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Abstract: Accurate predictions of CO2 emissions have important practical significance for deter-
mining the best measures for reducing CO2 emissions and accomplishing the target of reaching a
carbon peak. Although some existing models have good modeling accuracy, the improvement of
model specifications can provide a more accurate grasp of a system’s future and thus help relevant
departments develop more effective targeting measures. Therefore, considering the shortcomings
of the existing grey Bernoulli model, in this paper, the traditional model is optimized from the
perspectives of the accumulation mode and background value optimization, and the novel grey
Bernoulli model NFOGBM(1,1,α,β) is constructed. The effectiveness of the model is verified by using
CO2 emissions data from seven major industries in Shaanxi Province, China, and future trends are
predicted. The conclusions are as follows. First, the new fractional opposite-directional accumulation
and optimization methods for background value determination are effective and reasonable, and the
prediction performance can be enhanced. Second, the prediction accuracy of the NFOGBM(1,1,α,β) is
higher than that of the NGBM(1,1) and FANGBM(1,1). Third, the forecasting results show that under
the current conditions, the CO2 emissions generated by the production and supply of electricity and
heat are expected to increase by 23.8% by 2030, and the CO2 emissions of the other six examined
industries will decline.

Keywords: fractional opposite-direction accumulation; background value; NFOGBM(1,1,α,β); CO2

emissions; forecasting

1. Introduction

Since the industrial revolution, due to the combustion of fossil fuels such as coal and
oil and continuous deforestation, the concentration of CO2 in the atmosphere has increased
significantly [1]. In recent years, with the continuous and rapid growth of CO2 emissions,
global warming is a real problem that needs to be solved along with the involvement of
scientists. The international community has made active efforts to jointly address climate
change, formulate important documents, and provide a basic political framework and legal
system for action to address climate change. By the end of 2020, more than 40 countries and
economies around the world officially announced carbon neutrality targets. China has the
second-largest economy globally, and fossil energy consumption and CO2 emissions there
continue to grow, accounting for increasing proportions of the global totals. According
to the BP Statistical Review of World Energy 2021, China’s CO2 emissions in 2020 were
9899.33 million tons, accounting for 30.7% of the global total and ranking first worldwide.
Considering the seriousness of climate change, in September 2020, China proposed goals
to reach peak CO2 emissions by 2030 and achieve carbon neutrality by 2060. At the end
of 2021, China successively issued new policies and action plans to meet these carbon
peak and carbon neutrality objectives, as well as related medium- and long-term goals.
Generally, peak carbon refers to CO2 emissions reaching a maximum in a certain year and
then entering a declining phase. Carbon neutrality refers to the total CO2 produced by
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a particular organization or society being absorbed and offset over a period of time by
natural and artificial means such as afforestation, ocean absorption, engineering storage,
etc., to achieve relatively “zero” CO2 emissions from human activities.

Shaanxi Province is rich in natural resources and ranks among the top provinces in
China in terms of coal and oil production, making it an important energy and chemical
industrial base in China, but its CO2 emissions have long been high. Under the background
of the “double carbon” target, Shaanxi has formulated strict CO2 emissions reduction
targets. To achieve these goals, it is necessary to understand the current CO2 emissions
situation in Shaanxi, reasonably predict future CO2 emissions and structural characteristics
of CO2-emitting industries, and formulate reasonable carbon emission reduction measures.
Therefore, the rational prediction of CO2 emissions has become an important research topic
in emissions studies of Shaanxi.

At present, many methods are used to predict CO2 emissions, and they can be divided
into five categories. The first includes macroeconomic system models. Scholars often
analyze and predict CO2 emissions based on macroeconomic operational mechanisms,
including input–output models, CGE models, the LEAP model, etc. [2–4]. The second
category includes system optimization models. By comprehensively considering the effects
of social and economic development, resource endowment, energy-saving technology,
environmental constraints, and consumption behaviour, future CO2 emissions can be
analyzed and predicted, and corresponding models include the IPAC model and the
IAMC model [5,6]. The third category includes index decomposition models. The factors
that influence CO2 emissions are identified, and the CO2 emissions trend is predicted
according to the analysis results, and corresponding models include the Kaya, IPAT, and
STIRPAT models [7–9]. The fourth category includes artificial intelligence models. With the
development of information technology, artificial intelligence methods, including artificial
neural networks, support vector machines, limit learning machines, etc., have been used for
CO2 emissions prediction [10–12]. The fifth category includes grey prediction models. Most
of the above models require including the factors that influence CO2 emissions to ensure
the effectiveness of the prediction results, but adding variables often increases the time and
cost required for data collection, and some data are difficult or even impossible to collect.
Grey methods solve this problem and directly model scenarios without considering the
effects of other factors, thus requiring limited data to obtain accurate predictions. Therefore,
the grey prediction method is widely used for CO2 emissions prediction in different regions,
industries, and countries because of its convenient operation, simple modeling process,
and high accuracy [13–16]. In addition, grey models have been widely employed in cases
involving electric power [17,18], renewable energy [19], natural gas [20], tight gas [21], air
pollution [22], traffic flows [23], industrial development [24], landslides [25], and COVID-
19 [26,27].

Grey prediction modeling is the most active and widely explored branch of grey
system theory, and it is also a new research direction in mainstream prediction theory [28].
However, the core model GM(1,1) has some shortcomings, such as limited adaptability and
unstable performance; therefore, scholars have improved this model from many perspec-
tives. For example, the accumulation method was optimized by adding opposite-direction
accumulation, fractional accumulation, and comfortable accumulation to improve model-
ing performance [29–31]. Additionally, the continuity of data sequences was improved by
processing the original data [32,33], and the modeling error was reduced by improving the
initial values of the model [34]. Moreover, the calculation of background values, such as
through deriving background values based on a nonhomogeneous exponential function,
has been improved [35], and Simpson’s law was used to optimize background values [36].
To improve the prediction performance of the model, the quantum optimization [37], grey
wolf optimization (GWO) [38], particle swarm optimization (PSO) [39], and many other
intelligent optimization algorithms have been applied to find the optimal parameters. The
structure of a grey model can also be optimized, such as by changing the grey processes
in the model and replacing them with binomial, polynomial, or other functions to build
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a new model [40,41]. As new information is more helpful than old information in trend
assessment, prioritizing new information has become a common way to improve the pre-
diction accuracy of grey models. Scholars often use a rolling prediction mechanism with
metabolic thought to establish optimization models; this approach can not only prioritize
new information but also prolong the prediction period of results [42–44]. The rolling pre-
diction mechanism ensures that the modeling data are up to date by continuously adding
new prediction data, which effectively improves the modeling result. In addition, the
GM(1,1) model can be combined with artificial intelligence and statistical analysis models
to improve the overall prediction accuracy [45–47].

However, most of the above models are linear, and there are many nonlinear problems
in most real-world scenarios. Chen et al. [48] first proposed a new nonlinear Bernoulli
model NGBM(1,1) to predict the exchange rates of Taiwan’s main trading partners and
achieved good prediction results. The nonlinear grey Bernoulli model, which is also known
as the GM(1,1) power model, can produce results that highly fit the cumulative curve of the
original sequence by adjusting the weight index η, and it has displayed good prediction
performance for nonlinear problems. Moreover, when η = 2, this model is called the grey
Verhulst model, which is ideal for data that plot along an S-shaped curve. Based on the
effectiveness of the grey Bernoulli model in yielding accurate predictions for nonlinear
problems, many scholars have optimized NGBM(1,1) from different perspectives. For ex-
ample, Guo et al. [49] combined the principle of self-memory with an optimized nonlinear
grey Bernoulli model to overcome a major weakness of the traditional Bernoulli model—its
sensitivity to the initial parameter values. Wu et al. [19] applied fractional accumulation
to the grey Bernoulli model to construct the FANGBM(1,1) model and predicted renew-
able energy consumption in China. Şahin [50] introduced seasonal factors based on the
FANGBM(1,1) model, proposed the OFANGBM(1,1) model, and predicted power genera-
tion and installed capacities in Turkey. Xie et al. [15] adopted a simple form of conformable
fractional calculations and established the CCFNGBM(1,1) model to predict CO2 emissions
related to fuel combustion. Zheng et al. [20] proposed the CFNHGBM(1,1,K) model based
on the moth-flame optimization (MFO) algorithm to predict natural gas production and
consumption. Wang and Wang [51] combined the NGBM(1,1) and FPGM(1,1,tα) models
and proposed GFBGM(1,1,tα), which was used to predict the per capita primary energy
consumption of major economies around the world.

Each improvement of the model specifications contributes to a more accurate pre-
diction of the examined system’s future, thus providing more effective reference values
for relevant sectors. Therefore, based on the above research and considering the unique
background value error of the traditional grey Bernoulli model, a new background value op-
timization method is proposed in this paper. Moreover, based on a new fractional opposite-
directional accumulation operation, a novel grey Bernoulli model NFOGBM(1,1,α,β) is
established. Based on the carbon emission data obtained from the Shaanxi Provincial Statis-
tical Yearbook, it is found that carbon emissions in Shaanxi Province occur mainly in seven
major industries: wholesale, retail trade and catering services (WRTCS), petroleum and
natural gas extraction (PNGE) transportation, storage, postal and telecommunication ser-
vices (TSPTS), smelting and pressing of ferrous metals (SPFM), nonmetal minerals mining
and dressing (NMMD), coal mining and dressing (CMD), and the production and supply
of electric power, steam, and hot water (PSESH). Therefore, this paper uses these seven
data sets to verify the validity of the NFOGBM(1,1,α,β) model, and the CO2 emissions from
seven industries from 2020 to 2030 in Shaanxi Province, China, are predicted by using the
new model and a metabolic concept. The main contributions are summarized as follows:

(1) Considering the unique background value error in the nonlinear grey Bernoulli model,
a new optimization method is proposed to further reduce the background value error
and improve the prediction performance of the model.

(2) By combining the new fractional opposite-direction accumulation operation, back-
ground value optimization, and the FANGBM(1,1) model, the NFOGBM(1,1,α,β) model
is constructed, and its optimal parameters are determined with the PSO algorithm.
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(3) The effectiveness of the NFOGBM(1,1,α,β) model is verified by using CO2 emissions
data from seven major industries in Shaanxi, China. The results show that the model
outperforms other methods. Notably, unlike the NGBM(1,1) model, it avoids the insuf-
ficient utilization of new information, and overfitting, which limits the FGNOM(1,1)
model, is also avoided.

(4) Based on a metabolic concept, the NFOGBM(1,1,α,β) model is used to predict the CO2
emissions of seven major industries in Shaanxi Province.

The rest of this paper is organized as follows. In Section 2, a new fractional-order
opposite-direction accumulation grey Bernoulli model NFOGBM(1,1,α,β) is proposed.
In Section 3, the effectiveness of the NFOGBM(1,1,α,β) model is verified by using CO2
emissions data from seven major industries in Shaanxi Province, China, and CO2 emissions
from 2020 to 2030 are forecasted based on a metabolic concept. The conclusions of the study
are given in Section 4.

2. New Fractional Opposite-Direction Accumulation Grey Bernoulli Model
NFOGBM(1,1,α,β)

In this section, the traditional nonlinear grey Bernoulli model NGBM(1,1) [48] and frac-
tional nonlinear grey Bernoulli model FANGBM(1,1) [19] are briefly introduced, and then,
a new fractional opposite-direction accumulation operation and a background value opti-
mization method are proposed. Finally, a new fractional opposite-direction accumulation
grey Bernoulli model NFOGBM(1,1,α,β) is constructed.

2.1. NGBM(1,1) and FANGBM(1,1) Models

Definition 1. Consider a nonnegative sequence X(0) =
(

x(0)(1), x(0)(2), x(0)(3) . . . x(0)(n)
)T

,

where T represents the transpose operation. X(r) = DrX(0) is called the r-order accumula-
tion sequence of the original sequence, and Dr is the r-order accumulation generation matrix,

X(r) =
(

x(r)(1), x(r)(2), x(r)(3) . . . x(r)(n)
)T

, where

x(r)(k) = drx(0)(k) =
k

∑
i=1

Γ(r + k− i)
Γ(k− i + 1)Γ(r)

x(0)(i), k = 1, 2 . . . , n (1)

Dr =



[
r
0

]
0 0 · · · 0[

r
1

] [
r
0

]
0 · · · 0[

r
2

] [
r
1

] [
r
0

]
· · · 0

...
...

...
. . . 0[

r
n− 1

] [
r

n− 2

] [
r

n− 3

]
· · ·

[
r
0

]


n×n

(2)

where
[

r
i

]
=


r(r+1)···(r+i−1)

i! =

(
r + i− 1

i

)
= (r+i−1)!

i!(r−1)! , r ∈ Z

Γ(r+i)
Γ(i+1)Γ(r) , α /∈ Z

,
[

0
i

]
= 0,

[
0
0

]
= 1 ,

dr is called r-order accumulation generation operator (r-AGO), and Z(r) =(
z(r)(1), z(r)(2), z(r)(3) . . . z(r)(n)

)T
is the background value sequence of the original series,

where
z(r)(k) = 0.5x(r)(k− 1) + 0.5x(r)(k) (3)

Then
dx(r)

dt
+ ax(r) = b(x(r))

η
(4)
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is called the fractional-order nonlinear grey Bernoulli model FANGBM(1,1), where η is any real
number. When r = 1, this model is the nonlinear grey Bernoulli model NGBM(1,1). If both sides of
Equation (4) are integrated into the interval [k − 1, k], Equation (4) can be rewritten as

x(r)(k)− x(r)(k− 1) + a
∫ k

k−1
x(r)(t)dt = b

∫ k

k−1
(x(r)(t))

η
dt (5)

where
∫ k

k−1 x(r)(t)dt and
∫ k

k−1 (x(r)(t))
η
dt are the areas enclosed by the functions x(r)(t) and

(x(r)(t))
η
, respectively, and the t axis in the interval [k − 1, k]; thus, the corresponding variables

can be approximately set as z(r)(k) and (z(r)(k))
η
, and Equation (5) can be rewritten as

x(r)(k)− x(r)(k− 1) + az(r)(k) = b(z(r)(k))
η

(6)

Therefore, according to the least squares method, the parameters in the model can be calculated
based on the following formula: (

â, b̂
)T

= (BT B)
−1

BTY (7)

where

B =


−z(r)(2) (z(r)(2))

η

−z(r)(3) (z(r)(3))
η

...
...

−z(r)(n) (z(r)(n))
η

, Y =


x(r)(2)− x(r)(1)
x(r)(3)− x(r)(2)

...
x(r)(n)− x(r)(n− 1)

 (8)

By solving Equation (4), the corresponding function of the final time of the model can
beobtained:

x̂(r)(k) = [((x(r)(1))
1−η
− b/a)e−a(1−η)(k−1) + b/a]

1
1−η

, k = 1, 2 . . . , n (9)

The final reduction value can be calculated according to the fractional subtraction generation
operator (r-IAGO):

x̂(0)(k) = d−r x̂(r)(k) =
k−1

∑
i=0

(−1)i Γ(r + 1)
Γ(i + 1)Γ(r− i + 1)

x̂(r)(k− i), k = 1, 2 . . . , n (10)

2.2. New Fractional Opposite-Direction Accumulation Operation

Definition 2. Consider a nonnegative sequence X(0) =
(

x(0)(1), x(0)(2), x(0)(3) . . . x(0)(n)
)T

,

where T represents the transpose operation. X(r) = NrX(0) is called the new r-order opposite-
direction accumulation sequence of the original sequence, and Nr is the r-order new opposite-

direction accumulation generation matrix, X(r) =
(

x(r)(1), x(r)(2), x(r)(3) . . . x(r)(n)
)T

, where

x(r)(k) = nrx(0)(k) ==
k

∑
i=1

Γ(r + i− 1)
Γ(i)Γ(r)

x(0)(i), k = 1, 2 . . . , n (11)
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where nr is called the r-order accumulation generation operator (r-NOAGO). Matrix Nr can be
expressed as

Nr =



[
r
0

]
0 0 · · · 0[

r
0

] [
r
1

]
0 · · · 0[

r
0

] [
r
1

] [
r
2

]
· · · 0

...
...

...
. . . 0[

r
0

] [
r
1

] [
r
2

]
· · ·

[
r

n− 1

]


n×n

(12)

As shown above, matrix Nr and matrix Dr satisfy Dr
i,j = Nr

i,i−j+1, i, j < n. The new
opposite-direction subtraction operator (r-INOAGO) corresponding to the new opposite-direction
accumulation operator is

x(0)(k) = n−rx(r)(k) =
Γ(k)Γ(r)

Γ(r + k− 1)
(x(r)(k)− x(r)(k− 1)), k = 2, 3 . . . , n (13)

New information prioritization is an important principle in grey system modeling;
that is, the newest data in the original sequence provide the most valuable grey information,
and accordingly, compared with old data, we should prioritize new data in the modeling
process. The opposite-direction accumulation operation can be used to prioritize new
information [29]. Notably, the extrapolation performance of the traditional model is gener-
ally poor, and consequently, the prediction accuracy is low. The new opposite-direction
accumulation approach solves this problem by fully considering all available information,
thus providing high accuracy and practicality.

2.3. Optimization of Background Value

A certain inherent error is associated with the derivation from Equation (5) to Equation (6);
that is, functions

∫ k
k−1 x(r)(t)dt and

∫ k
k−1 (x(r)(t))

η
dt are approximately regarded as z(r)(k)

and (z(r)(k))
η
, which is unreasonable. Zhou et al. [52] used the following formula to

calculate the background value: αx(1)(k) + (1− α)x(1)(k− 1). This method of setting the
background value can reduce the corresponding model error to a large extent. Therefore,
in this paper, the background values of the grey Bernoulli model are defined in a related
way, as follows.

Definition 3. Let α, β ∈
[

0, 1
]
, the exact value of which has yet to be determined. The functions∫ k

k−1 x(r)(t)dt and
∫ k

k−1 (x(r)(t))
η
dt are approximated as z(r)(k) and (m(r)(k))

η
, respectively,

where

z(r)(k) = αx(r)(k− 1) + (1− α)x(r)(k)
m(r)(k) = βx(r)(k− 1) + (1− β)x(r)(k)

k = 2, 3, · · · , n
(14)

2.4. A New Fractional Opposite-Direction Accumulation Grey Bernoulli Model (NFOGBM(1,1,α,β))

The novel fractional opposite-direction accumulation operation, optimization ap-
proach for background values, and FANGBM(1,1) model are combined to form the novel
fractional opposite-direction accumulation grey Bernoulli model NFOGBM(1,1,α,β), which
is defined as follows.
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Definition 4. Consider a nonnegative sequence X(0) =
(

x(0)(1), x(0)(2), x(0)(3) . . . x(0)(n)
)T

,

where T represents the transpose operation. Then, dx(r)
dt + ax(r) = b(x(r))

η
in NFOGBM(1,1,α,β)

is used, where x(r)(k) is as shown in Equation (11). By integrating both sides of the equation, we
can approximate the resulting expression as

x(r)(k)− x(r)(k− 1) + az(r)(k) = b(m(r)(k))
η

(15)

where z(r)(k) and m(r)(k) are shown in Equation (14). The development coefficient a and grey
action b are given by

(
â, b̂

)T
= (BT B)−1BTY , according to the least-squares method, where

B =


−z(r)(2) (m(r)(2))

η

−z(r)(3) (m(r)(3))
η

...
...

−z(r)(n) (m(r)(n))
η

, Y =


x(r)(2)− x(r)(1)
x(r)(3)− x(r)(2)

...
x(r)(n)− x(r)(n− 1)

 (16)

Thetimeresponseequationofthemodelis x̂(r)(k) = [((x(r)(1))
1−η − b/a)e−a(1−η)(k−1) + b/a]

1
1−η

,
and the final reduced equation x̂(0)(k) is calculated according to Equation (13).

Based on the definition above, the relationship between the NFOGBM(1,1,α,β) model
and other existing grey models can be assessed.

When α = β = 0.5, r = 1, and η = 0, the model becomes the traditional GM(1,1)
model [28].

dx(1)

dt
+ ax(1) = b (17)

When α = β = 0.5, r = 1, and η = 2, the model becomes the grey Verhulst model [21].

dx(1)

dt
+ ax(1) = b(x(1))

2
(18)

When α = β = 0.5, r = 1, and η = 2, the model becomes the NGBM(1,1) model [48].

dx(1)

dt
+ ax(1) = b(x(1))

η
(19)

When α = β = 0.5 and x(r)(k) is determined as shown in Equation (1), the model
becomes the FANGBM(1,1) model [19].

dx(r)

dt
+ ax(r) = b(x(r))

η
(20)

According to Definition 4, the NFOGBM(1,1,α,β) model has a total of six unknown
parameters, among which the development coefficient a and grey action b are known, but
determining the optimal values of the parameters r, η, α, β remains a challenge. Therefore,
in this paper, the PSO algorithm is used to set these four unknown parameters and minimize
the mean relative percent error of simulations (MRSPE). The specific calculation steps are
shown in Figure 1 with the following equations.

min MRSPE =
1

n− 1

n

∑
i=2

(x̂(0)(i)− x(0)(i))/x(0)(i)× 100% (21)
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s.t.



z(r)(k) = αx(r)(k− 1) + (1− α)x(r)(k)

m(r)(k) = βx(r)(k− 1) + (1− β)x(r)(k)

x(r)(k) = nrx(0)(k) ==
k
∑

i=1

Γ(r+i−1)
Γ(i)Γ(r) x(0)(i)(

â, b̂
)T

= (BT B)−1BTY

x̂(r)(k) = [((x(r)(1))
1−η − b/a)e−a(1−η)(k−1) + b/a]

1
1−η

x̂(0)(k) = n−rx(r)(k) = Γ(k)Γ(r)
Γ(r+k−1) (x̂(r)(k)− x̂(r)(k− 1))

k = 2, 3 · · · , n

(22)
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2.5. Metabolic Ideas and the NFOGBM(1,1,α,β) Modeling Process

When a grey model is used, the prediction accuracy is often less than ideal when the
original data are applied for long-term prediction. Notably, over time, the grey factors
that influence the considered variables will continue changing, as will the most recent
state of the system. If the original data are used to build the grey prediction model, the
prediction accuracy of the model will inevitably decrease, and its reliability will also
decrease. Therefore, a grey model can generally only obtain good results when predicting
one or two values, and the long-term prediction effect is not satisfactory and can only
reflect approximate trends. To remedy this deficiency, a metabolic mechanism needs to be
used for modeling.

The so-called metabolic concept involves removing the old data from the original
modeling sequence and performing the modeling steps again according to the most recent
prediction data generated by the model, i.e., after predicting one or two values, the newly
predicted values are added to the original sequence, and the old data in the original genus
sequence are removed, thus keeping the dimension of the modeling sequence unchanged.
Through such a metabolic concept, new prediction information is continuously added, and



Int. J. Environ. Res. Public Health 2022, 19, 4953 9 of 22

the grey level can be gradually reduced until the prediction objectives are met or a certain
accuracy requirement is reached.

To clearly demonstrate how the NFOGBM(1,1,α,β) model proposed in this paper can
be used to solve a practical prediction problem, a flowchart is presented in Figure 1.

2.6. Error Metrics

To better verify the reliability and fit of the NFOGBM(1,1,α,β) model, the mean absolute
percentage error (MAPE) is used to assess the accuracy of the model. Given that the test of
grey model performance includes simulation performance and prediction performance,
the original data need to be divided into modeling and prediction subsets. Each index is
then evaluated from simulation, prediction, and overall perspectives. The MAPE of the
simulation stage is also called the mean relative percentage error of simulations (MRSPE);
the MAPE of the prediction stage is also called the mean prediction percentage error
(MRFPE), and the overall MAPE is also known as the combined mean relative percentage
error (CMRPE). The MRSPE, MRFPE, and CMRPE are calculated as follows:

MRSPE =
1
n

n

∑
k=1

∣∣∣∣∣ x(0)(k)− x̂(0)(k)
x(0)(k)

∣∣∣∣∣× 100% (23)

MRFPE =
1
t

n+t

∑
k=n+1

∣∣∣∣∣ x(0)(k)− x̂(0)(k)
x(0)(k)

∣∣∣∣∣× 100% (24)

CMRPE =
1

n + t

n+t

∑
k=1

∣∣∣∣∣ x(0)(k)− x̂(0)(k)
x(0)(k)

∣∣∣∣∣× 100% (25)

where n is the number of modeling samples and t is the prediction interval.

3. Applications in Forecasting Shaanxi’s CO2 Emissions

In this paper, the data from the seven industries with the highest CO2 emissions in
Shaanxi Province are used to verify the prediction performance of the NFOGBM(1,1,α,β)
model, and compare it with the NGBM(1,1) model and FANGBM(1,1) model. On this
basis, the CO2 emissions of the seven industries from 2020 to 2030 are predicted to pro-
vide a reference for use by relevant departments in Shaanxi Province when formulating
carbon reduction policies. The seven industries are WRTCS, PNGE, TSPTS, SPFM, NMMD,
CMD, and PSESH. For convenience, the above three models are abbreviated as NFOGBM,
FANGBM, and NGBM, respectively. The PSO algorithm is applied to calculate the un-
known parameters, and the settings are as follows: learning factors c1 = c2 = 2, the inertia
factor is 0.8, the population size is 50, the maximum number of iterations is 300, the range
of the cumulative order is [0, 3], and the range of values is [−2, 5].

3.1. Data Description

In this paper, the carbon emission coefficient method is used to measure the CO2
emissions from seven industries in Shaanxi Province, China. The required energy consump-
tion data were obtained from the Shaanxi Provincial Statistical Yearbook, and the carbon
emission coefficients and converted standard coal coefficients of various types of energy
were based on the IPCC Guidelines for National Greenhouse Gas Inventory and the China
Energy Statistical Yearbook. The carbon emissions data for each industry were obtained
via calculations, as shown in Table 1 and Figure 2. Among them, WRTCS has the lowest
CO2 emissions, with an average of only 4.25 million tons over the past nine years, and
PSESH yields the highest CO2 emissions, with its average of 128.6 million tons totalling
more than those of the other six sectors combined. In terms of trend, CO2 emissions from
four industries, namely, WRTCS, PNGE, TSPTS, and NMMD, have consistently decreased,
and CO2 emissions from SPFM have been steadily decreasing since 2014. Additionally,
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CO2 emissions from CMD have only slightly decreased since 2016. In contrast, the amount
of CO2 emitted from PSESH has been increasing at an average annual rate of 4.9%.

Table 1. CO2 emissions from 7 industries in Shaanxi, 2011–2019 (million tons).

Industries 2011 2012 2013 2014 2015 2016 2017 2018 2019

WRTCS 450 450 430 440 430 415 414 403 395
PNGE 650 600 620 590 574 622 511 506 474
TSPTS 1820 1870 1440 1510 1494 1295 1299 1168 1070
SPFM 340 2090 2140 2250 2030 1773 1708 1515 1354

NMMD 3790 2510 2790 2980 2762 2363 2379 2119 1927
CMD 1080 1240 1610 1710 2389 2412 2322 2307 2274

PSESH 9870 11,820 12,770 13,210 12,896 13,307 13,594 13,964 14,313
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Figure 2. Trends of CO2 emissions for 7 industries in Shaanxi, 2011–2019.

3.2. Model Comparison

Carbon emissions data from seven industries are analyzed and compared using three
models, NFOGBM, FANGBM, and NGBM, to predict data for two years, 2018 and 2019.
Then, the simulation, prediction, and overall performance of the three models are assessed.

(1) The modeling results for WRTCS are shown in Table 2, and the fitted curves and
error plots are shown in Figure 3. The MRPESs (%) of the NFOGBM, FANGBM, and
NGBM are 0.561, 0.6, and 0.647, respectively; the MRFPEs (%) are 0.333, 1.932, and 1.847,
respectively, and the CMRPEs (%) are 0.504, 0.933, and 0.947, respectively. It can be seen
that the simulation errors of the three models are not very different, but the NFOGBM has
a much lower prediction error and integrated error than those of the other two models,
indicating that the NFOGBM provides the optimal simulation, prediction, and integrated
performance. In addition, the curves obtained with the NFOGBM are closest to the original
data, indicating that the model provides the best predictions of future scenarios. It is worth
noting that the FANGBM reduces the simulation error to some extent but increases the
prediction error compared to the NGBM.
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Table 2. Modeling results for WRTCS.

Year Raw Data
NFOGBM FANGBM NGBM

r = 0.7408 η = −0.2165
α = 0.7907 β = 0.3508 r = 1.1061 η = 0.1782 η = 0.1075

2012 450 450.000 450.000 450.000
2013 430 430.000 430.000 431.269
2014 440 433.610 434.823 434.782
2015 430 430.000 430.000 430.002
2016 415 422.937 421.099 421.238
2017 414 413.996 410.047 410.291

MRSPE (%) 0.561 0.600 0.647

2018 403 403.972 397.784 398.099
2019 395 393.318 384.847 385.211

MRFPE (%) 0.333 1.932 1.847
CMRPE (%) 0.504 0.933 0.947
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Figure 3. Fitting curves and error plots of the WRTCS results.

(2) The modeling results for PNGE are shown in Table 3, and the fitting and error plots
are shown in Figure 4. The MRPESs (%) of the NFOGBM, FANGBM, and NGBM are 2.498,
2.864, and 3.302, respectively; the MRFPEs (%) are 4.836, 6.222, and 6.415, respectively,
and the CMRPEs (%) are 3.084, 3.704, and 4.08, respectively. As in the previous example,
the NFOGBM yields the smallest simulation, prediction, and combined errors, and can
best capture the trends of the data to produce accurate predictions. It is worth mentioning
that the optimal solution of parameter α produced by the NFOGBM in this example is 0,
implying that z(r)(k) = x(r)(k).
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Table 3. Modeling results for PNGE.

Year Raw Data
NFOGBM FANGBM NGBM

r = 2.0809 η = 0.5081
α = 0 β = 0.4364 r = 0.4235 η = −1.7308 η = 0.0062

2012 600 600.000 600.000 600.000
2013 620 620.000 620.000 620.023
2014 590 602.965 594.788 601.671
2015 574 573.998 574.000 583.159
2016 622 542.429 556.309 564.901
2017 511 511.002 540.707 547.035

MRSPE (%) 2.498 2.864 3.302

2018 506 480.694 526.614 529.621
2019 474 451.865 513.678 512.683

MRFPE (%) 4.836 6.222 6.415
CMRPE (%) 3.083 3.704 4.080
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Figure 4. Fitting curves and error plots of the PNGE results.

(3) The modeling results for TSPTS are shown in Table 4, and the fitting and error plots
are shown in Figure 5. The MRPESs (%) of the NFOGBM, FANGBM, and NGBM are 1.52,
1.957, and 2.062, respectively; the MRFPEs (%) are 2.16, 6.244, and 3.806, respectively, and
the CMRPEs (%) are 1.68, 3.028, and 2.498, respectively. In this example, the NFOGBM
again yields the smallest simulation, prediction, and synthesis errors, and the highest
modeling accuracy. Compared to the NGBM, the FANGBM yields some overfitting, which
improves the simulation accuracy but leads to low prediction accuracy. Notably, the optimal
solution of parameter α produced by the NFOGBM in this example is 1, implying that
z(r)(k) = x(r)(k− 1).
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Table 4. Modeling results for TSPTS.

Year Raw Data
NFOGBM FANGBM NGBM

r = 0.5078 η = −0.3483
α = 1 β = 0.1420 r = 0.5782 η = 0.3862 η = 0.4281

2012 1870 1870.000 1870.000 1870.000
2013 1440 1440.000 1440.000 1440.000
2014 1510 1510.442 1484.607 1494.571
2015 1494 1474.986 1428.741 1457.663
2016 1295 1396.244 1361.569 1370.945
2017 1299 1299.000 1291.869 1259.307

MRSPE (%) 1.520 1.957 2.062

2018 1168 1195.227 1222.270 1137.943
2019 1070 1091.290 1153.913 1016.081

MRFPE (%) 2.160 6.244 3.806
CMRPE (%) 1.680 3.028 2.498
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(4) The modeling results for SPFM are shown in Table 5, and the fitting and error
diagrams are shown in Figure 6. The MRPESs (%) of the NFOGBM, FANGBM, and
NGBM are 1.759, 1.272, and 2.118, respectively; the MRFPEs (%) are 1.837, 5.619, and 3.231,
respectively, and the CMRPEs (%) are 1.779, 2.359, and 2.397. In this example, the FANGBM
produces the lowest simulation error but has the highest prediction error, resulting in some
overfitting, which can be seen in the fitted graphs. The NFOGBM solves this problem, and
yields the lowest prediction and synthesis errors as well as the highest modeling accuracy
in this example.
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Table 5. Modeling results for SPFM.

Year Raw Data
NFOGBM FANGBM NGBM

r = 0.5185 η = −0.3568
α = 0.6121 β = 0.3518 r = 0.3259 η = 5 η = 0.2786

2012 2090 2090.000 2090.000 2090.000
2013 2140 2140.000 2140.000 2174.925
2014 2250 2142.603 2199.429 2161.105
2015 2030 2030.000 2023.098 2030.006
2016 1773 1875.543 1820.854 1853.529
2017 1708 1708.000 1667.893 1663.842

MRSPE (%) 1.759 1.272 2.118

2018 1515 1540.811 1555.693 1476.867
2019 1354 1380.688 1469.781 1300.579

MRFPE (%) 1.837 5.619 3.231
CMRPE (%) 1.779 2.359 2.397
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(5) The modeling results for NMMD are shown in Table 6, and the fitting and error
plots are shown in Figure 7. The MRPESs (%) of the NFOGBM, FANGBM, and NGBM are
2.191, 1.998, and 2.52, respectively; the MRFPEs (%) are 1.938, 5.83, and 8.06, respectively,
and the CMRPEs (%) are 2.128, 2.956, and 3.905. Similar to the previous example, although
the FANGBM yields the lowest simulation error, while the NFOGBM produces the lowest
prediction error and combined error, and the corresponding modeling curve fits the orig-
inal data the best; therefore, among these three models, the NFOGBM provides the best
modeling accuracy.
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Table 6. Modeling results for NMMD.

Year Raw Data
NFOGBM FANGBM NGBM

r = 0.4399 η = −0.4782
α = 0.8727 β = 0.2841 r = 0.2703 η = 5 η = 0.3781

2012 2510 2510.000 2510.000 2510.000
2013 2790 2790.000 2790.000 2789.999
2014 2980 2867.592 2913.722 2887.712
2015 2762 2762.000 2708.019 2759.928
2016 2363 2584.477 2482.463 2531.133
2017 2379 2379.000 2313.422 2263.988

MRSPE (%) 2.191 1.998 2.520

2018 2119 2166.631 2187.547 1991.777
2019 1927 1958.364 2089.350 1732.048

MRFPE (%) 1.938 5.830 8.060
CMRPE (%) 2.128 2.956 3.905
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Figure 7. Fitting curves and error plots of the NMMD results.

(6) The modeling results for CMD are shown in Table 7, and the fitting and error plots
are shown in Figure 8. The MRPESs (%) of the NFOGBM, FANGBM, and NGBM are 4.112,
3.406, and 4.459, respectively; the MRFPEs (%) are 0.519, 4.104, and 11.146, respectively, and
the CMRPEs (%) are 3.727, 4.007, and 6.688, respectively. In this example, the NGBM does
not capture the changes in the new data, and the corresponding modeling curve displays
an upwards trend in the prediction phase, seriously deviating from the original data. Both
the NFOGBM and the FANGBM can use all available information in modeling, and the
NFOGBM greatly improves upon the traditional grey Bernoulli model by utilizing new
data, yielding the lowest prediction error and comprehensive error, and providing the
optimal modeling accuracy.
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Table 7. Modeling results for CMD.

Year Raw Data
NFOGBM FANGBM NGBM

r = 1.5927 η = 0.7403
α = 0.3994 β = 0.4578 r = 0.2027 η = 5 η = 0.5327

2011 1080 1080.000 1080.000 1080.000
2012 1240 1239.999 1240.000 1239.999
2013 1610 1610.785 1565.984 1612.144
2014 1710 1915.161 1956.694 1911.395
2015 2389 2133.624 2271.554 2144.367
2016 2412 2266.142 2379.466 2318.885
2017 2322 2322.002 2331.755 2442.800

MRSPE (%) 4.112 3.406 4.459

2018 2307 2314.369 2240.143 2523.507
2019 2274 2257.191 2153.466 2567.747

MRFPE (%) 0.519 4.104 11.146
CMRPE (%) 3.727 4.007 6.688
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(7) The modeling results for PSESH are shown in Table 8, and the fitting and error plots
are shown in Figure 9. The MRPESs (%) of the NFOGBM, FANGBM, and NGBM are 0.64,
0.708, and 0.806, respectively; the MRFPEs (%) are 0.373, 0.485, and 3.172, respectively, and
the CMRPEs (%) are 0.573, 0.652, and 1.397, respectively. For the NFOGBM and FANGBM,
all three errors are less than 1%, which indicates that these two models perform well for
this example. Although the NGBM yields improved simulations in this case compared to
those in previous examples, its prediction accuracy is low. Moreover, the NFOGBM yields
the lowest simulation, prediction, and synthesis errors, and the highest modeling accuracy,
achieving a notable improvement over the traditional grey Bernoulli model.
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Table 8. Modeling results for PSESH.

Year Raw Data
NFOGBM FANGBM NGBM

r = 1.1448 η = 0.0766
α = 0.3270 β = 0.7671 r = 0.3870 η = −2 η = 0.0199

2012 11,820 11,820.000 11,820.000 11,820.000
2013 12,770 12,770.000 12,824.334 12,770.097
2014 13,210 12,871.212 12,925.510 12,997.436
2015 12,896 13,060.541 13,095.675 13,177.899
2016 13,307 13,307.000 13,323.063 13,336.724
2017 13,594 13,594.000 13,594.000 13,483.178

MRSPE (%) 0.640 0.708 0.806

2018 13,964 13,912.671 13,900.624 13,621.740
2019 14,313 14,257.941 14,238.462 13,754.926

MRFPE (%) 0.373 0.485 3.172
CMRPE (%) 0.573 0.652 1.397
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Figure 9. Fitting curves and error plots of the PSESH results.

In summary, the FANGBM improves the modeling performance of the NGBM in some
cases, but overfitting problems occur in some cases, while the NFOGBM yields low errors,
high prediction performance, and the best modeling accuracy in all seven examples because
the new background value optimization approach can further reduce the errors in the
modeling process and improve the modeling accuracy. The opposite-direction cumulative
operation can further enhance the ability of the model to utilize new information, can use
grey information to capture the latest change trends in the system, and can also solve the
overfitting problem existing in the FANGBM. Thus, the improved grey Bernoulli model
based on these two approaches can effectively use the latest data to produce both accurate
prediction results that capture the trends of the new data as well as results that are highly
compatible with the original data. Thus, the proposed opposite-directional cumulative
operation and background value optimization method are reasonable and effective, and
the new information prioritization concept can further improve modeling performance.
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3.3. Forecasting and Analysis

According to the model results for the seven groups of data above, the NFOGBM
yields the highest modeling accuracy among the models considered. Thus, the NFOGBM
was applied and combined with a metabolic concept to forecast the CO2 emissions of the
seven industries from 2020 to 2030. We first modeled and forecasted the data for 2020 using
six datasets from 2014–2019, and then eliminated the old data from 2014 to add the newly
predicted 2020 data. This process was then repeated for 2021–2030. The forecasting results
are shown in Table 9 and Figure 10.

Table 9. Forecasted CO2 emissions of 7 industries in Shaanxi (million tons).

Year WRTCS PNGE TSPTS SPFM NMMD CMD PSESH

2020 387.22 442.01 978.06 1206.63 1741.61 2244.03 14,665.29
2021 379.02 416.18 885.34 1066.04 1560.50 2223.37 14,990.31
2022 372.87 386.93 804.16 942.82 1403.92 2197.96 15,336.01
2023 367.23 364.27 732.10 829.72 1263.03 2170.95 15,664.90
2024 361.76 342.07 663.44 732.84 1133.18 2144.73 15985.98
2025 357.00 321.44 602.83 645.38 1014.53 2119.37 16,306.14
2026 353.17 302.32 547.97 567.24 908.97 2091.63 16,626.06
2027 349.45 284.19 497.23 498.27 816.42 2064.35 16,936.58
2028 346.24 266.95 450.98 436.58 732.78 2036.93 17,245.18
2029 343.14 250.98 409.52 382.36 658.42 2009.77 17,557.40
2030 340.15 235.89 371.48 334.65 591.89 1981.65 17,864.54
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Figure 10. CO2 emissions curves for the next 11 years in Shaanxi.

The forecasting results show that under the various grey conditions in effect, CO2
emissions are projected to decline in all six sectors—WRTCS, PNGE, TSPTS, SPFM, NMMD,
and CMD—and to further increase in the PSESH sector. CO2 emissions in WRTCS are
projected to decline at an average rate of 1.3% per year and are projected to decline by
55.5 million tons. CO2 emissions in PNGE are projected to decline at an average rate of 4.6%
per year and are expected to decline by 2.39 million tons by 2030. CO2 emissions in TSPTS
are projected to decline at an average rate of 5.9% per year and are expected to decline by
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6.99 million tons by 2030. CO2 emissions in SPFM are projected to decline at an average rate
of 6.8% per year and are expected to decline by 10.19 million tons by 2030. CO2 emissions
in NMMD are projected to decline at an average rate of 6.3% per year and are expected to
decline by 13.35 million tons by 2030. CO2 emissions in CMD are projected to decline at
an average rate of 1.2% per year and are expected to decline by 2.92 million tons by 2030.
CO2 emissions in PSESH are projected to increase at an average rate of 2.3% per year and
are expected to rise by 25.52 million tons by 2030. For the seven industries combined, as
shown in Figure 11, the total CO2 emissions curve shows a convex shape with little overall
change, with the value expected to decline by 0.4% by 2030.
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Figure 11. Overall CO2 emissions curve for Shaanxi Province over the next 11 years.

From the forecast results, four industries, PNGE, TSPTS, SPFM, and NMMD, show a
larger proportional CO2 emissions decrease, with emissions expected to drop by more than
50% by 2030. This situation will undoubtedly contribute significantly to the accomplishment
of CO2 emissions reduction and carbon neutrality targets, but it is not consistent with the
actual situation in Shaanxi Province, where the pace of CO2 emissions reduction is too fast.
The excessively fast reduction of CO2 emissions may be due to technological improvements
and the further use of clean energy, but the possibility that it is caused by the reduction of
energy use by industry, i.e., industry reducing emissions for the sake of reducing emissions,
cannot be excluded, and this approach is contradictory to the overall goal of improving
people’s economic well-being. Enterprises should steadily reduce their CO2 emissions by
using clean energy or upgrading technology while ensuring the normal development of
the industry. The government should appropriately reduce the CO2 emissions reduction
targets for these four industries to ensure the healthy development of enterprises. The
decline in CO2 emissions in WRTCS and CMD is more normal, indicating that the existing
policies of enterprises and the government are more applicable to these sectors, and should
continue to be implemented.

Considering the overall CO2 emissions of the seven industries, the curve shows a
trend of decreasing and then increasing because the increase in CO2 emissions from PSESH
in the later period exceeds the decrease in CO2 emissions from other industries. Obviously,
the most serious CO2 emissions problem among the seven industries is found in PSESH,
which contributes more than half of the total CO2 emissions of the seven industries and
still maintains an increasing state. With the continuous improvement of the economic level
and the improvement of people’s living standards, the demand for electricity and heat
increases, which is inevitable. How to maintain or even reduce the CO2 emissions level
while maintaining the normal supply of electricity and heat is a challenge. Enterprises
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should further improve the use of clean energy and technology to ensure production, and
the government should further increase the control of CO2 emissions in the PSESH industry
to enforce pressure. Notably, this paper verifies the validity of the NFOGBM(1,1,α,β)
model, which can be applied to the prediction of economic and social fields except CO2
emissions prediction.

4. Conclusions

In this paper, a novel fractional-order inverse cumulative operation method and back-
ground value optimization method are proposed, and a new grey model NFOGBM(1,1)
is combined with the fractional-order nonlinear Bernoulli model FANGBM(1,1). Then,
the validity of the NFOGBM(1,1,α,β) model is verified using carbon emission data from
seven major industries in Shaanxi Province, China. Next, using NFOGBM(1,1,α,β) and
a metabolic concept, the CO2 emissions of the seven industries from 2020 to 2030 are
predicted. The following conclusions are obtained. First, the new background value op-
timization approach is effective and reasonable, and it can improve the performance of
the traditional model to achieve accurate prediction. Second, the combination of the new
opposite-direction cumulative optimization approach with the traditional grey Bernoulli
model is effective, and this approach can utilize new information and solve the overfitting
problem of the FANGBM(1,1) model. Third, the NGBM(1,1) model does not sufficiently uti-
lize new information, and the FANGBM(1,1) model produces overfitting in some cases. The
NFOGBM(1,1,α,β) model provides better predictions than and outperforms the NGBM(1,1)
and FANGBM(1,1) models, notably improving the prediction accuracy of the traditional
grey model. Fourth, the prediction results show that under the current conditions, in
2020–2030, the CO2 emissions from the production and supply of electricity and heat will
further increase and are expected to reach 17,865,000 tons by 2030. The CO2 emissions of
the remaining six examined industries will all decrease. Therefore, to successfully achieve
the carbon peak target in Shaanxi Province, the primary problem that needs to be solved is
the excessive and rapid growth of CO2 emissions caused by the production and supply of
electricity and heat.

Various types of grey models exist, and in this paper, only the new opposite-directional
cumulative and background value optimization approach is applied to the traditional grey
Bernoulli model. The effect of combining these two optimization methods with other
models is not yet known. Moreover, only the CO2 emissions of each industry in Shaanxi
Province are predicted, and the corresponding emission problems are discussed; however,
solutions to these problems must be further explored in future research.

Author Contributions: Conceptualization, H.W. and Z.Z.; software Z.Z.; validation, H.W.; data
curation, Z.Z.; writing—original draft, Z.Z.; writing—review and editing, H.W.; supervision, H.W.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Social Science Project of Shaanxi (no. 2021D062), the Youth
Innovation Team of Shaanxi Universities (no. 21JP044), and the Shaanxi Soft Science Foundation (no.
2022KRM079, no. 2022KRM171).

Data Availability Statement: The datasets of this paper are available from the corresponding author
on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nema, P.; Nema, S.; Roy, P. An overview of global climate changing in current scenario and mitigation action. Renew. Sustain.

Energy Rev. 2012, 16, 2329–2336. [CrossRef]
2. Di Sbroiavacca, N.; Nadal, G.; Lallana, F.; Falzon, J.; Calvin, K. Emissions reduction scenarios in the Argentinean Energy Sector.

Energy Econ. 2016, 56, 552–563. [CrossRef]
3. Shi, Q.; Chen, J.; Shen, L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean.

Prod. 2017, 166, 615–627. [CrossRef]

http://doi.org/10.1016/j.rser.2012.01.044
http://doi.org/10.1016/j.eneco.2015.03.021
http://doi.org/10.1016/j.jclepro.2017.08.056


Int. J. Environ. Res. Public Health 2022, 19, 4953 21 of 22

4. Dong, F.; Yu, B.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity change in China. Resour.
Conserv. Recycl. 2018, 129, 187–201. [CrossRef]

5. Beek, L.V.; Vuuren, D.; Hajer, M.; Pelzer, P. Anticipating futures through models: The rise of integrated assessment modelling in
the climate science-policy interface since 1970. Glob. Environ. Chang. 2020, 65, 102191. [CrossRef]

6. Jiang, K.J.; He, C.M.; Zhu, S.L.; Xiang, P.P.; Chen, S. Transport scenarios for China and the role of electric vehicles under global
2 ◦C/1.5 ◦C targets. Energy Econ. 2021, 103, 105172.

7. Ma, M.; Cai, W. What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an
extended Kaya identity. Sci. Total. Environ. 2018, 634, 884–899. [CrossRef]

8. Danish; Ozcan, B.; Ulucak, R. An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in
India: Bridging IPAT and EKC hypotheses. Nucl. Eng. Technol. 2021, 53, 2056–2065. [CrossRef]

9. Huang, J.B.; Li, X.H.; Wang, Y.J.; Lei, H.Y. The effect of energy patents on China’s carbon emissions: Evidence from the STIRPAT
model. Technol. Forecast. Soc. 2021, 173, 121110. [CrossRef]

10. Acheampong, A.; Boateng, E.B. Modelling carbon emission intensity: Application of artificial neural network. J. Clean. Prod. 2019,
225, 833–856. [CrossRef]

11. Wen, L.; Cao, Y. Influencing factors analysis and forecasting of residential energy-related CO2 emissions utilizing optimized
support vector machine. J. Clean. Prod. 2020, 250, 119492. [CrossRef]

12. Sun, W.; Huang, C. Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine
from the perspective of carbon emission efficiency. J. Clean. Prod. 2022, 338, 130414. [CrossRef]

13. Yan, C.; Wu, L.F.; Liu, L.Y.; Zhang, K. Fractional Hausdorff grey model and its properties. Chaos Soliton. Fract. 2020, 138, 109915.
14. Wang, Q.; Li, S.; Pisarenko, Z. Modeling carbon emission trajectory of China, US and India. J. Clean. Prod. 2020, 258, 120723.

[CrossRef]
15. Xie, W.; Wu, W.-Z.; Liu, C.; Zhang, T.; Dong, Z. Forecasting fuel combustion-related CO2 emissions by a novel continuous

fractional nonlinear grey Bernoulli model with grey wolf optimizer. Environ. Sci. Pollut. Res. 2021, 28, 38128–38144. [CrossRef]
16. Hu, Y.-C.; Jiang, P.; Tsai, J.-F.; Yu, C.-Y. An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting.

Int. J. Environ. Res. Public Health 2021, 18, 587. [CrossRef]
17. Ding, S.; Hipel, K.W.; Dang, Y.G. Forecasting China’s electricity consumption using a new grey prediction model. Energy 2018,

149, 314–328. [CrossRef]
18. Wu, W.-Z.; Pang, H.; Zheng, C.; Xie, W.; Liu, C. Predictive analysis of quarterly electricity consumption via a novel seasonal

fractional nonhomogeneous discrete grey model: A case of Hubei in China. Energy 2021, 229, 120714. [CrossRef]
19. Wu, W.; Ma, X.; Zeng, B.; Wang, Y.; Cai, W. Forecasting short-term renewable energy consumption of China using a novel

fractional nonlinear grey Bernoulli model. Renew. Energy 2019, 140, 70–87. [CrossRef]
20. Zheng, C.; Wu, W.-Z.; Xie, W.; Li, Q. A MFO-based conformable fractional nonhomogeneous grey Bernoulli model for natural gas

production and consumption forecasting. Appl. Soft Comput. 2021, 99, 106891. [CrossRef]
21. Zeng, B.; Ma, X.; Zhou, M. A new-structure grey Verhulst model for China’s tight gas production forecasting. Appl. Soft Comput.

2020, 96, 106600. [CrossRef]
22. Xiong, P.-P.; Huang, S.; Peng, M.; Wu, X.-H. Examination and prediction of fog and haze pollution using a Multi-variable Grey

Model based on interval number sequences. Appl. Math. Model. 2020, 77, 1531–1544. [CrossRef]
23. Xiao, X.; Duan, H.; Wen, J. A novel car-following inertia gray model and its application in forecasting short-term traffic flow. Appl.

Math. Model. 2020, 87, 546–570. [CrossRef]
24. Ding, S. A novel discrete grey multivariable model and its application in forecasting the output value of China’s high-tech

industries. Comput. Ind. Eng. 2019, 127, 749–760. [CrossRef]
25. Wu, L.Z.; Li, S.H.; Huang, R.Q.; Xu, Q. A new grey prediction model and its application to predicting landslide displacement.

Appl. Soft Comput. 2020, 95, 106543. [CrossRef]
26. Ceylan, Z. Short-term prediction of COVID-19 spread using grey rolling model optimized by particle swarm optimization. Appl.

Soft Comput. 2021, 109, 107592. [CrossRef]
27. Saxena, A. Grey forecasting models based on internal optimization for Novel Coronavirus (COVID-19). Appl Soft Comput. 2021,

111, 107735. [CrossRef]
28. Deng, J. Control problems of grey systems. Syst. Control. Lett. 1982, 5, 288–294.
29. Song, Z.M.; Deng, J.L. The accumulated generating operation in opposite direction and its use in grey model GOM(1, 1). Syst.

Eng. 2001, 19, 66–69.
30. Wu, L.; Liu, S.; Yao, L.; Yan, S.; Liu, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer.

Simul. 2013, 18, 1775–1785. [CrossRef]
31. Ma, X.; Wu, W.; Zeng, B.; Wang, Y.; Wu, X. The conformable fractional grey system model. ISA Trans. 2020, 96, 255–271. [CrossRef]

[PubMed]
32. Wu, L.F.; Liu, S.F.; Yang, Y.J. Using fractional order method to generalize strengthening generating operator buffer operator and

weakening buffer operator. IEEE-CAA J. Automatic. 2018, 5, 52–56.
33. Zeng, B.; Duan, H.; Bai, Y.; Meng, W. Forecasting the output of shale gas in China using an unbiased grey model and weakening

buffer operator. Energy 2018, 151, 238–249. [CrossRef]

http://doi.org/10.1016/j.resconrec.2017.10.035
http://doi.org/10.1016/j.gloenvcha.2020.102191
http://doi.org/10.1016/j.scitotenv.2018.04.043
http://doi.org/10.1016/j.net.2020.12.008
http://doi.org/10.1016/j.techfore.2021.121110
http://doi.org/10.1016/j.jclepro.2019.03.352
http://doi.org/10.1016/j.jclepro.2019.119492
http://doi.org/10.1016/j.jclepro.2022.130414
http://doi.org/10.1016/j.jclepro.2020.120723
http://doi.org/10.1007/s11356-021-12736-w
http://doi.org/10.3390/ijerph18020587
http://doi.org/10.1016/j.energy.2018.01.169
http://doi.org/10.1016/j.energy.2021.120714
http://doi.org/10.1016/j.renene.2019.03.006
http://doi.org/10.1016/j.asoc.2020.106891
http://doi.org/10.1016/j.asoc.2020.106600
http://doi.org/10.1016/j.apm.2019.09.027
http://doi.org/10.1016/j.apm.2020.06.020
http://doi.org/10.1016/j.cie.2018.11.016
http://doi.org/10.1016/j.asoc.2020.106543
http://doi.org/10.1016/j.asoc.2021.107592
http://doi.org/10.1016/j.asoc.2021.107735
http://doi.org/10.1016/j.cnsns.2012.11.017
http://doi.org/10.1016/j.isatra.2019.07.009
http://www.ncbi.nlm.nih.gov/pubmed/31331657
http://doi.org/10.1016/j.energy.2018.03.045


Int. J. Environ. Res. Public Health 2022, 19, 4953 22 of 22

34. Xiong, P.-P.; Dang, Y.-G.; Yao, T.-X.; Wang, Z.-X. Optimal modeling and forecasting of the energy consumption and production in
China. Energy 2014, 77, 623–634. [CrossRef]

35. Truong, D.; Ahn, K. An accurate signal estimator using a novel smart adaptive grey model SAGM(1,1). Expert Syst. Appl. 2012, 39,
7611–7620. [CrossRef]

36. Ma, X.; Wu, W.Q.; Zhang, Y. Improved GM(1,1) model based on Simpson formula and its applications. J. Grey Syst. 2019, 31, 33–46.
37. Wu, W.; Ma, X.; Wang, Y.; Cai, W.; Zeng, B. Predicting China’s energy consumption using a novel grey Riccati model. Appl. Soft

Comput. 2020, 95, 106555. [CrossRef]
38. Ma, X.; Xie, M.; Wu, W.; Zeng, B.; Wang, Y.; Wu, X. The novel fractional discrete multivariate grey system model and its

applications. Appl. Math. Model. 2019, 70, 402–424. [CrossRef]
39. Wu, W.; Ma, X.; Zeng, B.; Lv, W.; Wang, Y.; Li, W. A novel Grey Bernoulli model for short-term natural gas consumption

forecasting. Appl. Math. Model. 2020, 84, 393–404. [CrossRef]
40. Luo, D.; Wei, B. Grey forecasting model with polynomial term and its optimization. J. Grey Syst. 2017, 29, 58–69.
41. Xiong, P.-P.; Yan, W.-J.; Wang, G.-Z.; Pei, L.-L. Grey extended prediction model based on IRLS and its application on smog

pollution. Appl. Soft Comput. 2019, 80, 797–809. [CrossRef]
42. Xu, N.; Ding, S.; Gong, Y.; Bai, J. Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey

rolling model. Energy 2019, 175, 218–227. [CrossRef]
43. Wang, Q.; Song, X.X. Forecasting China’s oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear

GM, nonlinear GM, and metabolism GM. Energy 2019, 183, 160–171. [CrossRef]
44. Zhou, W.; Zeng, B.; Wang, J.; Luo, X.; Liu, X. Forecasting Chinese carbon emissions using a novel grey rolling prediction model.

Chaos Solitons Fractals 2021, 147, 110968. [CrossRef]
45. Sun, W.; Xu, Y.F. Research on China’s energy supply and demand using an improved Grey—Markov chain model based on

wavelet transform. Energy 2017, 118, 969–984.
46. Hao, H.; Zhang, Q.; Wang, Z.; Zhang, J. Forecasting the number of end-of-life vehicles using a hybrid model based on grey model

and artificial neural network. J. Clean. Prod. 2018, 202, 684–696. [CrossRef]
47. Chen, K.; Laghrouche, S.; Djerdir, A. Degradation prediction of proton exchange membrane fuel cell based on grey neural network

model and particle swarm optimization. Energy Convers. Manag. 2019, 195, 810–818. [CrossRef]
48. Chen, C.-I.; Chen, H.L.; Chen, S.-P. Forecasting of foreign exchange rates of Taiwan’s major trading partners by novel nonlinear

Grey Bernoulli model NGBM(1, 1). Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1194–1204. [CrossRef]
49. Guo, X.; Liu, S. Forecasting China’s SO2 emissions by the nonlinear grey Bernoulli self-memory model (NGBSM). J. Grey Syst.

2016, 28, 77–87.
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