGE analyses, including cell-type-specific genes, sub-

cluster specific genes, AD vs control differentially expressed genes (DEGs), or AD vs AD DEGs.

a. Cell-type-specific genes were identified by performing DGE analysis between the cell type of

interest and the average of the remaining cell types.

b. Subcluster-specific genes were identified by performing DGE analysis between the subcluster

of interest and the average of the remaining subclusters from the same cell type.

c. AD vs control DGE analysis was performedwithin the same cell type, brain region, and gender.

For example, Male-AD-Prefrontal cortex vs Male-Control-Prefrontal cortex.

d. AD vs AD DGE analysis was performed within the sample cell type while based on different

sample conditions. For example, one AD vs AD comparison can be Male-AD-Prefrontal cortex

vs Male-AD-Entorhinal Cortex or Male-AD-Prefrontal cortex vs Female-AD-Prefrontal cortex.

Note: The ‘multiple comparison types’ in the comparison type selection box include disease

vs control performed within the same dataset and disease vs disease performed from two
STAR Protocols 2, 100513, June 18, 2021 5



Figure 3. Cell clustering and gene expression result from the scREAD homepage

Cell clustering results including UMAP plot colored by cell types or subclusters (left), and searching gene expression using the

same UMAP coordinates (right). The darker the color is in this UMAP, the higher the expression value of the gene.
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Protocol
different datasets. A positive log foldchange (FC) value indicates the gene expressions are

higher in the first group. The log FC is returned in the natural logarithm.
Checking cell clustering results

Timing: 20 min

In this section, we used a dataset from scREAD as an example to show the analysis result (ID: AD00103),

https://bmbls.bmi.osumc.edu/scread/AD00103. This dataset consists of 6,629 cells isolated from a hu-

man AD female prefrontal cortex sample (Mathys et al., 2019). As we know, not all cells collected from

ADpatient samples aremalignant, and some healthy cells may be included in the cell populations, which

were defined as healthy-like cells in Granja et al.’s study (Granja et al., 2019). We applied this concept to

all ADdatasets in scREADand defined these healthy-like cells as control-like cells. These control-like cells

maintain distinct regulatory mechanisms and gene expression patterns compared to AD cells, and they

will disturb the accurate identification of ADcell types. Thus, we removed these control cells fromdisease

datasets and identify AD-associated cells. Here, scREAD filtered out 950 control-like cells and kept 5,679

AD-associated cells for the downstream analysis. See the quantification and statistical analysis section for

more details about how scREAD filtered out control-like cells.

6. Checking cell clustering results (Figure 3).

a. By default, all the cell types will be selected and the corresponding Adjusted Rand Index (ARI)

will be displayed. The ARI score is used to evaluate the similarity of our predicted cell types

compared with the original cell labels in the original paper.

Note: The ARI score will not be displayed when the cell labels were not provided from the

original paper, and a silhouette score will be displayed instead. Meanwhile, the ARI score

will be hidden if users did not select all cell types.

b. Choose one of these cell types, the following Uniform Manifold Approximation and Projection

(UMAP)(Becht et al., 2019)will change to theUMAPofpredicted subclusters for this specificcell type.
STAR Protocols 2, 100513, June 18, 2021

https://bmbls.bmi.osumc.edu/scread/AD00103


Figure 4. Differential gene expression (DGE), and functional gene set enrichment based on DEGs

(A) Differential gene expression analysis panel, the comparison groups include cell-type-specific genes, subcluster

specific genes, and DEGs from the cross-dataset comparison.

(B) KEGG pathway, GO biological process, molecular function, and cellular component analysis using the DEGs from

(A), an enriched genes example were displayed on the 5th GO cellular component term.
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c. A sliding bar is used for controlling the size of each point in the following UMAP. It ranges from

1 to 10, i.e., the bigger the number is, the larger the point size is.

d. This function bar contains several quick buttons for graphic operations.

e. Hovering the cursor on cell points will display cell type, cell name, and the UMAP coordinates.

f. The legend of this UMAP plot will be displayed based on the genes selected in the drop-down

bar. The darker the color is in this UMAP, the higher the expression value of the gene.

CRITICAL: Rendering gene expression scatter plot can be slow due to network speed or a
large number of cells data need to process, please be patient while scREAD is fetching data

from the backend server.
Checking differential expression (DE) results and performing functional enrichment analysis

Timing: 20 min

In this section, we used the same example data from checking cell clustering results to illustrate DGE

analysis results and to perform functional gene set enrichment analysis based on DEGs.

7. First, apply the necessary filtering criteria from the DGE analysis results panel (Figure 4A).
STAR Protocols 2, 100513, June 18, 2021 7
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8. DGE analysis groups for browsing cell-type-specific genes, subcluster specific genes, and DE

genes from the cross-dataset comparison.

a. Choose the cell type of interest in DGE analysis.

b. Choose the log fold-change ranges. (default = 0.5; ranges from 0 to 5).

c. The adjusted p value ranges. (default = 0.05; ranges from 10^�6 to 1).

d. The DE direction can filter by all DE genes, only up-regulated genes, only down-regulated

genes (default = ’all’).

e. You can search for genes that you are interested in, and then the following table will return the

matching result.

f. Download the currently listed table.

g. GeneCards database (https://www.genecards.org/) is linked to each gene in the table.

Note: Adjusting any parameters above will immediately affect the displayed DEGs table.

9. Performing functional gene set enrichment (Figure 4B)

a. KEGG pathway, GO biological process, GO molecular function, and GO cellular component

analysis using the DEGs from above, an example of enriched genes are displayed on the

4th GO cellular component term. You can also search for a specific item by entering the con-

tent that you want to search in the search box.

CRITICAL: The functional gene set analysis results are calculated in real-time by sending
the DEGs to the Enrichr (Kuleshov et al., 2016) web server (https://maayanlab.cloud/

Enrichr/). Thus, changing DEG log FC or p value cutoffs can significantly change the results

of enrichment analysis. Considering Enrichr does not provide options to submit a custom

background and the results could be potentially misleading (Timmons et al., 2015).We also

provide a link to another enrichment analysis tool, g: Profiler (https://biit.cs.ut.ee/

gprofiler/), which allows users to submit custom background gene sets.
Identifying cell-type-specific regulons

Timing: 20 min

In this section, we describe the process of identifying cell-type-specific regulons (CTSRs) using IRIS3.

10. In theDE section,when you select the ‘‘Cell-type-specificgenes’’ item in the ‘‘Group’’ select box, cell-

type-specific regulon analysis will be performed. CTSRs results are displayed at the bottom of the

screen. Click on the ‘‘Cell-type-specific regulons’’ bar, detailed CTSRs information will be shown.

11. The CTSRs are displayed in a reactive table in the DE section, each row shows that for each cell

type, a set of genes are regulated by a specific transcription factor (TF). Clicking on the ‘‘Regulon

overview’’ panel, a table in the panel summarizes the overall cell number and regulon number in

each cell cluster (Figure 5A).

12. You can navigate into the IRIS3 to see the detailed results of this job by clicking the ’Open cell-

type-specific regulon result page in the new tab’ button. In the table, the index number will be

given to represent CTSRs (Figure 5B).
8

a. Both gene compositions of regulons and their expression values across different cell types can be

intuitively displayed in a heatmap. Regulons are ranked in increasingorder of the empirical p values

of regulon specificity scores (RSS) as described above, and a regulon is named as CTn-Rmwith ’n’

representing the indexof cell typeand ’m’ represents the regulon rank.Due to the space limitation,

only the top ten regulons and their corresponding genes are showcased in the heatmap, and the

component genes of each regulon are indicated as green rectangles. The heatmap records the

log-transformed expression level of each top-ten-regulon-covered gene across all cells.

b. Regulon results are separately showcased in each cell type. Click on the "CT#" button to

switch to see results in other cell types. A scatter plot shows the distribution of the RSS of
STAR Protocols 2, 100513, June 18, 2021
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Figure 5. Cell-type-specific regulon (CTSR) analysis results from IRIS3

(A) Overview table of identified CTSRs.

(B) An example of CTSR (p value < 0.05), stars indicate differential expressed gene within the cell type, the

corresponding matched TF is linked to the HOCOMOCO database.

(C) UMAP plot colored by regulon activities in each cell.
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each regulon. CTSRs are ranked top and marked as blue dots with their representative TF

names, and insignificant regulons are marked as grey dots. For each regulon, genes and

the corresponding TF are presented (Figure 5B) with several actions that link to showing

heatmap, functional gene set enrichment analysis, and regulon activities in the UMAP plot

(Figure 6C). A more detailed interpretation of each regulon can be found on the IRIS3 web-

site, https://bmbl.bmi.osumc.edu/iris3/tutorial.php#3example&q=2.

CRITICAL: The CTSRs results are only available when you selected the cell-type-specific
option in the DEG group box.
Optional step: calculating overlapping DEGs from multiple comparisons

Timing: 1 h

In this section, we provide a workflow for calculating overlapping DEGs frommultiple comparisons. Sup-

posewe havemAD vs control comparisons from a cell type of interest in a specific brain region. For each

comparison, we select top t DEGs based on the ranked log FC.We define an "overlapping gene" as the

gene that appears at least n times in m comparisons (n%m). t; nare parameters set by the users.

Here, we provide two approaches, you can follow the code example below on your local R environment;

For users wishing to avoid setup procedures, you can use the following link from Google Colab, which is

an interactive computational environment that combines live code, visualizations, and explanatory text,

https://colab.research.google.com/drive/1lInXa6jD4yc7RGJc0EWDfy5NNoXT1qye?usp=sharing.

13. If you wish to perform the calculation in your local computer, first, load the R packages, scREAD

data, and predefined functions in your R local environment:
STAR Protocols 2, 100513, June 18, 2021 9
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library(tidyverse) 
library(RVenn) 
library(rlist) 
library(knitr) 
tryCatch({ 
  load( 
    url( 
      'https://bmbl.bmi.osumc.edu/downloadFiles/scread/protocol/scr
ad_db.rdata' 
    ) 
  ) 
}, error = { 
  load( 
    url( 
      'https://github.com/OSU-BMBL/scread-
protocol/raw/master/overlapping_genes/scread_db.rdata' 
    ) 
  ) 
}) 

14. To calculate overlapping genes, these parameters are needed
10
a. The number of genes to be selected in each AD vs control DEG results (default = 100)

b. Species (default = Human)

c. Brain region (e.g., Entorhinal Cortex)

d. DE direction (e.g., up)

e. Overlap threshold (For example, A gene is an overlapping gene if A should at least appear 3

times in total 4 comparisons, here the threshold is 3)
15. We can then process some of our metadata:

REGION_LIST <- sort(unique(dataset$region)) 

CT_LIST <- sort(unique(cell_type_meta$cell_type)) 

CT_SHORT_LIST <- CT_LIST 

CT_SHORT_LIST[CT_LIST=="Oligodendrocyte precursor cells"] <-

"opc" 

CT_SHORT_LIST <- tolower(substr(CT_SHORT_LIST, 1, 3)) 

16. Below are the necessary settings to calculate the overlapping genes.
a. We use the top 100 DE genes in each AD vs control comparison:
b. Species should be either ’Human’ or ’Mouse’:
STAR Protocols 2, 100513, June 18, 2021



Figure 6. Overlapping genes and annotated cell type (ct) from the example dataset

(A) The up-regulated overlapping genes in Human Entorhinal Cortex Astrocytes (ast).

(B) The log FC, dataset source, and rankings from the overlapping genes table in (A).

(C) A UMAP plot of the control dataset example with six cell types was annotated from the scREAD workflow.

(D) A UMAP plot of the disease dataset example with six cell types was transferred from the example reference control dataset.
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c. Specify our brain region of interest, here we selected the 5th brain region in REGION_LIST

variable, i.e., Entorhinal Cortex’:
d. DE direction should either ’up’ or ’down’, ’up’ means we select DE genes that are expressed
higher in the disease dataset (the first group):
e. The OVERLAP_THRES should be manually defined based on your interest and the total num-

ber of comparisons in scREAD. For example, scREAD have 4 total AD vs control datasets

comparisons, we set the threshold to 3, meaning that we want to find overlapping genes

that are at least appeared in 3 comparisons:
f. Now, we can calculate the overlapping genes based on the parameters above, the results are

stored in a list variable:
STAR Protocols 2, 100513, June 18, 2021 11
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g. Two tables can be generated by accessing the result variable:

i. The overlapping genes in the selected brain region (Figure 6A)

ii. The detailed information, including rankings, log FC, dataset source information from the

overlapping genes (Figure 6B)
Optional section 7: Running the scREAD backend analysis workflow locally

Timing: 2 h

In this section, we present how to run the scREAD workflow to process a custom dataset. The work-

flow can be used in the Unix command-line environment with R installed.

17. Download the scREAD workflow and an example dataset from https://github.com/OSU-BMBL/

scread-protocol/tree/master/workflow, the folder should contain the following files (5 min):
12
a. custom_marker.csv: A manually created marker gene list file used for identified cell types.

b. functions.R: Visualization functions used in R.

c. build_control_atlas.R: build control cells atlas Seurat object from count matrix file.

d. transfer_cell_type.R: filter out control-like cells in disease dataset.

e. run_analysis.R: run analysis workflow, and export tables in the scREAD database format.

f. example_control.csv. The example control dataset.

g. example_disease.csv. The example disease dataset.
18. Build the control atlas file from the raw gene expression matrix (5 min).
a. Prepare your control gene expression data. In the data frame, the first column should be

gene symbols and other columns as cell labels. Put all code and data in a working directory.

(e.g., PATH_TO_WD), in this protocol, we will run example_control.csv.

b. build_control_atlas.R takes three parameters:

i. Working directory path.

ii. Control data path.

iii. Output data ID.

c. Next, run the following command, remember to change PATH_TO_WD to your working

directory path:
d. The expected output for this step contains four files:

i. control_example.rds: The Seurat R object storing example control data.

ii. control_example_expr.txt: Filtered gene expression matrix.

iii. control_example_cell_label.txt: The first column is the cell name, the second column is

the cell type information.

iv. control_example_umap.png: UMAP plot of example control data colored by cell types

(Figure 6C).
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19. Transfer cell types based on control atlas, the goal of this step is to annotate cell type using the

control atlas as the reference, onto the disease gene expression matrix file (�5 min).
a. Put all code and data in a working directory. (e.g., PATH_TO_WD) after you have generated

the control atlas file (control_example.rds).

b. transfer_cell_type.R takes four parameters:

i. Working directory path.

ii. Control atlas Seurat object file name.

iii. Disease gene expression matrix name.

iv. Output disease data ID.

c. Next, run the following command
d. The expected output for this step contains four files:

i. disease_example.rds: The Seurat R object storing example disease data.

ii. disease_example_expr.txt: Filtered gene expression matrix.

iii. disease_example_cell_label.txt: The first column is the cell name, the second column is

the cell type information.

iv. disease_example_umap.png: UMAP plot for disease data colored by cell types (Fig-

ure 6D).
20. Run data analysis, the goal of this step is to identify cell-type-specific genes, DEGs from two

example datasets (60 min).
a. Put all code and data in a working directory. (e.g., PATH_TO_WD) after you have generated

the control atlas file (control_example.rds), and the disease file (disease_example.rds)

b. run_analysis.R takes three parameters:

i. Working directory path.

ii. Control Seurat object file name.

iii. Disease Seurat object file name.

c. Next, run the following command:
d. The expected output for this step contains three folders:

i. /de. Differential gene expression analysis results.
Cell-type-specific genes.

Sub-cluster specific genes.

DEGs between two conditions.
ii. /dimension: UMAP coordinates for two datasets.

iii. /subcluster_dimension: UMAP coordinates for each sub-clusters in two datasets.
21. Identify CTSRs using IRIS3 (2 h).
a. Navigate to https://bmbl.bmi.osumc.edu/iris3/submit.php, submit two jobs for the two

example datasets:

i. upload control_example_expr.txt and control_example_cell_label.txt

ii. upload disease_example_expr.txt and disease_example_cell_label.txt

b. The expected output for IRIS3 contains these files:

i. Lists
CTSR gene list

Marker gene list
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Gene module list

Motif list

Transcription factor list
ii. Tables
Predicted cell types

Bulk ATAC peak enrichment

TAD association
iii. Figures (only display on the website)
CTSR active UMAP

CTSR gene heatmap

Trajectory

UMAP
CRITICAL: You need to open the advanced options tab in the IRIS3 submission page to
upload a custom cell label.
EXPECTED OUTCOMES

Web server results

scREAD provides comprehensive analysis results for the selected AD scRNA-seq or snRNA-seq data-

sets. These summaries and integrated analysis of differentially expressed genes (DEGs) are pre-

sented in a graphical and tabular format (Figure 1).

Figure 2A shows the dataset details page that outlines all the necessary information regarding data-

set metadata, source, and related data IDs from the same study. Figure 3 annotates cell clustering

results including UMAP plot colored by cell types (left), and gene expression using the same UMAP

coordinates (right). The darker the color is in this UMAP, the higher the expression value of the gene.

Figure 4Ashows DEGs after the user selects the comparison group and the cell type of interest. Users

can sort the table by log FC or p values. The DEGs results table can be downloaded as a tab-sepa-

rated value file for further analysis. The DEGs are filtered based on the threshold set by the user, and

the functional gene set enrichment analysis for the KEGG pathways, GeneOntology terms are calcu-

lated using the current DEGs as input (Figure 4B). If the user selects ‘cell-type-specific genes’ in the

group select box, the identified CTSRs along with RSS will be displayed at the bottom of the screen.

The user can also navigate to the IRIS3 website to browse the regulons for more details.

Figure 5 shows the identified CTSR analysis results from IRIS3, including the table of all identified

regulons (Figure 5A), and detailed information from CT3-R1 (cell type: 3, regulon 1), the stars indi-

cate differential expressed gene within the cell type, the corresponding matched TF is linked to the

HOCOMOCO (Kulakovskiy et al., 2018) database (Figure 5B). The regulon activities are visualized in

a UMAP plot (Figure 5C).

Overlapping DEGs results

After calculating overlapping DEGs from the same cell type across datasets using the default set-

tings, two tables for overlapping genes will be generated:

The overlapping genes in the selected region, using the default settings (Figure 6A), the fourth

row in the table below can be interpreted as: ’For all AD vs control datasets comparisons in Hu-

man Entorhinal Cortex Astrocytes (ast), the GFAP gene ranked top 100 by log FC values in at least

3 comparisons’.

The ranking information from the overlapping genes. Using the GFAP gene as an example, we

found GFAP is an overlapping gene in Human Entorhinal Cortex Astrocytes. The GFAP ranked

top 50 in 3 comparisons of 4 total comparisons, the mean rank of the gene is 13, and the average

log-FC of GFAP in each comparison are also listed (Figure 6B).
otocols 2, 100513, June 18, 2021
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Backend workflow results

The backend workflow generated is a series of tables containing information on the intermediate re-

sults and final analysis results, including cell-type-specific genes, subcluster-specific genes, and

DEGs between two datasets. The following descriptions of output files use the example dataset

given as the filename, while the names of your files will differ depending on your filename settings.

The control atlas output should contain four files:

File 1: control_example.rds: The Seurat R object storing example control data.

File 2: control_example_expr.txt: Filtered gene expression matrix.

File 3: control_example_cell_label.txt: The first column is the cell name, the second column is the

cell type information.

File 4: control_example_umap.png: UMAP plot of the example control data. The UMAP plot vi-

sualizes scRNA-seq data in two-dimensional spaces. Each dot represents a cell and cells are

colored by annotated cell types. Cells within the cell types should co-localize on the UMAP

plot (Figure 6C).

The disease dataset output should contain four files:

File 1 : disease_example.rds: The Seurat R object storing example disease data.

File 2: disease_example_expr.txt: Filtered gene expression matrix.

File 3: disease_example_cell_label.txt: The first column is the cell name, the second column is the

cell type information.

File 4: disease_example_umap.png: UMAP plot of the example disease data. The UMAP plot vi-

sualizes scRNA-seq data in two-dimensional spaces. Each dot represents a cell and cells are

colored by annotated cell types. Cells within the cell types should co-localize on the UMAP

plot (Figure 6D).

The output tables should be stored in three folders:

Folder 1: /de. Differential gene expression analysis results.
Cell-type-specific genes.

Sub-cluster specific genes.

DEGs between two conditions.

Folder 2: /dimension: UMAP coordinates for two datasets.

Folder 3: /subcluster_dimension: UMAP coordinates for each sub-clusters in two datasets.
QUANTIFICATION AND STATISTICAL ANALYSIS

To determine whether cells from disease datasets are control-like, the Harmony R package (v1.0) was

first used to integrate the disease dataset with its corresponding control atlas. After the integration,

cells were clustered using Seurat’s FindClusters function with a resolution of 4. A hypergeometric

test was performed for each cluster using the number of cells from disease cells and the number

of cells from the control atlas. Clusters were considered to be control-like if the hypergeometric

test result was significant (p value < 0.0001, Benjamini-Hochberg adjusted), and the cells from the

disease dataset in control-like clusters were removed from the downstream analyses.

Differential gene expression analysis was performed using MAST (Finak et al., 2015). Seurat’s Fin-

dAllMarkers and FindMarkers functions that utilize theMAST package were used to run DGE analysis

on normalized gene expression data. Cell-type-specific genes were identified by performing DGE

analysis between the cell type of interest and the average of the remaining cell types. Subcluster-

specific genes were identified by performing DGE analysis between the subcluster of interest and

the average of the remaining subclusters from the same cell type. For each cell type, several DGE
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analysis was performed within two different datasets, categorized from AD versus control, and AD

versus AD in the same species under the same gender, brain region, and age. To regress out tech-

nical biases from different datasets, the dataset latent variables were added in all cross-dataset DGE

analyses.

Functional enrichment analysis was performed using the Enrichr web server. The p value was

computed using a standard statistical method used bymost enrichment analysis tools: Fisher’s exact

test or the hypergeometric test. This is a binomial proportion test that assumes a binomial distribu-

tion and independence for the probability of any gene belonging to any set.

CTSRs were identified using IRIS3. The RSS for a cell type was calculated according to the entropy of

regulon activity score (RAS) of cells within the cell type compared to other cell types. An RSS ranges

from 0 to 1, with a higher value representing greater specificity of a regulon in the cell type. An

empirical P-value of a regulon’s RSS can be estimated by comparing it with the RSSs of randomly

selected gene sets (having the same number of genes in this regulon through a bootstrap method)

in the same cell type, 10 000 times. Regulon P-values are Bonferroni-adjusted by multiplying the

number of regulons in the exact cell type. Regulons with adjusted P-values < 0.05 (by default) are

considered CTSRs.
LIMITATIONS

Limitation 1

Although scREAD is continuing to collect all publicly available AD scRNA-seq & snRNA-seq data,

you may still find your dataset of interest was not included in scREAD. This may be due to the policy

that we are not allowed to put some datasets in scREAD.
Limitation 2

scREAD uses a semi-supervised cell type annotation method, thus, only eight major cell types from

our marker genes list can be annotated, i.e., astrocytes, endothelial cells, excitatory neurons, inhib-

itory neurons, microglia, oligodendrocytes, oligodendrocyte precursor cells, and pericytes. For

different brain regions, enforcing an annotation to the closest cell type is likely to result in misanno-

tation of such regions, but we are aware that subtypes could be finely resolved and characterize this

problem. Therefore, the subcluster function of our scREAD would provide a more comprehensive

cell type annotation considering cross-region heterogeneity. Due to no standard or consistent an-

notations available, we have not annotated the subclusters.
TROUBLESHOOTING

Problem 1

The content on the scREADwebpage cannot be displayed correctly in checking AD studies summary

statistics.
Potential solution

Please make sure to use one of the modern browsers, including Chrome, Firefox, Microsoft Edge, or

Safari. Internet Explorer is not supported in scREAD.
Problem 2

Uploading incorrect file format to the scREAD online analysis workflow (https://bmbls.bmi.osumc.

edu/scread/submit ).
Potential solution

scREAD online analysis workflow needs to provide a gene expression matrix in text format, in which

each row represents a gene, each column represents a cell.
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Problem 3

Difficulty in selecting parameters at DEGs at the DE results in checking differential expression (DE)

results and performing functional enrichment analysis.

Potential solution

Adjusting any parameters in the DE section will immediately affect the displayed DEGs table. A less-

stringent p value is recommended to be used to select a large preliminary list of genes, then all the

genes in the list are ranked by FC, and finally, an FC cutoff is applied to determine the final set of

DEGs (Zhao et al., 2018). If you would like to use more stringent criteria for the enrichment analysis

result, please increase the log fold-change values or decrease the p values and vice versa.

Problem 4

File system permission errors occur while installing R packages in section 7.

Potential solution

In some computers or high-performance computing (HPC) systems, your user account may not have

the necessary permission to install new packages, we suggest contacting your administrator to

install these dependencies.

Specifically, if you have trouble compiling Harmony, please refer to this solution: https://github.

com/immunogenomics/harmony/issues/10.

Problem 5

Using different input file format files while running workflow in section 7.

Potential solution

The protocol in section 7 provided examples with CSV file extension. Please change the file reading

function from read.csv to the following formats accordingly:

HDF5 file: https://rdrr.io/cran/Seurat/man/Read10X_h5.html

Three gzip files recording information of barcodes (barcodes.tsv), features (genes.tsv), and gene

expressions (matrix.mtx): https://rdrr.io/cran/Seurat/man/Read10X.html

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Qin Ma (qin.ma@osumc.edu).

Materials availability

This study did not generate any new materials.

Data and code availability

scREAD is freely available at https://bmbls.bmi.osumc.edu/scread/. All code for the scREAD proto-

cols is freely available on GitHub: https://github.com/OSU-BMBL/scread-protocol. The interactive

tutorial for optional step: calculating overlapping DEGs from multiple comparisons to find overlap-

ping genes is freely available in Google Colab: https://colab.research.google.com/drive/

1lInXa6jD4yc7RGJc0EWDfy5NNoXT1qye?usp=sharing.
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