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Abstract: Amino acids, fatty acids, and acylcarnitine metabolites play a pivotal role in maternal
and fetal health, but profiles of these metabolites over pregnancy are not completely established.
We described longitudinal trajectories of targeted amino acids, fatty acids, and acylcarnitines in
pregnancy. We quantified 102 metabolites and combinations (37 fatty acids, 37 amino acids, and
28 acylcarnitines) in plasma samples from pregnant women in the Eunice Kennedy Shriver National
Institute of Child Health and Human Development (NICHD) Fetal Growth Studies—Singletons
cohort (n = 214 women at 10–14 and 15–26 weeks, 107 at 26–31 weeks, and 103 at 33–39 weeks).
We used linear mixed models to estimate metabolite trajectories and examined variation by body
mass index (BMI), race/ethnicity, and fetal sex. After excluding largely undetected metabolites, we
analyzed 77 metabolites and combinations. Levels of 13 of 15 acylcarnitines, 7 of 25 amino acids, and
18 of 37 fatty acids significantly declined over gestation, while 8 of 25 amino acids and 10 of 37 fatty
acids significantly increased. Several trajectories appeared to differ by BMI, race/ethnicity, and fetal
sex although no tests for interactions remained significant after multiple testing correction. Future
studies merit longitudinal measurements to capture metabolite changes in pregnancy, and larger
samples to examine modifying effects of maternal and fetal characteristics.

Keywords: pregnancy; targeted metabolomics; longitudinal; non-linear; fattyacids; amino
acids; acylcarnitines
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1. Introduction

Metabolomics, the study of small molecules in plasma or other biological compart-
ments, can describe a person’s complex metabolic state at the time of measurement. Because
pregnancy is a time of rapid metabolic change, and the etiology of many pregnancy compli-
cations is incompletely understood, metabolomics has recently emerged as a promising tool
to examine the role of nutrients and metabolites in the etiology of maternal and neonatal
complications [1]. For example, alterations in amino acids, fatty acids, and acylcarnitines
have been significantly associated with gestational diabetes [2–6], and concentrations of
acylcarnitines and amino acids have been linked to small for gestational age [7]. Because of
these links between metabolites and maternal and fetal outcomes, describing longitudinal
plasma concentrations of these metabolites across pregnancy is critical.

However, continuous longitudinal changes of multiple classes of plasma metabolites
over pregnancy have not been described. Three recent studies described longitudinal
changes in targeted maternal plasma metabolomics (including amino acids, fatty acids,
and acylcarnitines) over healthy pregnancy, but each collected samples at the same fixed
times in all participants, leaving gaps in the remaining weeks of pregnancy and precluding
description of continuous changes over time [8–10]. A few additional preliminary studies
have measured metabolites (amino acids, fatty acids, and others) in maternal plasma at
multiple points in pregnancy, but were all limited by methodological challenges including
a small sample size (30 or fewer participants at each time point) and lack of repeated
measurements on the same women [11–14].

Additionally, changes in metabolite concentration may be affected by maternal and fe-
tal factors. For example, a number of studies (nearly all cross-sectional) have shown that ma-
ternal plasma metabolites (non-esterified fatty acids, branched chain amino acids, and some
acylcarnitines, among others) differ by pre-pregnancy body mass index (BMI) [9,15–19].
Fetal sex may affect metabolites in maternal plasma or amniotic fluid [20,21], and one study
in healthy pregnancy reported subtle differences in metabolomic profile by Hispanic ethnic-
ity [8]. No study to our knowledge has explored how longitudinal changes in metabolites
may differ by maternal BMI, fetal sex, and maternal race/ethnicity.

In this study, we used a multi-ethnic longitudinal pregnancy cohort with repeated
maternal plasma samples to examine trajectories of targeted metabolites (amino acids,
acylcarnitines, and phospholipid fatty acids) over the course of pregnancy among low-
risk women without major pre-existing conditions. We additionally investigated varia-
tions of metabolite trajectories by pre-pregnancy BMI, fetal sex, and race/ethnicity, and
grouped metabolites by trajectory. The purpose of this research is to describe natural
changes in targeted metabolite concentrations across pregnancy, which is a period of
major metabolic shifts.

2. Materials and Methods

The Eunice Kennedy Shriver National Institute of Child Health and Human Develop-
ment Fetal Growth Studies—Singletons cohort was a multiracial prospective pregnancy
cohort of 2802 women (2009–2013). Eligible women, recruited at 12 clinical sites, were
18–40 years old, had a singleton pregnancy <13 weeks without fetal congenital structural
or chromosomal anomalies, and had a pre-pregnancy BMI between 19.0 and 45.0 kg/m2.
Women with certain preexisting medical conditions or previous pregnancy complications
were excluded. The analytic sample used for this analysis was a subset of the whole study
population, restricted to women with quantified metabolites (n = 214 at visits 1 and 2,
n = 107 at visit 3, and n = 103 at visit 4). Additional details on selection of participants into
the analytic sample can be found in Supplemental Figure S1. Institutional Review Board
approval was obtained for all participating clinical sites, the data coordinating center, and
NICHD (May 2009, IRB number: 09-CH-N152). The research conforms to the principles
of the Declaration of Helsinki. Written informed consent was obtained from all partici-
pants. This study was registered at www.clinicaltrials.gov (assessed on 30 August 2021) as
NCT00912132. A detailed description of the cohort has been published [22].

www.clinicaltrials.gov
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2.1. Quantification of Metabolites

Blood samples were collected from study participants at four study visits during
pregnancy, at 10–14 weeks (baseline visit), 15–26 weeks, 23–31 weeks, and 33–39 weeks
(staggered to ensure that each week of pregnancy would be adequately sampled). At the
first post-baseline visit, participants gave blood samples after an overnight fast of 8–14 h;
at the baseline visit, second post-baseline visit, and last visit participants gave non-fasting
samples. Investigators processed all blood samples immediately and stored the plasma
samples at −80 ◦C until biomarker analysis, a method which has been shown to preserve
metabolite stability [23].

Metabolites were measured in maternal plasma samples in a previous gestational
diabetes case-control study nested in the NICHD Fetal Growth Studies—Singletons cohort.
The case-control study identified 107 women who developed gestational diabetes, and
individually matched each case to two controls by age (±2 years), race/ethnicity (Non-
Hispanic White, Non-Hispanic Black, Hispanic, Asian/Pacific Islander), and gestational
week of study visit (±2 weeks). Metabolites were measured in all gestational diabetes cases
and matched controls for two study visits occurring before gestational diabetes diagnosis,
and in all cases and one of the two matched controls for two study visits after diagnosis.
For this study, we used metabolomics measurements from the controls (n = 214 at visits
1 and 2, n = 107 at visit 3, and n = 103 at visit 4) who are more representative of pregnant
women in general than gestational diabetes cases (Supplemental Figure S1).

We quantified 93 targeted metabolites (28 acylcarnitines, 36 amino acids, and 29 phos-
pholipid fatty acids). We measured acylcarnitines using electrospray ionization tandem
mass spectrometry (ESI-MS/MS) [24]. Briefly, six internal standards of known concentra-
tion were added to the plasma sample, and samples were deproteinized with acetonitrile.
Following shaking and centrifugation, the supernatants were dried and derivatized with
n-butanolic HCl, yielding acylcarnitines in n-butyl-ester form. Samples were resuspended
in running buffer and analyzed by ESI-MS/MS. The concentrations of the analytes were
estimated by computerized comparison to internal standards. We measured phospholipid
fatty acid profiles using EDTA plasma using a method previously described [25]. Briefly,
lipids were extracted with chloroform/methanol, separated using thin-layer chromatogra-
phy, and the phospholipid band was derivatized to methyl esters. The final product was
injected onto a capillary Varian CP7420 100-m column with a Hewlet Packard 5890 gas
chromatograph with a flame ionization detector interphased with HP Chemstation soft-
ware. Fatty acids are expressed as a percent of total phospholipid fatty acids. Finally,
we measured amino acids on an Amino Acid analyzer (Hitachi L-8900). Samples were
deproteinized, acidified, and injected into a high-performance liquid chromatography
system. The amino acids were eluted based on the pKa using cation exchange resin and
multiple buffer and temperature gradients to resolve compounds. The column effluent was
reacted at high temperature with ninhydrin and the wavelength absorbance was monitored.
Each amino acid was quantified relative to standards of known concentrations. Names of
fatty acids are structured as C(number of carbons):(number of double bonds)n(location of
first double bond), followed by c and/or t to denote cis or trans bonds.

2.2. Covariate Measurement

At baseline, participants reported demographic characteristics including race/ethnicity,
education, household income, marital status, and parity. Research staff recorded fetal
sex from the neonatal discharge summary. We calculated pre-pregnancy BMI (weight
(kg)/height (m)2) using self-reported pre-pregnancy weight and height measured by re-
search staff at enrollment. At each blood draw, participants also reported the last time they
had anything to eat or drink. For this descriptive analysis, we chose a priori to estimate
metabolite trajectories by strata of maternal BMI (<25, 25–29.9, ≥30 kg/m2), fetal sex (male,
female), and maternal race/ethnicity (Non-Hispanic White, Non-Hispanic Black, Hispanic,
Asian/Pacific Islander).
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2.3. Statistical Analysis

We excluded from analysis metabolites missing or undetected in more than 20% of
measurements (n = 10 metabolites) and metabolites with a concentration of 0 in more
than 50% of samples (n = 15 metabolites). For other metabolites with values below
the detection limit (n = 11 acylcarnitines), we imputed values below the detection limit
with the minimum/2 [26]. After exclusions, 68 metabolites remained: 15 acylcarnitines,
24 amino acids, and 29 phospholipid fatty acids. We additionally calculated 9 combinations
(sums and ratios) of metabolites, for a total of 77 metabolites and combinations used in
analysis. A list of quantified metabolites and ratios of metabolites can be found in the
Supplemental Material Table S1.

Because the analytic sample is composed of the matched controls from a nested
case-control study, we weighted the participants in our analytic sample at each visit
by the inverse of the probability of selection, to return the distribution of demographic
characteristics in the sample to baseline distributions for the cohort [27].

2.4. Linear Trajectories

First, we evaluated whether metabolite concentrations changed significantly over
pregnancy using linear mixed effects models with random slopes and intercepts for time
(modeled continuously; slopes with p < 0.05 were considered to significantly change). We
repeated these analyses including main effects and product terms for pre-pregnancy BMI,
fetal sex, and race/ethnicity, to test whether metabolite trajectories significantly differed by
these characteristics. Models were not adjusted for other demographic covariates in the
main analysis. When the estimated G-matrix was not positive definite for the overall or
stratified analyses (n = 20 metabolites), we estimated metabolite trajectories using linear
mixed effects models with random intercepts and fixed slopes for time. We corrected
all sets of analyses for multiple testing using Benjamini-Hochberg false discovery rate
correction [28]. We considered corrected p-values < 0.05 to be statistically significant.

2.5. Flexible Non-Linear Trajectories

Next, we relaxed the assumption of linear change in metabolite levels over time to
model metabolite trajectories more precisely. We estimated flexible metabolite trajectories
using mixed effects models with random slopes and intercepts for time, using penalized
linear splines with knots every 5 gestational weeks (at 15, 20, 25, 30, and 35 weeks), not
adjusted for demographic covariates. As in the linear models, when the estimated G-matrix
was not positive definite (n = 20 metabolites), we estimated metabolite trajectories using
linear mixed effects models with random intercepts and fixed slopes for time and no
penalized splines. We used these models to estimate predicted values for each metabolite
for gestational weeks 10–39.5 by 0.5-week intervals [29]. We plotted the observed data and
estimated penalized spline for each metabolite (Supplemental Material).

2.6. Grouping Flexible Trajectories

Finally, we grouped metabolite trajectories using a non-parametric partitioning al-
gorithm, k-means for longitudinal data (KML) [30]. We grouped trajectories to identify
metabolites with similar trajectories, to which may indicate broad metabolic changes af-
fecting multiple pathways. We scaled the predicted values of each metabolite from the
penalized spline models to be between 0 and 1 to put all metabolites on one scale. We
tested 2–10 clusters of trajectories, with 10 re-drawings per tested cluster number. We used
the Calinski & Harabatz criterion to select the optimal number of clusters [30]. Scaling the
predicted values allows for comparison of trajectory shape across metabolites but removes
information about absolute slope (because the minimum is fixed to 0 and maximum is
fixed to 1 for each metabolite). Observed slopes from penalized spline models for each
metabolite are plotted in the Supplemental Material. We conducted analyses except KML
in SAS 9.4 (SAS Institute Inc., Cary, NC, USA), and conducted KML in R version 3.5.1.
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2.7. Sensitivity Analyses

To evaluate the effect of the fasting visit on estimated trajectories, we ran linear models
dropping the fasting visit. To evaluate the robustness of models testing interaction by
BMI, fetal sex, and race/ethnicity, we additionally adjusted them by the other factors
(e.g., models testing fetal sex were adjusted for BMI and race/ethnicity). Finally, we used
bootstrapping with 200 replicates to confirm the standard error of our weighted analyses;
the bootstrapped confidence intervals were similar to those estimated from weighted linear
mixed models.

3. Results

Participants ranged in age from 18–40 years, and the population was racially diverse:
31% of women were non-Hispanic White, 24% were non-Hispanic Black, 27% were His-
panic, and 18% were Asian/Pacific Islander (Table 1). About half of the women (52%) had
pre-pregnancy BMIs <25 kg/m2, and 75% had at least some college education (Table 1).

Table 1. Weighted demographic characteristics of study participants at enrollment (n = 214).

Characteristics n1 (%)

Maternal age (years)
18–24 65 (30.5)
25–29 64 (29.9)
30–34 55 (25.6)
35–40 30 (14.0)

Race/ethnicity
Non-Hispanic White 67 (31.3)
Non-Hispanic Black 51 (23.7)

Hispanic 57 (26.8)
Asian/Pacific Islander 39 (18.3)

Pre-pregnancy BMI (kg/m2)
<25 112 (52.4)

25–29.9 71 (33.0)
≥30 31 (14.6)

Married or living with partner 155 (72.3)

Maternal education
Some high school 22 (10.4)

High school diploma 31 (14.5)
Some college 75 (34.8)

Bachelor’s degree 51 (23.9)
Graduate degree 35 (16.5)

Annual household income
<$30,000 52 (24.3)

$30,000–$49,999 37 (17.1)
$50,000–$99,999 43 (20.0)

≥$100,000 50 (23.4)
Missing 32 (15.1)

Infant Sex
Male 110 (51.3)

Female 103 (48.2)
Missing 1 (0.5)

1 n correspond to weighted percentage.

3.1. Metabolite Concentrations over Time

Concentrations of most acylcarnitines (13 of 15) significantly declined over gestation
(Table 2), and changes appeared somewhat nonlinear when we flexibly modeled trajectories
(Figure 1 and Supplemental Material).
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Table 2. Summary of the direction of change for metabolites whose concentrations statistically significantly increased
(positive trajectory) or decreased (negative trajectory) over pregnancy (after FDR correction), based on slopes from linear
mixed effects models.

Class Positive Trajectory Negative Trajectory No Significant Change

Acylcarnitines –

Acetylcarnitine, Propionylcarnitine,
Decenoylcarnitine, Decanoylcarnitine,

Glutarylcarnitine, Dodecenoylcarnitine,
Dodecanoylcarnitine, Tetradecenoylcarnitine,

Hexadecenoylcarnitine,
Hexadecanoylcarnitine, Linoleylcarnitine,

Oleylcarnitine, Stearoylcarnitine

Octenoylcarnitine,
Tetradecanoylcarnitine

Fatty acids

C16:0, C16:1n7c, C18:1n9c,
C18:2n6c/c, C18:3n3, C22:0,

C22:5n6, C24:1n9, Σ(C18:1 cis
fatty acids), Σ(cis fatty acids)

C15:0, C17:0, C18:0, C18:1n6-9t, C18:1n6c,
C18:1n7c, C18:2n6c/t, C18:2n6t/t, C20:1n9,
C20:2n6, C20:4n6, C22:5n3, C22:6n3, C24:0,

Σ(trans fatty acids), Σ(EPA, DHA), AA/DHA,
AA/Σ(EPA, DHA)

C14:0, C18:2n6t/c, C18:3n6, C20:0,
C20:3n6, C20:5n3, C22:4n6,

AA/EPA, Σ(C18:2 trans
fatty acids)

Amino acids
Alanine, Asparagine, Glutamine,

Histidine, Hydroxyproline,
Methionine, Proline, Threonine

α-aminobutyric acid, Arginine, Glycine,
Isoleucine, Leucine, Taurine, Valine

Aspartic acid, Citrulline, Cystine,
Glutamic acid, Σ(Glutamic acid,
Glutamine), Lysine, Ornithine,
Phenylalanine, Serine, Tyrosine

Abbreviations: AA—Arachidonic acid; EPA—Eicosapentaenoic acid; DHA—Docosahexaenoic acid. Fatty acids are formatted as C(number
of carbons):(number of double bonds)n(location of first double bond). Where needed, fatty acid names are followed by c and/or t to denote
cis or trans bonds.

Nutrients 2021, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 1. Trajectories of normalized acylcarnitine concentrations estimated from linear mixed mod-
els with 5-knot penalized splines. Short-chain acylcarnitines have 2–4 carbon chains, medium-chain 
acylcarnitines have 8–12 carbon chains, and long chain acylcarnitines have 14–18 carbon chains. 
Metabolites with the same trajectory are plotted as a single line. Absolute concentrations of each 
individual acylcarnitine (n = 15) are plotted in the Supplemental Material. 

Among 37 tested fatty acids and sums, relative percentages of 8 fatty acids and 2 
sums (Σ(cis fatty acids) and Σ(18:1 cis fatty acid isomers)) significantly increased, relative 
percentages of 14 fatty acids and 4 sums and ratios (Σ[trans fatty acids], eicosapentaenoic 
acid [EPA]/docosahexaneonic acid [DHA], arachindonic acid [AA]/DHA, 
AA/Σ[EPA,DHA]) significantly decreased, and relative percentages of the remaining 7 
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(C18:3n3 and C18:2n6c/c, respectively) both increased, though trajectories for other 
omega-3 and omega-6 fatty acids varied (Table 2, Figure 2). Finally, of the 25 tested amino 
acids, concentrations of 8 significantly increased, concentrations of 7 significantly de-
creased, and the remaining 10 amino acids and 1 sum (Σ[Glutamic acid, glutamine]) did 
not significantly change (Table 2, Figure 3). Among the amino acids that did not signifi-
cantly change, several (e.g., phenylalanine, ornithine, tyrosine) appear to have non-linear 
trajectories (Supplemental Material). 

Figure 1. Trajectories of normalized acylcarnitine concentrations estimated from linear mixed models
with 5-knot penalized splines. Short-chain acylcarnitines have 2–4 carbon chains, medium-chain
acylcarnitines have 8–12 carbon chains, and long chain acylcarnitines have 14–18 carbon chains.
Metabolites with the same trajectory are plotted as a single line. Absolute concentrations of each
individual acylcarnitine (n = 15) are plotted in the Supplemental Material.

Among 37 tested fatty acids and sums, relative percentages of 8 fatty acids and 2 sums
(Σ(cis fatty acids) and Σ(18:1 cis fatty acid isomers)) significantly increased, relative per-
centages of 14 fatty acids and 4 sums and ratios (Σ[trans fatty acids], eicosapentaenoic acid
[EPA]/docosahexaneonic acid [DHA], arachindonic acid [AA]/DHA, AA/Σ[EPA,DHA])
significantly decreased, and relative percentages of the remaining 7 fatty acids and 2 ratios
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(AA/EPA, Σ[18:1 trans fatty acid isomers]) did not significantly change (Table 2). Relative
percentages of essential omega-3 and omega-6 fatty acids (C18:3n3 and C18:2n6c/c, respec-
tively) both increased, though trajectories for other omega-3 and omega-6 fatty acids varied
(Table 2, Figure 2). Finally, of the 25 tested amino acids, concentrations of 8 significantly
increased, concentrations of 7 significantly decreased, and the remaining 10 amino acids
and 1 sum (Σ[Glutamic acid, glutamine]) did not significantly change (Table 2, Figure 3).
Among the amino acids that did not significantly change, several (e.g., phenylalanine,
ornithine, tyrosine) appear to have non-linear trajectories (Supplemental Material).
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phospholipid fatty acid (n = 37, including phospholipid fatty acids that are not omega-3 or omega-6)
are plotted in the Supplemental Material.
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Figure 3. Trajectories of normalized amino acid concentrations, estimated from linear mixed models
with 5-knot penalized splines. Amino acids with positive and negative trajectories were identified
using slopes from linear mixed models. Metabolites with the same trajectory are plotted with the
same color as a single line. Absolute concentrations of each amino acid (n = 25) are plotted in the
Supplemental Material.

3.2. Trajectory Variation by BMI, Fetal Sex, Race/Ethnicity

Trajectories of 5 fatty acids and ratios (C16:0, C16:1n7c, C17:0, C20:3n6, [AA/Σ(EPA+
DHA)]), dodecenoylcarnitine, and alanine differed by maternal BMI. Compared to tra-
jectories among women with normal BMI, relative percentages of C16:1n7c and C20:3n6
declined significantly more, while relative percentage of AA/Σ(EPA + DHA) declined sig-
nificantly less, among women with obese BMI. Relative percentages of C17:0 also declined
significantly less in pregnancies of women with overweight or obese pre-pregnancy BMI
compared to women with normal BMI. Concentrations of dodecenoylcarnitine declined
significantly more and relative percentages of C16:0 increased significantly less in pregnan-
cies of women with overweight BMI, compared to normal BMI. None of these interactions
remained statistically significant after FDR correction (Supplemental Table S2).

Trajectories of 2 fatty acids (C15:0, C22:0) and 2 acylcarnitines (stearoylcarnitine, pro-
pionylcarnitine) significantly differed by fetal sex. Relative percentages of C15:0 and C22:0,
and concentrations of stearoylcarnitine, and propionylcarnitine, declined more or increased
less in pregnancies with male compared to female fetuses. However, these interactions
ceased to be statistically significant after FDR correction (Supplemental Table S2).

Trajectories of six fatty acids (C18:1n7c, C18:3n6, C20:2n6, C20:3n6, C20:4n6, C22:0) and
proline significantly differed by maternal race/ethnicity. Compared to non-Hispanic white
women, relative percentages of C18:1n7c, C20:2n6, and C20:4n6 declined significantly less,
and relative percentages of C18:3n6 and C20:3n6 declined significantly more, in pregnancies
of non-Hispanic Black women; relative percentages of C22:0 rose significantly less, while
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concentrations of proline rose significantly more, in pregnancies of non-Hispanic Black,
Hispanic, and Asian/Pacific Islander women. Again, no interactions were statistically
significant after FDR correction (Supplemental Table S2). Supplemental Table S3 shows all
instances where either slope or intercept significantly varied by race/ethnicity, fetal sex,
or BMI.

3.3. Grouping Flexible Components

We grouped the flexible metabolite trajectories to identify metabolites with sim-
ilar trajectories. Using the KML algorithm, the best fit was a model with 2 groups
of trajectories (Figure 4). Group A, which is characterized by monotonic decreasing
concentration, included all 15 acylcarnitines; 9 amino acids (α-aminobutyric acid, as-
partic acid, isoleucine, leucine, taurine, valine, arginine, glutamic acid, glycine); and
25 fatty acids (C15:0, C17:0, C18:0, C18:1n6-9t, C18:1n7c, C18:1n6c, C18:2n6t/t, C18:2n6c/t,
C18:2n6t/c, C18:3n6, C20:1n9, C20:2n6, C20:3n6, C20:4n6, C20:5n3, C22:4n6, C24:0, C22:5n3,
C22:6n3, Σ[trans fatty acids], Σ[18:2 trans fatty acids], Σ[EPA, DHA], AA/EPA, AA/DHA,
AA/Σ[EPA, DHA]). Group B, characterized by a relatively flat trajectory in gestational
weeks 10–15 and then a positive trajectory through the end of gestation, consisted of the
other 28 metabolites: 16 amino acids (alanine, asparagine, citrulline, cystine, glutamine,
Σ[glutamic acid, glutamine], histidine, hydroxyproline, lysine, ornithine, phenylalanine,
serine, threonine, tyrosine, methionine, proline) and 12 fatty acids (C14:0, C16:0, C16:1n7c,
C18:1n9c, C18:2n6c/c, C18:3n3, C20:0, C22:0, C22:5n6, C24:1n9, Σ[cis fatty acids], Σ[18:1 cis
fatty acids]). Group memberships are listed by metabolite class in Supplemental Table S1.
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3.4. Sensitivity Analyses

Linear models without the fasting visit were similar to those including all data
(Supplemental Table S4). Interaction models were sometimes slightly attenuated but
generally robust to mutual adjustment by pre-pregnancy BMI, fetal sex, and race/ethnicity
(not shown).

4. Discussion

In this longitudinal pregnancy cohort with four repeated measurements of three
targeted metabolomics panels of 77 metabolites and combinations, including amino acids,
phospholipid fatty acids, and acylcarnitines, we observed profound changes in metabolite
concentrations in all classes. In addition, we observed suggestive evidence that trajectories
of two saturated fatty acids and two acylcarnitines differed by fetal sex; five fatty acids and
proline differed by maternal race/ethnicity; and five fatty acids, dodecenoylcarnitine, and
alanine differed by pre-pregnancy BMI, though interactions were not significant after FDR
correction. To our knowledge, this is the first longitudinal human epidemiological study
to estimate continuous trajectories of targeted acylcarnitines, fatty acids, and amino acids
over pregnancy and summarize flexible trajectories across classes.

Acylcarnitines play an essential role in fatty acid oxidation and accumulate in the fetus
during gestation [31]. We reported that maternal concentrations of most acylcarnitines
(except octenoylcarnitine and tetradecanoylcarnitine), significantly decreased during preg-
nancy, which largely aligns with patterns noted in prior work [8,9,12,32]. Interestingly,
when we flexibly modeled acylcarnitine trajectories, we found that the significant decline
we and others reported may be non-linear: many acylcarnitines appeared to decline in
early/mid-pregnancy and rise somewhat after 30 weeks, though absolute changes re-
mained small. It is not fully established why acylcarnitines decline in pregnancy, though
increasing fetal metabolic demands may lead to greater transplacental transfer [33]. Al-
ternatively, fatty acid oxidation may decrease as pregnancy progresses, producing fewer
acylcarnitines as byproducts [8], or urinary excretion of acylcarnitines may increase [34].

Phospholipid fatty acids (especially long-chain polyunsaturated fatty acids) are in-
creasingly transferred to the fetoplacental compartments in pregnancy [35]. Plasma fatty
acids reflect both dietary intake and metabolic processes, and play many roles in pregnancy:
they accumulate in the fetal nervous system [36], may alter maternal inflammation [37]
and might affect development of gestational diabetes [3,4]. We did not find clear trajectory
patterns by metabolite saturation. Previous findings are also inconsistent: one study that
used absolute rather than relative concentrations of fatty acids reported no changes among
saturated and monounsaturated fatty acids, while some long-chain polyunsaturated fatty
acids decreased from first to second trimester [8]; another small study found that the
proportion of long-chain and unsaturated fatty acids increased over pregnancy [13]. We
found that relative percentages of both linoleic acid and alpha-linolenic acid increased
over gestation, while relative percentages of DHA and AA declined and EPA did not
significantly change. This was expected, as DHA and AA preferentially accumulate in the
growing fetus [35].

Changes in amino acid concentrations may reflect adaptive transport of amino acids
in response to fetal nutrition or endocrine signaling [38,39]. Maternal amino acid con-
centrations have been associated with intrauterine growth restriction [40] and gestational
diabetes [41,42]. In alignment with prior studies, we found that concentrations of ala-
nine [9,14], threonine [8,14], and glutamine [12] increased over pregnancy, while arginine,
glycine, leucine, and valine significantly decreased over pregnancy [8,9,14]. Unlike earlier
studies, we also reported decreases in isoleucine and increases in histidine, methionine,
and proline [8,13]. Changes in multiple metabolites (e.g., isoleucine, histidine) appeared
gradual or nonlinear, and studies using few measurements may not have been able to
detect these subtle changes. As fetal energetic demands increase, maternal concentrations
of most amino acids are expected to decline [14]. It is not clear why certain amino acids
appeared to increase.
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We estimated multiple non-linear metabolite trajectories and used KML to group the
diverse trajectories, resulting in two groups (generally increasing and generally decreas-
ing). It may be that these varied metabolites are best summarized by two groups, but
this summary of the trajectories could also be an oversimplification. In order to group
trajectories across classes of metabolites, we had to put all metabolites on the same scale;
this may have magnified or distorted changes in slope that are subtle on the original
scale. To study the metabolic complexity of pregnancy, future research should also explore
simultaneous changes in metabolites across multiple classes, which might offer insight
into shared biological pathways. Identification of metabolites with similar trajectories may
assist in understanding the clinical implications of the timing and shape of metabolite
concentration changes across pregnancy, and additional studies are warranted.

We observed suggestive evidence that trajectories of multiple metabolites may differ
by BMI, fetal sex, and race/ethnicity. Before FDR correction, trajectories of five fatty acids
and ratios, one acylcarnitine, and one amino acid differed by maternal BMI; two saturated
fatty acids and two acylcarnitines differed significantly by fetal sex; and five fatty acids
and one amino acid significantly differed by maternal race/ethnicity. Associations were
not significant after FDR correction, and should be interpreted with caution. Future studies
with larger sample size are warranted to confirm our findings.

Our study has several unique strengths. Our sample was diverse in race/ethnicity and
pre-pregnancy BMI, which enabled us to investigate variability in metabolite trajectories
across these factors. Additionally, our staggered repeated measurement design allowed
us to smoothly model metabolite concentrations over pregnancy. We could also describe
simultaneous changes in a variety of metabolites from multiple classes.

Our analysis also has potential limitations. Our moderate sample size limited power
to test trajectories in subgroups, though our sample was among the largest in a longi-
tudinal pregnancy metabolomics study. Our goal was to evaluate metabolite variation
by sociodemographic factors in this analysis, but it is likely that metabolites also vary
by other lifestyle and dietary factors, which warrants future examination. Variation in
fasting status may have introduced variability in metabolite concentrations. However, we
expect that variability to increase random noise, rather than artificially introduce trajec-
tories. Also, phospholipid fatty acids and amino acids are not typically strongly affected
by fasting status [23], and results were generally robust to exclusion of the fasting visit.
The KML algorithm identified only two relatively simple trajectory groups, which did
not lend themselves to easy clinical interpretation. This approach should be replicated
in future research to further refine groups. Finally, we scaled the estimated metabolite
trajectories to group them, which removes information about magnitude of changes on the
original scale. However, we provide graphs of the true concentrations and trajectories in
the Supplemental Material.

5. Conclusions

We examined trajectories of 77 metabolites and combinations of metabolites from
three targeted panels including amino acids, phospholipid fatty acids, and acylcarnitines,
and observed profound changes in all three classes over pregnancy. Future studies on these
metabolites in association with pregnancy and neonatal outcomes merit consideration of
longitudinal measurements instead of single point measurements.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/nu13093080/s1, Figure S1: Participant flowchart, Table S1: Quantified targeted metabolites and
ratios of metabolites measured in this cohort, Table S2: Linear trajectories for metabolites with
significant interactions, Table S3: Linear trajectories for metabolites with significant differences
in slope or intercept, Table S4: Linear models with all data and after excluding the fasting visit,
Metabolite graphs.
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