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Abstract
In all kinds of implementations of computing, whether technological or biological, 
some material carrier for the information exists, so in real-world implementations, 
the propagation speed of information cannot exceed the speed of its carrier. Because 
of this limitation, one must also consider the transfer time between computing units 
for any implementation. We need a different mathematical method to consider this 
limitation: classic mathematics can only describe infinitely fast and small comput-
ing system implementations. The difference between mathematical handling meth-
ods leads to different descriptions of the computing features of the systems. The 
proposed handling also explains why biological implementations can have lifelong 
learning and technological ones cannot. Our conclusion about learning matches pub-
lished experimental evidence, both in biological and technological computing.
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1 Introduction

The computing model proposed by von Neumann in his famous "First Draft" (von 
Neumann 1993), is bio-inspired, despite the common fallacies: he discussed the 
computing process implemented in both technological (vacuum tubes) and bio-
logical (neurons) computing systems. However, because von Neumann made 
omissions validated only for [the timing relations of] vacuum tubes, his simplified 
classic paradigm cannot be applied to other technologies (Williams 1993; God-
frey and Hendry 1993). Because of the omission that we can neglect the transfer 
time apart from the computing time, implementations based on the classic para-
digm are not biology-mimicking ones. Von Neumann, of course, could not foresee 
the dawn of modern computing technologies, but he warned that computing para-
digm must be revised when technology changes and that it would be unsound (sic) 
to apply his simplified paradigm (not to be confused with his model of computa-
tion!) to neural computing. Given that he outlined that his proposal was about the 
logical structure of a computing implementation, it is not a very usable classifi-
cation criterion whether (the otherwise undefined) von Neumann architecture is 
biomorphic (for a review see Schuman et al. 2017) or not.

2  Computing Paradigms

No doubt that von Neumann’s model is valid for all kinds of computations: the 
operand(s) (in the form of some physical carrier) must be delivered to the operat-
ing unit where the computation takes place. The computation cannot even start 
(as pointed out by von Neumann (1993)) until the operands are completely deliv-
ered to the input section of the computing unit, and similarly, transferring the 
result cannot even begin until the computation is completed and the result is 
available in its output section. Because of this, the operand transfer and comput-
ing mutually block each other: some "idle" activity is inherently present in the 
computing process.

In the computing model, one must consider both the time needed to transfer the 
operand and the time to make computations with it and the presence of blocking 
constraint. To calculate the total time of a computing process is not simple at all: 
it depends on both hardware characteristics and workload type, so some neglec-
tions must be made. Because of these difficulties, the classic paradigm neglected 
the transfer time, so the blocking constraint in the classical paradigm means only 
logical dependence. Technological computing is based on the Hardware-Software 
contract  (Asanovic 2009): mathematics provides the solid theoretical basis for 
computing but neglects the data transfer time, and technology must adapt itself 
to the interface defined by von Neumann a three-quarter century ago, and for [the 
timing relations of] vacuum tubes only.

We surely know that the simplified model is not valid for our current technol-
ogy. As the technology develops, it becomes evident that the classic paradigm 
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cannot describe real-world implementations, neither technological (electronic) 
nor biological (neural) ones. Furthermore, in technology, it leads directly (Végh 
2021) to the idea of unlimited computing capacity and workload-independent 
processing time. In electronics, mainly the issues experienced in connection 
with building so-called neuromorphic computers led the researchers to the idea 
that "More physics and materials are needed. Present-day electronics are not 
enough"  (Markovic et  al. 2020). We can add: Present-day computing science is 
not enough: more physics in theory is needed.

However, computing science does not want to admit that the physical implemen-
tations of computing must also include physics, despite the existence of the ready-
made mathematics (Minkowski 1908). In some sense, hundred years after inventing 
the Minkowski-mathematics, it is still a scandal (Walter 2008) to consider that the 
theory of technological implementation of computing must also include some mod-
ern physics. The important consequences include (but are not limited to) inefficient 
processor chips (Hameed et al. 2010), enormous power consumption (Waser 2012), 
the experience of "dark silicon"  (Esmaeilzadeh et al. 2012), the stalled supercom-
puter performance (Végh 2020; Simon 2014), the stalled Artificial Intelligence (AI) 
development (Hutson 2020; Végh 2021) and failed brain simulation (Abbott 2020). 
The at that time "disciplinary analysis of the reception of Minkowski’s Cologne lec-
ture reveals an overwhelmingly positive response on the part of mathematicians and 
a decidedly mixed reaction on the part of physicists" (Walter 2008) has turned to its 
exact opposite. The description is generally accepted in physics (and resulted in the 
birth of a series of modern science disciplines) but completely refused in mathemat-
ics-based computing science.

In biology, it was evident that the transfer (conduction) time must be considered 
together with the computing (synaptic) time (in this sense, presynaptic to post-
synaptic transmission time). The name "spatiotemporal" and a (separated) time 
dependence is commonly used (Maass et al. 2002), in the sense that Precise Firing 
Sequence (PFS) "tended to be correlated with the animal’s behavior"; furthermore, 
that "the results suggest that relevant information is carried by the fine temporal 
structure of cortical activity" (Prut 1998). The "neural dynamics" was studied and 
"spatiotemporal spreading of population activity was mapped" (Plenz and Aertsen 
1996) by methods used to describe the static computing methods: interspike inter-
vals histograms, auto-correlation and cross-correlation. Because of the peculiarities 
of this information handling, there are severe doubts whether the notions of the clas-
sic neural information theory are valid for biological computing systems (Végh and 
Berki 2022). The correct method of describing biological computation is still miss-
ing, given that the significant item of the computing is missed: the time and position 
are connected through the information transfer speed (called conduction velocity).

3  The Effect of the Finite Speed of the Information Carrier

Transfer time is neglected apart from computing time when using the classic com-
puting paradigm. In other words, "instant interaction" (infinitely large transfer speed, 
or in other words, infinitely small physical computing system size) is assumed. 



 J. Végh, Á. J. Berki 

1 3

   26  Page 4 of 25

However, in all physical implementations, the information has some material car-
rier: inertial mass, electromagnetic or gravitational waves, electrons/ions, neuro-
transmitters, etc. The kind of the carrier and its transfer mechanism limit the speed 
of the information transfer, so the physical size of the computing system matters.

In electronic technology, the transfer speed is 108 m/s; in biology (speed of neural 
transfer), it is 101 to 102 m/s; that is, the speed of electronic signals is several mil-
lion times higher than the speed of neural transfer. At dozens of centimeters physi-
cal size, the transfer time is also several million times lower than in neural systems 
(such as our brain). Because of this difference, in biological computing systems, a 
"spatiotemporal description" was assumed from the beginning when studying neural 
operation. In contrast, in (electronic) technological computing systems, the "instant 
interaction" initially seemed to be a good approximation. However, we have good 
reasons to introduce a finite interaction speed in science and computing technol-
ogy (Végh 2020).

Initially, both technological and biological computing worked on the same msec 
time scale  (Eckert and Mauchly 1945). In contrast, the information transfer speed 
was several million times higher for technological computing than for the biologi-
cal one. This difference made the classic paradigm a reasonable approximation for 
technological computing. However, the evolution of technological computing sys-
tems quickly invalidated the assumption of the classic paradigm: the processing time 
moved from the several msec region to the sub-nanosecond region, significantly 
increasing the transfer-to-computing time ratio  (Simon 2014). Although the com-
ponent density of processors followed Moore’s observation for decades, the propa-
gation speed of the material carrier, the electromagnetic interaction, remained the 
same. Similarly, the physical size of the technological computing systems remained 
several dozens of centimeters. Because of these changes, in technological computing 
systems the transfer time remained the same, while their computing time became 
millions of times shorter (Luk 2019). The stealthy nature of technological develop-
ment resulted in that in current technological computing, the transfer time is not 
only not negligible apart from the computing time, but even it is longer than that. 
The timing relations of biological computing did not change, so this subtlety of the 
technological evolution resulted in the timing relations of current computers being 
much closer to those of our brain than those assumed in the abstract model. Accord-
ing to the inventor of the classic paradigm, it is unsound (sic) to use his simplified 
paradigm for the timing relations of our current technological computing system.

Given that a physical carrier delivers the information (in all implementations, 
although the representation of the information is different (Végh and Berki 2022)), 
the transfer time is crucial in all computing implementations. As the computing 
model requires, the operand must reach the operator unit’s input section, and for all 
physical carriers, the transfer speed is finite. Whether one can neglect the transfer 
time apart from the processing time depends on the implementation technology.

A somewhat simplified view of the abstract computing process is shown in 
Fig.  1. Here we have processing units (such as processor cores, logic gates or 
neurons) at different positions of an (x, y) plane which are performing operations 
at different times shown on the time axis t, perpendicular to the (x,  y) plane. 
For the exact interpretation of the coordinate system and math details see (Végh 
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2020; Végh et  al. 2021). The information must be transferred between places 
( x1, y1 ) and ( x2, y2 ), which requires transfer time. After that, the computation can 
be done at the place ( x2, y2 ), which takes computing time. The known speed of 
information transfer enables us to calculate the distance in time units: the speed 
of the information carrier interconnects the temporal and spatial distances. 
Minkowski  (1908) elaborated on the exact form of that dependence; however, 
we use a different scale factor. To use the same unit for the four dimensions, 
in our time-space system we rescale the spatial coordinates to time by dividing 
the distance values by the conduction velocity, while in the famous case of the 
space-time system (the theory of special relativity) the time is rescaled by multi-
plying it by the speed of light.

In Fig. 1 (as well as in all similar figures), all coordinates represent time but 
labeled as coordinates x and y. The spatial length of transfer operations is repre-
sented by horizontal (blue) arrows and the temporal length of computing opera-
tions by vertical (green) arrows. The time of an action is provided by the t coor-
dinate of the vertical arrows. However, the result is produced at a place from 
where additional time is needed to arrive at the next processing unit.

The figure shows the dramatic difference between the discussed paradigms: 
according to the classic (time-unaware) paradigm, the length of the blue vectors 
(the time needed to transfer information to the other point) is zero, that is, the 
length of the green vectors (computing time) equals to the length of the red vec-
tor. In other words, the classic paradigm assumes that all computing objects are 
in the origin, and no time is needed to access them.

−1
1 2

2

1

x

y

t

Fig. 1  The temporal diagram, i.e., the way of calculation to combine the spatial distance (transmission 
time, blue arrows) and computing time (green arrows) illustrated in the time-space coordinate system. 
The orange-green vertical arrow shows that the second computing unit must idly wait until the transmit-
ted result reaches its position, because of the finite transmission time. The axes x and y refer to space 
coordinates (transformed to time using the conduction velocity), the axis t refers to the time itself. The 
arrows starting from points 0, 1 and 2 on the x axis illustrate timing for three different propagation 
speeds. The red vector points from the beginning to the end of the process. Its length may serve as a sta-
tistical entity to describe temporal distance of the units. (Color figure online)



 J. Végh, Á. J. Berki 

1 3

   26  Page 6 of 25

4  The Effect of Synchronization

According to von Neumann’s model, there is an implementation-independent need 
to synchronize the operations data transfer and computation to each other (for a 
detailed discussion, see Végh (2021)), so the implementation must provide means 
to keep its operations synchronized. Different means are provided in various imple-
mentations, leading to drastically different features.

In biological implementations, source neurons fire (send information) when they 
need to, and target neurons receive it after the charges arrive via their chemical and/
or (less common) electrical synapses (Pereda 2014). Sending and receiving spikes 
involves many complex processes which must follow each other and contribute to 
the time of the synaptic transfer.

The arrival of the spike in the presynaptic component, the nerve terminal (i.e. 
charge distribution in the input/sender) triggers the release of neurotransmit-
ter chemicals into the synaptic cleft. There is no direct signal charge transfer from 
the terminal to the receiver (even if some transmitter molecules carry charge). The 
transmitters having diffused close enough to the receiver get bound by receptors in 
the postsynaptic component (receiver) resulting in a change in the membrane con-
ductance and charging of the membrane by ions from the extracellular space. There 
are also relevant dynamic mechanisms involved in changing the quantity, probability 
and timing of the charge induced in the receiver membrane dependent on its previ-
ous experience or the presence of neuroactive modulators.

The appearance of charge on the postsynaptic membrane (i.e., the end of transfer 
time) triggers computing (i.e., marks the beginning of computing time). Similarly, 
firing (when the threshold potential is reached) marks both the end of the computing 
time and the beginning of the data delivery time. All this machinery works in the 
individual neurons independently.

That is, the arrival of a spike is a synchronization signal1 as well: the zero time 
of the synaptic conductance function gsyn(t) (Koch 1999) is set to the arrival of the 
spike. The stalled ions create a potential that opens the potential-controlled ion chan-
nel (formulated as “Synaptic inputs effectively open ’holes’ in the membrane” (Koch 
and Poggio 1983)). Notice that while receiving a spike, the conductance gsyn(t) of 
the receiver synapse changes: after reaching its peak conductance, it decreases again 
to zero. This change limits the amount of charge delivered to the membrane (that 
is, the charge distribution in the received spike and the one reaching the membrane 
are different). As the spikes keep arriving, the charge continuously reaches the mem-
brane. It increases its potential in an analog way.2 In this way the length of the com-
puting time (until the membrane potential reaches its threshold value) depends on 
the amount of the charge, its arrival time and its arrival speed. After the membrane 
reaches its threshold potential, the computing time ends, and the firing period begins. 

1 It provides a ’Begin computing’ signal (Végh 2021)
2 In this discussion, we use the model that the membrane is a simple (voltage-controlled) condenser. It is 
known, however, that there are "transients" (Stemmler and Koch 1999), [30] in the voltage of the mem-
brane: the effect of the finite conduction speed is visible even within the membrane of the neuron
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However, it takes time (the duration of the spike, see ’Signal delivery’ in  Végh 
(2021)) until the signal reaches the output section of the neuron: the membrane pro-
vides an ’End computing’ (Végh 2021) signal, and ≈ 200 �s later (Singh et al. 2021) 
the spike begins. This mechanism provides the auto-synchronization of biological 
computing. This aspect is consequently neglected in spiking neural networks’ techno-
logical implementations; for a review, see (Schliebs and Kasabov 2013).

In contrast, due to the lack of a start signal in technological implementations, 
a gate (or another digital object) starts to "compute" its result as soon as any of 
its inputs changes. It provides the corresponding output after its fixed length com-
puting time passes (without providing signal ‘End computing’  (Végh 2021)). The 
gates always have an output signal. Whether this output signal corresponds to the 
value expected based on the functionality (AND, OR, XOR, etc.; on the figure 
see the operators denoted by &, ‖ and up-arrow, respectively) of the gate depends 
on whether all operands succeeded in arriving at the corresponding input sec-
tions of the gate before the computing began. After computing, the result arrives 
at the output section of the unit. The lack of auto-synchronization in technologi-
cal computations results in internally undefined states (and is the main reason for 
the inefficient processor chips (Hameed et al. 2010) and their enormous power con-
sumption  (Waser 2012)), as shown in the operating diagram of a one-bit adder in 
Fig. 2. The circuit works with three inputs (the two operands plus a carry bit from 
the previous bit) and produces two outputs (the result plus a carry bit for the next 
adder). The corresponding code in SystemC [33] is shown in Listing 1. Notice how 
the pure logical dependency, a consequence of the time-unaware paradigm (called 
also "von Neumann programming style"  (Backus 1978)) is converted to temporal 
dependence by the technological implementation, and that the adder performs pay-
load (computing) work only in the periods denoted by thick green arrows; the rest is 

Fig. 2  The operation of a 
technological one-bit adder, 
with "pointless" synchroniza-
tion (red circles), see Listing 1. 
The input signals a, b and c

i
 are 

aligned along axis y (the input 
section), the computation takes 
part in gates aligned along axis 
x, and the output signals c

o
 and 

sum aligned again along axis y 
(the output section). The figure 
uses the coordinate system 
introduced in Fig. 1
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non-payload (transfer) time. Notice that both computing and transfer times are partly 
parallel (overlapping).

 At the red circles at the bottom of the red arrows, one operand (the result of a 
previous computation) arrives at its target gate (green arrowhead in the red circle), 
and (after the computing time) it may change the state of the target gate (depend-
ing on its previous state). However, the state may be or may not be the final result 
of the operation: the second operand is still missing (although the input section has 
a well-defined signal level). After some time (the red arrowhead in the upper red 
circles), the second operand also arrives, and it may change the state of the target 
gate (depending on its previous state). In the time fraction corresponding to the red 
vector, the output value of the gate is undefined, and so is the result of the one-bit 
addition. Also, notice that upon arrival of the second operand and performing the 
computation the gate represents, the signal still must arrive at the output section of 
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the adder. Without synchronization, especially in a several-bit adder, the information 
available in the output section of the adder may change several times3 during the 
operation (Végh 2020).

Von Neumann emphasized the role of synchronization. His classic analysis 
resulted in one more important (and, for the intended vacuum-tube implementation, 
correct) conclusion: the initial design is significantly simplified using a central syn-
chronization clock signal. This is why a synchronization signal is used to validate 
the output signal: for the external world, signal co is only achievable after the central 
clock signal arrives. Given that the output signal co is, at the same time, the input 
signal ci of the next one-bit adder, the clock signal must reach the first and the last 
one-bit adder at different times. This need anyhow results in some "skew" in the 
clock signal. Given that the total idle time increases with the number of bits com-
prised (from the beginning of the idle time in the first bit to the end of idle time 
in the last bit), in more extensive designs, the need for introducing several clock 
domains (Waser 2012) appears.

Von Neumann’s detailed analysis has shown that using a central synchronous sig-
nal is advantageous only when the dispersion of clock signals (how uniform are the 
temporal lengths of the atomic computations) is negligible. However, the evolution 
of technological computing quickly increased the dispersion (essentially the total to 
payload activity, see Fig. 3 and the detailed discussion in Végh and Berki (2020), 
Végh (2021, 2020)). Given that miniaturization took place only inside the processor 

Fig. 3  The history of different relative dispersion characteristics of processors, in function of their pro-
duction year. Notice how cramming more transistors in a processor changed their temporal characteristics 
disadvantageously. The technological data are calculated from publicly available data (https:// en. wikip 
edia. org/ wiki/ Trans istor_ count) and from Eckert and Mauchly (1945), as described in Végh (2021)

3 Given that the power consumption depends mainly on the "flops", these unintended changes are pri-
marily responsible for the excessive power consumption. A one-bit adder may make up to 1.4 times more 
flops than strictly needed. A 64-bit adder may make up to 1.464 unneeded flops.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
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while the physical bus size remained the same, the dispersion of bus transfer grew 
up unproportionally and the cache memories shined up when the dispersion of bus 
transfer started to differ strongly from the dispersion of the processor. It is already 
noticed that the advantages of using central synchronization are lost in current tech-
nological implementations. Recently, the idea of asynchronous operation was pro-
posed (Kumar et al. 2013). In our current technologies, the dispersion is not neg-
ligible even within processors, and especially not in computing systems, from the 
several centimeter long buses in our PCs (Waser 2012) through the wafer-scale sys-
tems (Grubl et al. 2020) to the hundred meter long cables in supercomputers (Végh 
2020). Today, the relative dispersion (the timing relations) of technological comput-
ing is much closer to that of biological computing than to that assumed in the classic 
computing paradigm.

5  Time, Information Storage and Learning in Biological 
Implementation

In biology, it was evident from the beginning that the measurable quantities 
change with time and space: this experience is called "spatiotemporal". It is simi-
larly evident that, unlike technological computing systems, the brain does not fea-
ture a unique, perfectly synchronous clock to regulate communication and com-
puting  (Antle and Silver 2015). The common experience  (Koch 1999) shows that 
the outputs of biological neurons depend not only on their inputs (they compute 
with their inputs) but also on their internal state (they store information  (Sterling 
and Laughlin 2017; Buzsáki 2019)4). Furthermore, biological systems can adapt to 
short-term and long-term changes in the external world: they can learn. Fortunately, 
the time-aware paradigm offers a natural explanation for those phenomena. We use 
"the broad definition of learning: use present information to adjust a circuit, to 
improve future performance" (Sterling and Laughlin 2017). However, the definition 
needs to explain also, what is the "present information" (or information at all (Végh 
and Berki 2022)). Figure 4 shows how the model explains in what form the informa-
tion is stored and adjusted in biological neurons. Furthermore, it explains and con-
nects those two learning modes.

Figure  4 (in the coordinate system also shown in Fig.  1) shows how biology 
implements short and long-term learning using a neuronal assembly. We assume 
that the excitation of a neuron at coordinates (−1, 0, 0) occurs, and a neuron fires 

4 This feature can easily be misidentified as memristance  (Strukov et  al. 2008) in the time-unaware 
model. Five decades ago, even memristance has been introduced as a fundamental electrical component, 
meaning that the electrical resistance of the memristor is not constant but depends on the history of cur-
rent that had previously flowed through the device (Strukov et al. 2008). Handling the "history" actually 
means time-aware handling. There are, however, some serious doubts as to whether a genuine memristor 
can exist in physical reality (Abraham 2018). In the light of our analysis, some temporal behavior exists; 
the question is how much it is related to material or biological features if our time-aware computing 
method is followed.
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to an assembly (aligned along coordinate axis y at x values −0.3, 0.1 and 0.4). The 
figure assumes that the excitation branches towards three assembly members A after 
passing to the branching point. The assembly members Ai send spikes to their com-
mon Target neuron at position (−1.5, 0.7). The corresponding synaptic weights of 
the target neuron are W1,W2,W3 (assumed to be equal for A), and three received 
spikes may cause the target neuron to fire (the sum of potential contributions of the 
three spikes is just above the threshold). Given that the position of the assembly 
members and their firing times slightly differ, so differ the arrival times (see the red 
arrowheads) of the spikes from the assembly members at the position of the target.

The Target is initially in rest. When the first spike arrives, it increases the poten-
tial of the membrane, and so do the second and third spikes somewhat later. With 
the charge delivered by the third spike, Target reaches its threshold, and (after some 
"processing time": charging the membrane) it fires. The blue arrow length denotes 
the length of the computation: its bottom is at the arrival time of the first spike and 
its head is at the beginning of the refractory period of the neuron. Given that after 
reaching the threshold, some time is needed to charge the membrane to its operating 
potential, the length of the arrow includes an extra contribution.

The total operating cycle of the neuron is given as

Here we assume that the computation will not fail. TTriggering is the time which Tar-
get needs to collect potential contributions from its synapses to reach the thresh-
old, TCharging is the time required to charge the membrane to its maximum potential, 
TRefractory is needed to reset the neuron to its initial state. Usually, some idle time TIdle 
(no neural input) also follows between the "computing operations", which can make 
TComputing longer. That is, the operating frequency (its firing rate, the reciprocal of 
TComputing ) of the cyclic operation is

TComputing = TTriggering + TCharging + TRefractory

A B C

Fig. 4  How neurons learn. A The initial state B short time learning, changing synaptic weight W3 by 
+50% c long time learning, changing conduction velocity C3 by +10%. The figure uses the coordinate 
system introduced in Fig.  1. The figure shows a neuronal assembly, where the assembly member A3 
changes the timing of Target due to changing the synaptic weight W3 and conduction velocity C3 , respec-
tively
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Given that TCharging and TRefractory are defined biophysically, the only way to adjust 
firing rate of neurons is to change the TTriggering and TIdle times. The latter is relevant 
only in periodic operations and relates to how long to ’pause’ between computa-
tions is enabled and how quickly the membrane of the neuron reaches its activation 
threshold potential. In this simplified discussion, we do not consider that between 
arrivals of spikes, the membrane loses some charge. That is, the (biophysically 
defined) maximum operating frequency is

The time TTriggering can be adjusted by the neuron either by collecting more charge to 
its membrane from its synapses or collecting the same amount of charge in a shorter 
time or combining them. Biology provides mechanisms for both ways of adjusting 
the triggering time. The two modes differ in their implementation speeds and operat-
ing costs, enabling the biological systems to find a proper balance between the two.

It was noticed that neurons have memory (for example, "deviations from the equi-
librium [membrane potential]" is mentioned as "a form of intracellular memory" (Li 
and Tsien 2017)). Our analysis shows that the result of a neuronal operation depends 
on both the inputs of the neuron and its internal memory. The neuronal memory 
depends on the former activity of the network. A complex convolution of the past 
(a weighted integral of the respective network activity in the past relative refractory 
period) and present network activity defines the momentary firing frequency of the 
neuron. We cannot understand the dynamic operation of a neuron without consider-
ing its network: the neuron is an unusual simple processor which takes its inputs 
from its time-dependent environment. The opposite claim is also valid: we cannot 
describe a neural network without accounting for the temporal behavior of its neu-
rons. Végh and Berki (2022) provides a more detailed analysis.

In the learning process, one mechanism to collect more charge from the input 
spike that hits its synapse is to increase the synaptic weight Wi corresponding to 
assembly member Ai . The axonal spike reaches the presynaptic terminal and the 
depolarisation of the membrane by the entry of positive charge leads to neurotrans-
mitter release. Increasing Wi means a larger increase in the potential of the mem-
brane. As observed  (Benke et  al. 1998), "elementary channel properties can be 
rapidly modified by synaptic activity". Increasing transmitter concentration extracel-
lularly does not necessarily lead to increased synaptic weights as in some synapses 
receptors are saturated by the transmitter released from a single synaptic vesicle. 
Increasing effect in such synapses can occur by incorporating more receptors, one of 
the mechanisms of synaptic plasticity, but this takes time, hence termed long-term 
potentiation (LTP). Another way of increasing effect is by modifying existing recep-
tors e.g. by phosphorylation of the protein which is faster. (More concrete mecha-
nisms are discussed in Morrison et al. (2008).)

(1)
F =

1

TTriggering
⏟⏞⏟⏞⏟

Memory+Network

+TCharging + TRefractory
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Biophysics

+ TIdle
⏟⏟⏟

Network+Neuron

FMax =
1

TCharging + TRefractory
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Another mechanism is to decrease the time needed to transfer a spike from Ai to 
Target: biology can wrap the axons into an insulating lipid layer to accelerate spike 
conduction which is provided by some of the supporting cells of the brain called 
oligodendroglia. Given that the transfer speed (conduction velocity) on thicker 
axons gets higher, the spike arrives in a shorter time and, in this way, contributes 
to the potential of the membrane at an earlier time (i.e., the membrane reaches its 
threshold potential earlier, too). This mechanism is less expensive in terms of energy 
consumption but needs a significantly longer implementation time. The aspect that 
changes in conduction velocity "could have profound effects on neuronal network 
function in terms of spike-time arrival, oscillation frequency, oscillator coupling, 
and propagation of brain waves"  (Pajevic et  al. 2014), and that "Node of Ranvier 
length [can act] as a potential regulator of myelinated axon conduction speed" 
(Ford et al. 2015; Arancibia-Cárcamo et al. 2017) have been noticed, but the role of 
time in storing information and learning has not yet been discussed.

Given that both mechanisms result in shorter TTriggering times, they cause the same 
effect: the computing time (or, in other words: the firing rate) changes. When the 
firing rate changes, one cannot tell which mechanism caused it. This equivalence is 
why nature can combine the two mechanisms: a neuron can increase its firing rate 
quickly (as a trial), and (on success, that is, if that learned condition is durable), it 
may decide to reimplement ("remodel" (Almeida and Lyons 2017)) its knowledge in 
a less expensive way. It makes the corresponding axon thicker. After that, the needed 
weight Wi , which was increased for the short-term learning (experimental) period, 
can be decreased to conserve the learned long-term (stable) knowledge to reduce the 
energy consumption. The effect (the learned knowledge) remains the same.

Our assumptions seem to be supported by anatomical evidence that "indi-
vidual anatomical parameters of myelinated axons can be tuned to optimize path-
ways involved in temporal processing" and that "the internode length decreases 
and the node diameter increases progressively towards the presynaptic terminal, 
and ...these gradations are crucial for precisely timed depolarization"  (Ford et al. 
2015). However, the change of thickness of axons is measurable only after weeks 
or months; presumably, so is the decrease in the transfer time to the synapse. It 
was observed  (Almeida and Lyons 2017) that "neuronal activity can rapidly tune 
axonal diameter" and "activity-regulated myelin formation and remodeling that sig-
nificantly change axonal conduction properties are most likely to occur over time-
scales of days to weeks".

This mechanism reveals that short-term and long-term learning perform the 
same action: they reduce the processing time using two different biological imple-
mentations. Increasing neurotransmitter concentration leads to shorter computing 
time, and increasing axon thickness leads to faster transmission time. As our model 
predicts, the processing time decreases (the firing rate increases). It means that 
short time and long time learning are just two sides of the same coin. Our analysis 
seems to underpin that it was correctly explained (Sterling and Laughlin 2017) "we 
should not seek a special organ for ’information storage’ - it is stored, as it should 
be, in every circuit". Mainly because "information stored directly at a synapse can 
be retrieved directly". Besides, our analysis adds the discovery that remained hid-
den: the information is stored through handling time or, in other words, adjusting 
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temporal processing. Biology takes advantage of the low speed of information prop-
agation5; one more evidence for the neural design principle (Sterling and Laughlin 
2017): ”Send only information that is needed, and send it as slowly as possible”. 
This information handling is why biological systems have lifelong learning capabil-
ity without implementing switches "Learn On/Off" and "Short/Long term".

Biological systems have a complex network of partly pre-programmed neurons with 
well-defined initial synaptic weights (as reflected by their firing rates). Our time-aware 
paradigm offers the chance to investigate and understand those phenomena quantita-
tively. As the elegant investigation (McKenzie et al. 2021) proved, as an implied side 
result,6 the result of learning manifests in that the affected neurons change their fir-
ing frequency using the mechanism described above. Furthermore, a way to find out 
directly whether it is a long or short time learning (whether the change in TTriggering cor-
relates with the change in the corresponding conduction speed or the synaptic strength): 
the firing rate is the inverse of the governing rule, the temporal relations.

Notice that in Fig. 4A the spike from A3 arrives last, immediately before Target fires. 
According to Hebb’s observation  (Hebb 1949), that the synaptic weight of the syn-
apse contributing the last spike, W3 , is increased in Fig. 4B by 50%; putting A2 in the 
position of the winner for the next learning cycle. This effect provides the experienced 
dynamical change of features needed for life-long learning. Both wiring and redistri-
bution of synaptic weights go through several phases of growth and reduction during 
development in biological systems, partly due to pre-programmed genetic programmes 
and partly due to environmental stressors. And if the biological system becomes resil-
ient enough to perturbations e.g. by the end of adolescence, a stable state emerges into 
adulthood. The initial period represents most of short-term and long-term learning.

The temporal feature changing is also the key to understanding redundancy. As 
one can conclude from the experimental results in Losonczy and Magee (2006), using 
simultaneous firing, 6–7 spikes would be sufficient for charging the membrane above 
its threshold value. Given that the membrane discharges between the arrival times of 
the charge contributions from the individual spikes and their arrivals are poorly con-
certed, up to 20 spikes are needed in practice to produce firing. This phenomenon and 
the learning mechanism above explain that if one of the dominant assembly mem-
bers dies out, the synaptic strength of some formerly ‘obsolete’ assembly signal can 
increase. After some training, the operation stabilizes using the new assembly member.

6  Time, Information Storage and Learning in Technological 
Implementation

In technology, from the point of view of mimicking biology, the computing para-
digm is the one invented a three-quarter century ago for vacuum tubes. In its simpli-
fied form, this classic paradigm (von Neumann 1993) is based on the (for vacuum 

5 An interesting historical parallel that computer EDVAC used delay lines with msec processing time for 
information storage
6 The primary goal of that investigation was to prove that learning to some measure is "pre-wired"
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tubes, valid) assumption that the transfer time can be neglected apart from the com-
puting time. The most harmful consequence of neglecting transfer time (that is, 
assuming "instant interaction") is that the paradigm can be used to describe neither 
how information is stored nor changing the transfer speed. Technology must use 
drastically different implementation methods that manifest in drastically different 
behavior of technological and biological systems.

The lack of possibility of storing information through changing timing led to the 
need to use a separated "memory" unit, where unique signals (unlike "stored and 
retrieved directly"  (Sterling and Laughlin 2017) in biology) are used to store and 
retrieve the information. The input and output sections of the model are implemented 
as numbered storage cells. Given that computing systems are assembled from pre-
fabricated functional blocks (Patterson and Hennessy 2017), those sections must be 
wired to the processing unit. The synaptic weights Wi are stored in those memory 
cells and accessed through the shared medium of the bus. The shared medium must 
be made "private" when transferring data. Most of the time is spent with contend-
ing for the right of owing the bus, see Fig. 5, and in detail (Végh 2020). This non-
payload time is especially disproportional for the neural-mimicking communication, 
where the neural messages comprise just 1 to 3 bits (Sterling and Laughlin 2017) of 
information.

Storing information in synapses has two advantages: it is directly wired to the 
computing unit, and all synaptic weights can be reached quickly and simultane-
ously  (Sterling and Laughlin 2017). In a technological implementation, it would 
need to store all synaptic weights in processor registers, which not only can be 
accessed "instantly" (without needing to use bus arbitration), but the processor can 
perform operations with all of them simultaneously. The sequential operation of pro-
cessors alone reduces their operating speed by orders of magnitude for many syn-
apses. The distance between storage and computing units makes the transfer time 
orders of magnitude higher (Végh 2020) and, in this way, surely not negligible apart 
from computing time. The temporal behavior of communication also reduces the 
achievable performance by orders of magnitude (Végh 2020). Unlike in the parallel 
bus system of biology, only one communication action can use the shared medium 

Fig. 5  The temporal operat-
ing diagram of a technological 
high-speed single bus: the bus 
delivers data only in the frac-
tions denoted by vertical green 
arrows. In most of the time the 
‘neurons’ are contending for 
the right to use the single high-
speed bus. (Color figure online)
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at a time, and a considerable offset time must be used for contending for the private 
use of the shared medium.

The temporal behavior of the "parallel computing" (or distributed computing; 
a shorthand notation for the parallelized sequential processing) is shown in Fig. 6. 
The figure shows that distributing parallelizable task fragments and collecting 
their part results, initializing the tasks, and summarizing part results takes time. 
Because of the principle of how processing is organized, these activities contrib-
ute to sequential (non-parallelizable) and/or parallelized parts of the processing; 
furthermore, the need to cooperate may introduce more idle waiting. As is shown 
by the tendency of having assistant cores in the most successful supercomputers 
on the TOP500, reducing the sequential-only portion of the task increases paral-
lelization gain.

As analyzed in Végh (2021), these temporal effects reduce computing efficiency 
for vast computing systems to a drastically low level, see Fig. 7. Two classic ways to 
benchmark efficiency are to run the same standard benchmark programs on widely 
different architectures and to run various real-life programs on the same computer 
architecture.

The decreasing contribution of the interconnection made it evident that most 
"real-life" programs (programs solving real problems) and the benchmark program 
High Performance Linpack (HPL) have different efficiencies, forcing researchers 
to introduce a new benchmark program High Performance Conjugate Gradients 
(HPCG). (Given that HPCG needs iteration, and the organizer core needs to send/
receive parameters multiple times, it is used to imitate "real-life" programs.) That is, 
it was discovered that the workload affects the computing efficiency of the system. 
As analyzed in Végh (2020), various contributions to the inherent idle time (some-
times also called "parallelization delay") influence the achievable parallelization 
gain, and the workload (the type of computing) is one of those contributions. The 
theoretical efficiency derived by the time-aware computing surface shown in Fig. 7 
is replaced by an "empirical" efficiency in the non-time-aware computing (without 
theoretical underpinning). The strong dependency of efficiency on the number of 
processors is not understood (although experienced): in vast systems, the benchmark 

Fig. 6  The temporal operat-
ing diagram of a parallelized 
sequential (distributed) com-
puting system: one processor 
coordinates the work of fellow 
processors, causing an inherent 
efficiency bound
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HPCG uses only a fragment (about 10%) of the total available cores. Using more 
cores decreases the efficiency of the system.

Latterly, one can precisely measure the speedup for different applications run-
ning on High Performance Computing (HPC) systems, changing both the number of 
cores and the workload (using various applications). The careful analysis (D’Angelo 
and Rampone 2014) of results of running bioinformatics applications pointed out 
that the speedup curve has a maximum and breaks down for a higher number of pro-
cessor cores: "The execution time and the speedup on IPDATA reach the best values 
within about 90 processors. Furthermore, that ..."the parallel version is up to 30 
times faster than the serial one".

The effect itself was discovered early: "there comes the point when using more 
Processing Units (PUs) ...actually increases the execution time rather than reducing 
it"  (Singh et al. 1993). In that paper (at a different workload and architecture) the 
achievable parallelization gain was about 8, and it was achieved using 20–30 proces-
sors. The old experience, despite the vast improvement in parallelization technol-
ogy, returned in a technologically different form: for those applications, the need for 
communication defines the achievable speedup. The theoretical interpretation was 
given in Végh (2020, 2021), furthermore a correct model of computing is suggested 
in Végh (2021).

Unfortunately, as discussed in Végh (2021), also neural networks, including those 
used for deep learning, can be used with reasonable efficiency only at a "toy level" 
or slightly above it (although, at their size, they can perform a valuable job, as dis-
cussed in D’Angelo and Palmieri (2021)). The efficiency decays sharply as the prob-
lem (and network) size increases. Per our theoretical expectations, among others, 
that computing and communication can mutually block each other (Végh 2021), it 
was found experimentally in connection with training neural networks (Keuper and 
Pfreundt 2016) that:

Fig. 7  The temporal behavior 
of the technological compo-
nents results in that the payload 
efficiency of vast computing 
systems sharply decreases as the 
number of processors increases; 
the architecture defines the 
parallelization efficiency. Notice 
the reasoned guess for the 
efficacy of simulating the brain, 
resulting from the vast numbers 
of computing units and the 
disruptive workload
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• "strong scaling is stalling after only a few dozen nodes"
• "The scalability stalls when the compute times drop below the communication 

times, leaving compute units idle. Hence becoming a communication bound 
problem."

• "the network layout has a large impact on the crucial communication/compute 
ratio: shallow networks with many neurons per layer ...scale worse than deep 
networks with less neurons."

In addition to these effects, the Single Processor Approach (SPA)  (Amdahl 1967) 
requires using Input/Output (I/O) instructions (and non-payload time to organize 
communication), raising the ratio of the non-payload portion  (Végh 2021) drasti-
cally. This is why, especially for neural simulation, admitted that: "artificial intelli-
gence, ...it’s the most disruptive workload from an I/O pattern perspective."7 This is 
why a growing portion of supercomputers reduce their number of processors when 
running heavier workloads. Benchmarks HPCG decreases the achievable efficiency 
by order(s) of magnitude (and the top efficiency can be achieved using an order of 
magnitude fewer processors), and the AI workload makes it impossible to run an 
application with reasonable efficiency.

Besides, the analog computation performed by the membrane is imitated digi-
tally by integrating the received charge in short periods (grid time), which makes the 
"quantal nature of computing time" visible (Végh 2019). This is why both special-
purpose hardware (HW) brain simulators and software (SW) simulators running on 
general-purpose supercomputers can simulate the operation (not to be confused with 
filling up the equivalent memory capacity with data (Kunkel 2014)) only a tiny frac-
tion of our brain’s operation (van Albada 2018). These technological nuances cause 
that "any studies on processes like plasticity, learning, and development exhibited 
over hours and days of biological time are outside our reach" (van Albada 2018).

The serial operation adds one more issue. The software repeats adding charge 
contributions in a cycle without being aware at what time that contribution arrived 
and what is the relation of the partial sum of potential contributions to that of the 
membrane potential. In this way, the time of firing can happen only after finish-
ing the cycle, which on one side smears the time of firing over the operation of the 
cycle. On the other side, it makes it hard to interpret Hebb’s observation, given that 
all contributions (inputs at the synapses) arrive at the "same time". Because of this 
difference, for changing synaptic weights, special mathematical procedures (such as 
gradient descent) had to be introduced. They introduce their specific issues (such as 
vanishing gradient or the need to calculate the gradient of noisy signals) and dis-
tribute synaptic learning to "foreign" synapses. Handling the synapses grouped in 
vector or tensor means that the effect of learning, in a single synapse, experienced 
in the many-parameter space, is shared between all participating synapses, whether 
they contributed or not to learning. This latter effect dramatically contributes to the 
experienced unreasonably long training times and over-fitting (Bengio et al. 2016); 
accompanied by the lack of explicit time parameters and misfitting.

7 https:// www. nextp latfo rm. com/ 2019/ 10/ 30/ cray- revam ps- clust erstor- for- the- exasc ale- era/

https://www.nextplatform.com/2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/
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One of the significant features of technological computing systems is that nei-
ther the computing time (central clock) of their processing units nor the transmission 
speed (of the electromagnetic waves) between them can be changed. Correspond-
ingly, the learning mechanisms (even in the so-called neuromorphic systems) must 
be drastically different. The lack of time in technological computing does not enable 
implementing learning mechanisms similar to those known in biology, and machine 
learning requires introducing "training" or "test" mode switches. For a review 
see Schuman et al. (2017). The other significant point is that technological comput-
ing lives in a world of "instant transmission", i.e., only logical sequencing exists, 
but no temporal sequencing. When analyzing algorithms, the "time of computing" is 
included instead of the correct "effective computing time", including transfer time. 
This difference results in unrealistic estimations in the scaling of algorithms. As 
was found in D’Angelo and Rampone (2014), "the memory and the execution time 
required by the running are of O(n3) and O(n5) order". In other words, when the 
problem size increases by a factor of 101 , the memory demand rises by a factor of 
103 , while the execution time increases by a factor of 105 ; that is the efficiency of 
computing decreases by a factor of 102.

The issue mentioned in connection with Fig.  2, the idle time, leads to further 
troubles in the case of more complex systems. The gates marked by red circles in 
Fig. 2 are directly wired. However, when transferring large amounts of data needed 
for the operation, for example, elements of a vector or a matrix, on a finite width 
bus, the data must be serialized at the sender and deserialized at the receiver. A typi-
cal example is that deep learning figures show logical wiring. Still, the physical wir-
ing involves also some bus, so the real temporal behavior of neural messages is as 
shown in Fig. 5. The effect was pointed out both experimentally (Keuper and Pfre-
undt 2016) and theoretically (Végh 2021), and is a major reason why AI develop-
ment stalled (Hutson 2020). As the model requires, the computation (with a vector 
or a matrix) cannot start until the last element is delivered to its corresponding input 
section. This requirement automatically increases the transfer time by many folds as 
many elements are considered, and correspondingly, it increases the idle time and 
decreases efficiency.

However, one may to not consider the needed synchronization (it is easy to do 
so, given that no auto-synchronization occurs) and start the calculation as soon as 
the overall computing process begins. Analogously to the case of a one-bit adder, 
some results will always be available in the output section of the tensor. After all, 
inputs arrive at the input section of the tensor, and the corresponding computation is 
performed, the result of the output section will match the result expected based on 
the mathematics. Before that time, we can read out the output section, but it does not 
have much sense: we can be sure we have the correct result only when the computa-
tion in the above sense is completed. Before that time, the result may or may not be 
valid. The faster the tensor unit computes, the worse.

A popular and frequently occurring idea is to use memristors for storing synaptic 
information  (Chicca and Indiveri 2020; Strukov et  al. 2019). It sounds good that 
"The analog memristor array is effectively the neural network laid out in the form of 
a crossbar, which can perform the entire operation in one clock cycle" (Kendall and 
Kumar 2020). In brackets, however, fairly added, that "(not counting the clock cycles 
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that may be required to fetch and store the input and output data)". Yes, all operands 
of the memristor array must be transferred to its input (and previously, they must be 
produced), and the results must be transferred to their destination. The total time of 
the memristor-related operations shall be compared to the total time of conventional 
operations to make a fair comparison.

The case is even more complicated when introducing different buffers and time 
stamping. Time stamping preserves the correct biological time. Still, messages may 
arrive at a physical time when the computing process has already performed the 
calculation of the state at that biological time, in the absence of the data still wait-
ing somewhere in the queue. A signal coming from a physically distant position of 
an overloaded system has a good chance of being delayed in one buffer. It arrives 
at the destination with considerable delay to its expected arrival time. One possible 
handling is that "spikes are processed as they come in and are dropped if the receiv-
ing process is busy over several delivery cycles" (van Albada 2018). This handling 
is believed to enhance the efficiency of the system. Given that the physically dis-
tant artificial neurons will have a longer delivery time, they will go to the end of 
the queue of the input events. Because they are at the end, they have good chances 
of being dropped (in biology, distant neurons are often controlling local neural 
assemblies (Buzsáki and Wang 2012); so in their technological implementation, the 
remote control will be missing).

If they are not dropped because of their late technological delivery, they will 
arrive at a simulated time that has already passed. Given that the simulated time of 
their technological processing is already gone, the two bad options are to drop them 
after investigating their time stamp or, without examining it, process their message 
content at the wrong time. An extraordinary chance to mishandle those events, that 
some delayed event will survive in their buffer the end signal of the experiment, and 
after terminating the investigation (providing no more inputs), they will arrive as 
valid events (with the correct timestamp from the past), providing the sensation that 
"Lack of Sleep Could Be a Problem for AIs".8

In vast artificial neural systems, "Yet the task of training such networks remains 
a challenging optimization problem. Several related issues arise. Very long train-
ing time (several weeks on modern computers, for some problems), the potential for 
over-fitting (whereby the learned function is too specific to the training data and 
generalizes poorly to unseen data), and more technologically, the vanishing gradient 
problem" (Bengio et al. 2016). In the light of our analysis, we can make a substantial 
addition. Given that the time (in its many manifestations) is not present in the many-
parameter fitting in explicit form, its effect is attributed to some synaptic weight(s), 
resulting in misfitting.

One can expect that considering the temporal behavior, in any form, can enhance 
learning. Some works (for a review see Végh (2021)) already guessed that the tech-
nological speed of propagating information may be an issue for artificial networks. 
A trivial way to provoke faster propagation is to include fewer computing nodes 
in the network. "The immediate effect of activating fewer units is that propagating 

8 https:// www. lanl. gov/ disco ver/ scien ce- colum ns/ top- colum ns- and- blogs/ 2020/ sciam- artifi cial- sleep. php

https://www.lanl.gov/discover/science-columns/top-columns-and-blogs/2020/sciam-artificial-sleep.php
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information through the network will be faster, both at training as well as at test 
time. Bengio et al. (2016)" However, a natural consequence is that (see their Fig. 5): 
"As �s increases, the running time decreases but so does performance. (where �s can 
be understood as a trade-off parameter between prediction accuracy and parsimony 
of computation)"

7  The Effect of Periodic Operation

In biology, the observers start their observation "in medias res": in a living organ-
ism, where a stationary, stable "parameter space" exists. However, learning may 
change the pre-wired settings (McKenzie et al. 2021), both in the synaptic strengths 
and the number of participating network nodes. Studying learning (especially pre-
wired states) needs extreme caution and is challenging not only from a technological 
point of view.

In technology, the experimenter must set up synaptic weights, connections, and 
other factors influencing neural operation, requiring pre-wiring of the system. Usu-
ally, the system is allowed to learn (i.e., set its weights according to the rules) from 
an initially random or uniform or some otherwise pre-set state. The lack of informa-
tion about the initial parameter space settings, and the need to produce a valid initial 
space setting for the beginning of the training, needs to make a bargain. Given that 
no synchronization signal is provided, the system assumes all signals to be valid, 
including the additional feedback, recurrent relations, and other signals (for a review 
see Schliebs and Kasabov (2013), Schuman et al. (2017)).

This also means that the computed feedback may reach the neurons in the pre-
vious layer before the previous layer could compute their needed inputs. Because 
of the lack of synchronous signaling, the computation considers the feedback sig-
nal as a full-value signal, even if it is based on uninitialized signals. The result is 
that even the weights that were originally correct may be destroyed, and the starting 
point moved in the parameter space to a wrong position, even if initially the point 
was at the right position  (Végh 2021). This effect is topped by the difference that 
biology naturally implements a limitation for the value and the speed of change for 
its biological weights (biological signals, including signatures of neural activity, are 
non-stationary and non-linear), while the "need for speed" in technological comput-
ing does not implement such moderation.

The role of time in learning comes to the light demonstratively when analyz-
ing video recordings. This corresponds to the training based on a series of slightly 
different samples, where various objects vary with varying speeds from frame to 
frame. One time constraint is how frequently the sample object changes and how 
quickly its analysis is performed. One can expect that a slow change gives more time 
for the system to learn; the rapid changes cannot be learned: seen too few times. 
Our expectation on the role of time (mismatching) is confirmed directly via making 
investigations in the time domain. "The convolutional neural networks models are 
more sensitive to low-frequency channels than high-frequency channels" (Xu 2020): 
the feedback can follow the slow changes with less difficulty than the faster changes.
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8  Conclusions

The time needed to transfer information in technological computing is mostly 
ignored and is not always taken into account in biological computing. The comput-
ing model, proposed by von Neumann, correctly describes both kinds of computing, 
but the unacceptable simplifications lead to failures. The different implementations 
lead to drastically different features in computing, which makes true biology-mim-
icking simulations impractical when exceeding toy-level complexity. Novel technol-
ogies could be developed to fabricate more appropriate biology-mimicking comput-
ing systems. But first, it must be accepted that in the two implementations, the speed 
of information transfer differs by several million times, and this difference leads to 
conceptual errors in designs and explains the failure of vast biology-mimicking sys-
tems. The temporal dimension, crucial for biological neural operation, cannot be 
appropriately handled in current technological imitations of neuronal networks.
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