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Abstract: Peroxynitrite (ONOO−), as an important reactive oxygen species (ROS), holds great
potential to react with a variety of biologically active substances, leading to the occurrence of
various diseases such as cancer and neurodegenerative diseases. In this work, we developed a novel
mitochondria-localized fluorescent probe, HDBT-ONOO−, which was designed as a mitochondria-
targeting two-photon fluorescence probe based on 1,8-naphthylimide fluorophore and the reactive
group of 4-(bromomethyl)-benzene boronic acid pinacol ester. More importantly, the probe exhibited
good biocompatibility, sensitivity, and selectivity, enabling its successful application in imaging the
generation of intracellular and extracellular ONOO−. Furthermore, exogenous and endogenous
ONOO− products in live zebrafish were visualized. It is greatly expected that the designed probe
can serve as a useful imaging tool for clarifying the distribution and pathophysiological functions of
ONOO− in cells and zebrafish.
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1. Introduction

Peroxynitrite (ONOO−), as representative active oxygen, shows high reactivity in
living organisms [1–3]. It plays an important role in the physiological and pathological
processes of living systems [4–6]. The transformation of ONOO− in biological systems
mainly involves two pathways: protonation to generate peroxynitrous acid (ONOOH),
and quickly reacting with CO2 to form a short-lived intermediate nitrosoperoxycarbonate
(ONOOCO2

−) [7,8]. ONOO− can diffuse freely through the phospholipid membrane
bilayer, and its metabolites can react with a variety of important biomolecules (including
proteins, lipids, and nucleic acids), eventually leading to mitochondrial dysfunction and cell
death [9–11]. However, the overproduction of ONOO− in vivo can lead to abnormalities
in a variety of life targets, such as DNA, proteins, enzymes, and nucleic acids, which can,
in turn, cause many diseases, such as cancer, Alzheimer’s disease, and nervous system
degeneration [12–15]. Therefore, it is urgently needed to develop an accurate ONOO−

detection method that plays an important role in the indepth understanding of complex
diseases in living systems.

Traditional methods of detecting ONOO− are usually time-consuming and expen-
sive [16–18]. ONOO− also has some features such as instantaneity, low lifetime, low in vivo
concentration that render its effective capture and further detection great challenges. Flu-
orescence imaging technology has developed rapidly in recent years. It possesses the
advantages of high sensitivity, selectivity, in situ detection, and noninvasiveness, which
have attracted the attention of an increasing number of researchers [19–24]. A variety of
fluorescent probes for detecting ONOO− have been developed and have had widespread
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applications [22,23,25–28], but there are few two-photon probes used to detect the dis-
tribution level of ONOO− in subcellular organelles. Two-photon imaging itself has the
characteristics of high resolution, high throughput, noninvasiveness, and excellent imaging
depth [29–32], which enables it to exert the dynamical visualization functions of living
organisms and cells in an active state, thereby facilitating researchers in exploring the
changing levels of ONOO− in cells and organisms in physiological and stimulating states.

On the basis of the above information, we developed a novel two-photon fluorescent
probe, HDBT-ONOO−, for monitoring ONOO− in mitochondria. HDBT-ONOO− was
equipped with cationic triphenylphosphine and borates groups as mitochondrial target-
ing groups and peroxynitrite responsive sites, respectively. Spectroscopic experiments
confirmed the excellent selectivity and sensitivity of HDBT-ONOO−, and cell imaging ex-
periments demonstrated that HDBT-ONOO− showed mitochondria-targeting abilities and
could be successfully used for two-photon imaging of ONOO− variations in mitochondria
in living cells. The following zebrafish experiments further proved that HDBT-ONOO−

had excellent sensitivity in the detection of the level of ONOO− in the body. The above
results confirm that HDBT-ONOO− holds great application value, and lay the foundation
for us to further study the pathophysiological processes with ONOO− involved in vivo.

2. Experimental Section
2.1. General Comments

Details of materials and measurements were transferred to Supplementary Materials.

2.2. Synthesis of HDBT-ONOO−

Intermediate compounds in Supporting Information (Figure S1).
A mixture of compound 4 (258 mg, 0.5 mmol), 4-(bromomethyl)-benzene boronic acid

pinacol ester (297 mg, 1 mmol) and anhydrous K2CO3 (138 mg, 1 mmol) in 10 mL of DMF
was refluxed at 80 ◦C overnight. The solvent was removed, and the obtained crude product
was purified with column chromatography using dichloromethane:methanol (50:1–20:1)
to obtain a yellow solid HDBT-ONOO−. 1H NMR (500 MHz, CDCl3) δ 8.66–8.49 (m, 2H),
8.17 (s, 1H), 7.87 (dd, J = 33.0, 7.6 Hz, 3H), 7.73 (d, J = 10.4 Hz, 6H), 7.47 (ddd, J = 39.3, 26.7,
7.6 Hz, 11H), 7.07 (dd, J = 26.9, 8.1 Hz, 1H), 5.24 (s, 2H), 4.29 (t, J = 6.4 Hz, 2H), 2.42 (s, 2H),
2.08 (s, 2H), 1.37 (s, 12H). 13C NMR (126 MHz, CDCl3) δ 164.4, 160.7, 138.5, 135.3, 135.2,
135.1, 133.5, 131.7, 130.8, 130.8, 128.8, 128.7, 128.6, 127.4, 126.7, 126.1, 115.1, 106.5, 84.0, 83.9,
70.84 (s), 65.5 (s), 27.9 (s), 24.9. LC-HRMS (ESI, negative ion mode): m/z [C32H22N3O5P+],
calcd,732.3049; found [M]: 732.3047.

2.3. Statistical Methods

The experimental data were analyzed using SPSS17. The 0 software package was
used for statistical processing, measurement data are expressed as mean ± SD, and the
t-test of two independent samples was used for comparison between groups. p < 0.05 was
considered to be statistically significant.

3. Results and Discussion
3.1. Design of the Probe HDBT-ONOO−

The structure of HDBT-ONOO− to ONOO− and the proposed response mechanism
are presented in Scheme 1. As shown in Scheme 1, the probe was designed by binding a
1,8-naphthylimide fluorophore scaffold modified with 4-bromomethylphenylboronic acid
pinacol ester, where it exhibited bright fluorescence upon the conversion of borates into
the corresponding phenol by ONOO−. The introduction of cationic triphenylphosphine
enabled the probe to be highly localized near the subcellular organelle mitochondria [33–35].
The probe was employed for the sensitive and selective detection of both exogenous and
endogenous ONOO−. The structural characterization of target substances was performed
with 1H NMR, 13C NMR, and HR–MS (Figures S5–S11).
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Scheme 1. Composition of HDBT-ONOO− and its reaction with ONOO−.

3.2. Spectral Response of HDBT-ONOO− to ONOO−

We explored the spectral properties of HDBT-ONOO−. The absorption and fluo-
rescence emission spectra of the probes were first evaluated separately under simulated
physiological conditions. As shown in Figure 1A, the addition of ONOO− resulted in
the gradual disappearance of the absorption band centered at 372 nm in HDBT-ONOO−,
while a new red-shifted band appeared at around 450 nm. Next, we investigated the
fluorescence spectra of HDBT-ONOO−. As shown in Figure 1B, the fluorescence intensity
of the probe at 558 nm increased as ONOO− concentration increased. In addition, we found
a satisfactory linear response relationship between the fluorescence intensities of HDBT-
ONOO− and the concentrations of ONOO− (Figure 1D). The linear fitting equation was
F558nm = 91.18243 [ONOO−] + 107.1069, and the correlation coefficient (R2) was 0.99687.
On the basis of the standard method of 3σ/k, the detection limit of ONOO− was calculated
to be 56 nM. Later, we investigated whether pH could affect changes in probe fluorescence
intensity. As shown in Figure 1C, HDBT-ONOO− showed a weak fluorescence signal
in the studied pH range (3.0–10.0). After adding a certain amount of ONOO− (20 µM),
the fluorescence intensity of the probe gradually increased with the increase in pH, and
the fluorescence remained relatively stable in the pH range of 7–10. Subsequently, the
fluorescence intensity gradually weakened with the further increase in alkalinity. These
results indicate that HDBT-ONOO− could be suitable for the detection of ONOO− content
under physiological conditions. The time course of HDBT-ONOO− fluorescence emission
at 558 nm after the addition of ONOO− (20 µM) was next investigated. Figure S2 shows
that the fluorescence intensity of the probe increased with time and reached a maximum at
around 30 s. To further confirm the specificity of the probe HDBT-ONOO− for ONOO−,
we tested the ability of the probe HDBT-ONOO− to discriminate ONOO− from other bio-
logically relevant species, including metal cations (Na+, Ca2+, Mg2+, Zn2+, Fe2+, Al3+, Cu2+)
and other ROS. As shown in Figure 2, only ONOO− caused an observable fluorescence
response, which indicated that HDBT-ONOO− had excellent selectivity and selectivity
to ONOO− (Figure 2). These results indicate that HDBT-ONOO− could be suitable for
detecting ONOO− content under physiological conditions.
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Figure 2. The response of HDBT-ONOO- (10 μM) to various species: (1) probe only; (2) ClO–; (3) NO; 
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Figure 1. (A) UV–vis absorption spectra of HDBT-ONOO− (10 µM) after adding various concen-
trations of ONOO− (0–20 µM); (B) fluorescence response of HDBT-ONOO− (10 µM) to different
concentrations of ONOO− (0–20 µM); (C) fluorescence intensities of HDBT-ONOO− (10 µM) after
adding ONOO− (20 µM) under different pH conditions; (D) linear relationship between HDBT-
ONOO− (10 µM) and ONOO− concentration (0–20 µM). Experiments were repeated 3 times, and
data are shown as the mean (± SD). The spectrum was obtained in PBS solution containing 5% DMSO
(10 mM, pH 7.4, λex = 450 nm) at room temperature.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 9 
 

 

 

Figure 1. (A) UV–vis absorption spectra of HDBT-ONOO– (10 μM) after adding various concentra-

tions of ONOO– (0–20 μM); (B) fluorescence response of HDBT-ONOO– (10 μM) to different con-

centrations of ONOO– (0–20 μM); (C) fluorescence intensities of HDBT-ONOO– (10 μM) after adding 

ONOO- (20 μM) under different pH conditions; (D) linear relationship between HDBT-ONOO– (10 

μM) and ONOO– concentration (0–20 μM). Experiments were repeated 3 times, and data are shown 

as the mean (± SD). The spectrum was obtained in PBS solution containing 5% DMSO (10 mM, pH 

7.4, λex = 450 nm) at room temperature. 

 

Figure 2. The response of HDBT-ONOO- (10 μM) to various species: (1) probe only; (2) ClO–; (3) NO; 

(4) •OH; (5) •O2–; (6) 1O2; (7) H2O2; (8) Na+; (9) Ca2+; (10) Mg2+; (11) Zn2+; (12) Fe2+; (13) Al3+ ; (14) Cu2+; 

(15) ONOO–. The experiments were repeated three times, and the data are shown as the mean (± 

SD). All data were obtained in PBS (10 mM, pH 7.4) at room temperature. λex = 450 nm. 

Figure 2. The response of HDBT-ONOO− (10 µM) to various species: (1) probe only; (2) ClO−; (3)
NO; (4) •OH; (5) •O2–; (6) 1O2; (7) H2O2; (8) Na+; (9) Ca2+; (10) Mg2+; (11) Zn2+; (12) Fe2+; (13) Al3+;
(14) Cu2+; (15) ONOO−. The experiments were repeated three times, and the data are shown as the
mean (± SD). All data were obtained in PBS (10 mM, pH 7.4) at room temperature. λex = 450 nm.
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3.3. Fluorescence Imaging in Living Cells

Encouraged by the above experiments, we then explored the potential of the probe
in biological applications. As shown in Figure S3, HeLa, RAW 264.7, and HepG 2 cells
maintained a high survival rate after being exposed to probe concentrations below 70 µM.
SIN-1 is a well-known donor of ONOO− [36]. As shown in Figure 3, as the concentration of
SIN-1 increased, the fluorescence intensity of the probe gradually increased and reached a
maximum with the concentration of SIN-1 at 1.2 m. Figure 3D shows that the fluorescence
intensity of HDBT-ONOO− was significantly attenuated after the addition of ONOO−

scavenger ebselen (200 µM). This revealed that our probe HDBT-ONOO− could sensitively
detect the changes in exogenous ONOO− in cells.
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Figure 3. Confocal fluorescence imaging of HDBT-ONOO− with exogenous addition of ONOO−

donor (SIN-1) in HeLa cells. HeLa cells were incubated with HDBT-ONOO− (10 µM) and (A) 0,
(B) 0.5, (C) 1.2 mM SIN-1, and (D) 200 µM ebselen, and 1.2 mM SIN-1. (E) Relative fluorescence
intensity of (A–D). Cells were stained with HDBT-ONOO− (10 µM) for 30 min, washed with PBS,
and imaged by confocal microscopy. λex = 880 nm, scale bar: 30 µm. Error bars represent the standard
deviations of three separate measurements (n = 3).

To verify the reactivity of the probe to the intracellular ONOO−, the fluorescence
imaging of RAW 264.7 cells was performed. Lipopolysaccharide (LPS) and interferon-
γ (IFN-γ) could stimulate the production of ROS/RNS in RAW 264.7 cells to produce
endogenous ONOO− [37–40]. As shown in Figure 4, significant green fluorescence in the
cytoplasm indicated that HDBT-ONOO− could respond with ONOO− in the cell. Then,
ebselen was added in the presence of LPS and IFN-γ, and as expected, no changes in
fluorescence were observed (Figure 4C). These results indicate that HDBT-ONOO− can
detect endogenous ONOO− in living cells, so it has potential for imaging applications.

Lastly, using Mito-Tracker Deep Red (MT Deep Red), a commercially available mi-
tochondrial dye, the subcellular distribution map of HDBT-ONOO− was drawn through
costaining experiments. As shown in Figure 5, the green signal generated by HDBT-
ONOO− in response to exogenous ONOO− overlapped well with the red fluorescence
of MT Deep Red. The calculated Pearson correlation coefficients were evaluated as 0.88,
providing direct evidence that the probe could be selectively and effectively localized to
the mitochondria of HepG 2 cells to detect slight ONOO− level changes. To study the
distribution of the probe in the cell, HDBT-ONOO− was incubated with the ONOO donor
SIN-1 or nuclear dye DAPI (4′,6-diamidino-2-phenylindole, which was a fluorescent dye
that can bind strongly to DNA). As shown in Figure 6, in RAW 264.7 and HeLa cells, the
fluorescence of the probe was mainly distributed in the cytoplasm, not in the nucleus.
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Figure 4. Fluorescence imaging of ONOO− in RAW 264.7 cells treated with (A) probe only, (B) 1.2 µg
mL−1 LPS 16 h, 70 ng mL−1 IFN-γ 4 h, and (C) LPS, IFN-γ + 150 µM ebselen. (D) Relative fluorescence
intensity of (A–C). Cells were stained with HDBT-ONOO− (10 µM) for 30 min, washed with PBS,
and imaged by confocal microscopy. λex = 880 nm, scale bar: 30 µm. Error bars represent the standard
deviations of three separate measurements (n = 3).
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Figure 5. Fluorescence images of mitochondrial ONOO− in HepG2 cells. Cells were stained with
10 µM HDBT-ONOO− or costained with 50 nM MT Deep Red for 60 min, and then stimulated with
1.2 mM SIN-1 for another 90 min before imaging. (A) Probe-stained HepG 2 cells were stimulated
with 1.2 mM SIN-1. (B) Costaining and imaged with MT Deep Red. (C) Merged images of (A,B).
(D) Bright field of (A). Images were acquired using a fluorescent microscope (green channel with
458 nm excitation and 510–590 nm collection, a red channel with 633 nm excitation and 650–700 nm
collection). Scale bar: 30 µm.

3.4. Imaging of ONOO− in Zebrafish

Using HDBT-ONOO− as a probe, we demonstrated the fluorescence imaging of ex-
ogenous and endogenous ONOO− generation in a zebrafish model. As shown in Figure 7,
we observed only a weak fluorescence response in the control group. After the incubation
of zebrafish with ONOO−, bright green fluorescence was observed. Similarly, upon stim-
ulation by LPS, endogenous zebrafish ONOO− was formed and thus exhibited intense
fluorescence. These images demonstrate that HDBT-ONOO− can sensitively image both
exogenous and exogenous ONOO− production in zebrafish.
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Figure 6. Fluorescence image of ONOO− in the cytoplasm of HepG2 cells. Cells were stained
with 10 µM HDBT-ONOO− or costained with 10 µM DAPI for 60 min, and then stimulated with
1.2 mM SIN-1 for another 90 min before imaging. (A) (left to right) DAPI in HeLa cells, probe + SIN-
1, DAPI + probe + SIN-1, bright-field image of (A); (B) (left to right) DAPI in RAW 264.7 cells,
probe + SIN-1, DAPI + probe + SIN-1, bright-field image of (B). The images were acquired using a
fluorescent microscope (green channel with 458 nm excitation and 520–590 nm collection, a blue
channel with 405 nm excitation and 430–480 nm collection). Scale bar: 30 µm.
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Figure 7. Bright-field and fluorescence imaging of exogenous and endogenous ONOO− generation
in zebrafish by using HDBT-ONOO− as the probe. λex = 450 nm.

4. Conclusions

In conclusion, we developed a novel two-photon fluorescent probe, HDBT-ONOO−, for
sensitive detection of mitochondrial ONOO− in living cells. It consisted of 1,8-naphthalimide
fluorophore modified with a triphenylphosphonium targeting group and a boronate-based
molecule switch. The probe demonstrated the desired properties of high selectivity, excel-
lent water solubility, and physiological pH response, along with low cytotoxicity, enabling
the tracking of mitochondrial ONOO− in living cells. Thus, the probe might serve as a tool
for probing the biological roles of mitochondrial ONOO− and facilitating the mechanistic
investigation of mitochondria-targeting anticancer agents. Lastly, zebrafish experiments
implied the potential application of HDBT-ONOO− in the studies of the ONOO− roles in
live organisms. Therefore, the probe may be promising as a tool for exploring the biological
role of mitochondrial ONOO−, and to promote a deep understanding of the molecular
events and mechanism of ONOO− in the body.
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