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A B S T R A C T   

Cobra venom cytotoxin (CTX) is a non-enzymatic three-finger toxin that constitutes 40–60% of cobra venom. 
Thus, it plays an important role in the pathophysiology of cobra envenomation, especially in local dermonecrosis. 
The three-finger hydrophobic loops of CTX determine the cytotoxicity. Nevertheless, the actual mechanisms of 
cytotoxicity are not fully elucidated as they involve not only cytolytic actions but also intracellular signalling- 
mediated cell death pathways. Furthermore, the possible transition cell death pattern remains to be explored. 
The actual molecular mechanisms require further studies to unveil the relationship between different CTXs from 
different cobra species and cell types which may result in differential cell death patterns. Here, we discuss the 
biophysical interaction of CTX with the cell membrane involving four binding modes: electrostatic interaction, 
hydrophobic partitioning, isotropic phase, and oligomerisation. Oligomerisation of CTX causes pore formation in 
the membrane lipid bilayer. Additionally, the CTX-induced apoptotic pathway can be executed via death 
receptor-mediated extrinsic pathways and mitochondrial-mediated intrinsic pathways. We also discuss 
lysosomal-mediated necrosis and the occurrence of necroptosis following CTX action. Collectively, we provided 
an insight into concentration-dependent transition of cell death pattern which involves different mechanistic 
actions. This contributes a new direction for further investigation of cytotoxic pathways activated by the CTXs for 
future development of biotherapeutics targeting pathological effects caused by CTX.   
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1. Introduction 

Cytotoxin (CTX) is a basic polypeptide that constitutes an average of 
40%–60% of the cobra venom’s proteome (Feofanov et al., 2004; Yap 
et al., 2014). It consists of 59–62 amino acids with an approximate 
molecular weight ranging from 6 to 9 kDa (Hodges et al., 1987). The 
three-dimensional structure of CTX is characterised by five antiparallel 
β-pleated sheets that form three hydrophobic functional loops, as illus
trated in Fig. 1. Thus, it is classified as a member of the three-finger toxin 
(3FTx) family (Forouhar et al., 2003; Kini, 2002; Munawar et al., 2018). 
Its name implies toxicity to a variety of cells. It is also known as car
diotoxin due to its direct toxicity to cardiomyocytes (Fletcher and Jiang, 

1993). It is noteworthy that the structure of CTX remains conserved 
across different cobra species, particularly the central hydrophobic core 
formed by the three functional loops flanked by basic Lys and Arg res
idues (Gasanov et al., 2014). Unlike neurotoxin, CTX is an amphipathic 
protein with an overall positive charge based on the ratio of acidic Asp 
and Glu residues and basic Lys and Arg residues (Dubovskii and Utkin, 
2014). Therefore, CTX exhibits more non-specific binding to cell 
membranes. 

There are two major categories of CTX, namely P- and S- types owing 
to the presence of the amino acid residues Pro-31 and Ser-29, respec
tively, near the tip of the loop within the putative phospholipid binding 
site (Chien et al., 1994). The interaction of P-type CTX with the anionic 
phospholipid membranes is more prominent than the S-type due to 
enhanced hydrophobicity by a continuous hydrophobic patch present in 
P-type CTX (Dubovskii et al., 2005). Thus, P-type CTX is more cytotoxic 
than S-type CTX (Gasanov et al., 2015). In contrast, the presence of the 
polar Ser-29 residue causes the S-type CTX to exhibit hydrophilic 
properties and strong hydrogen bonding forces. The CTX-membrane 
interaction induces structural defects in the lipid membrane, which 
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will further lead to downstream pathological and subsequent cytotoxic 
effects (Dubovskii et al., 2014; Forouhar et al., 2003; Konshina et al., 
2011). Cytotoxin is found to destabilise anionic phospholipid mem
branes (Dubovskii et al., 2005, 2014; Konshina et al., 2011) upon 
interaction with the cardiolipin components of the membrane. Pene
tration of the functional loops of cytotoxin into the membrane is often 
associated with structural changes in the toxin (Dubovskii et al., 2017). 

Local tissue damage is a major clinical macroscopic observation that 
results from cobra envenoming. This is often attributed to the various 
active components present in cobra venom (Ciszowski and Hartwich, 
2004; Kularatne et al., 2009; Rivel et al., 2016; Wong et al., 2010), 
including the high abundance of CTX in the cobra venom. The toxin 
contributes to cytotoxicity which eventually causes tissue necrosis 
(Gasanov et al., 2014). Moreover, CTX exhibits relatively lower 
bioavailability compared to other cobra toxins (Yap et al., 2014) in
dicates a substantial unabsorbed amount due to high binding affinity at 
the biting site (Guo et al., 1993), suggesting severe pathological out
comes that often leaving victims permanently disfigured. 

The exact molecular mechanisms of cytotoxicity remain inconclusive 

because few competing hypotheses have been proposed: not only 
physical interaction with the cell membrane but also activation of 
intracellular signalling cascades (Dubovski and Utkin, 2015; Wang et al., 
2006). Although the clinical observations resulting from snakebite en
venomation are mostly dermonecrosis, most laboratory findings have 
reported CTX-induced apoptosis (Chen et al., 2008; Chong et al., 2020; 
Körper et al., 2003; Wu et al., 2013). Moreover, CTX-induced nec
roptosis has recently been introduced as another mode of cell death in 
addition to apoptosis and necrosis (Hiu and Yap, 2021). Recently, re
searchers have focused on natural resources, particularly animal 
venoms, for the development of new anticarcinogenic drugs (Chaisakul 
et al., 2016; Moga et al., 2018). Given that CTX exhibits antiproliferative 
activity against cancer cell lines, it has been suggested as a potential 
candidate for anticancer therapy (Gasanov et al., 2014). Extensive 
studies have revealed varying cytotoxic effects exerted by CTXs on 
different normal and cancer cell lines (Tables 1 and 2). It can be deduced 
that, the sequence variations in CTXs from different cobra species result 
in differential cytotoxicity and cell death pathways (Feofanov et al., 
2004). In addition, geographical variation can also affect the venomic 
profiles, and thus the cytotoxicity of the same cobra species (Tan et al., 
2015a). The proportion of CTXs in different cobra venom in different 
cobra venom from diverse geographical locations is summarised in 
Fig. 2. 

2. Biophysical interactions of cytotoxin with membrane 

Although the exact mechanism of the CTX-membrane interaction has 
yet to be established, it is suggested that the binding of CTX to mem
branes involves three-fingered structural loops. Membrane per
meabilisation of CTX requires structural stability upon some auxiliary 
interactions with the membranes (Dubovskii et al., 2017; Levtsova et al., 
2009). The hydrophobicity of the functional loops of CTX allows its 
penetration into hydrocarbon regions of the cellular membrane which 
consists of various lipid compositions (Dufton and Hider, 1988). The 
harrow conformation of CTX plays a crucial role during the penetration 
into the lipid bilayer membrane system, whereby only loops II and III 
penetrate the lipid membrane bilayer, as demonstrated by 
coarse-grained molecular dynamics (CGMD) simulation (Su and Wang, 
2011). Furthermore, the initial membrane binding of CTX involves 
electrostatic interaction, whereas the hydrophobic insertion of the CTX 
molecule is prevented because of the higher pressure of insertion exerted 
at the upper leaflet of the membrane lipid bilayer (Dubovskii et al., 
2014). At lower CTX concentrations, the CTX-lipid interaction relies on 
the degree of saturation of fatty acids in hydrophobic parts of the 
membranes (Dyba et al., 2021). Subsequently, hydrophobic partitioning 
occurs when CTX penetrates the upper membrane leaflet in an edgewise 
manner through the incorporation of the tips of the CTX structural loops. 
As CTX binds to membrane lipids stoichiometrically, an isotropic phase 
is formed, resulting in an overall neutral CTX-lipid complex system 
(Dubovskii et al., 2014). The transition from the electrostatic interaction 

Fig. 1. The authors constructed the structure of cytotoxin (CTX) using MOD
ELLER v9.20. The basic residues are annotated in red colour, while the disul
phide bridges are annotated as green colour stick formation. It is a highly basic 
polypeptide consisting of 60–62 amino acid residues and it is stabilised by 
disulphide bonds. Like other three-finger toxins, its secondary structure com
prises anti-parallel β-pleated sheets that form three hydrophobic loops, with 
asymmetric distribution of non-polar and polar amino acid residues. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 1 
Cytotoxicity of various cytotoxins from different cobra species against different normal cell lines.  

Species CTX type Cell types IC50/LD50 References 

Naja atra CTX III H9C2 rat cardiomyocyte cells 2 μM Stevens-Truss et al., 1996 
Naja oxiana NA MDCK normal dog kidney cells 47.1 μg/mL Ebrahim et al. (2016) 

L929 normal mouse fibroblast cells NA Strizhkov et al. (1994) 
Naja sumatrana P-type CTX RWPE-1 prostate epithelial cells 0.35 ± 0.08 μg/mL Chong et al. (2020) 

184B5 breast epithelial cells 6.21 ± 0.37 μg/mL 
NL20 lung epithelial cells 1.91 ± 0.52 μg/mL 

Naja kaouthia S-type CTX RWPE-1 prostate epithelial cells 0.65 ± 0.20 μg/mL 
184B5 breast epithelial cells 2.83 ± 0.34 
NL20 lung epithelial cells 2.76 ± 0.49 

Naja nigricollis CTX-1N mouse red blood cells (RBC) >90 μM Conlon et al. (2020) 
CTX-2N mouse red blood cells (RBC) 45 ± 3 μM 
CTX-3N mouse red blood cells (RBC) NA 
CTX-4N mouse red blood cells (RBC) >90 μM  
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(non-insertion mode) between the CTX and membrane lipid to the hy
drophobic insertion (insertion mode) has been shown to involve the 
orientation and localisation of the hydrophobic tips of all three loops 
(Dubovskii et al., 2005; Ma et al., 2002). This allows the embedding of 
CTX in the membrane interior. The rigidity of the hydrophobic loops is 
enhanced by the formation of a salt bridge between the Asp 57 and Lys 2 
side chains (Kao et al., 2009; Lo et al., 1998). The insertion of CTX into 
the membrane results in lipid dehydration of the local spots which 
consequently induces vesicle fusion (KholodovaIu, 1981; Gasanov et al., 
1990a,b). The extent of vesicle fusion depends on the lipid composition 
and is hypothesised to be directly proportional to the anionic lipid 
content of membranes (Dubovskii et al., 2014). This is followed by CTX 
oligomerisation and pore formation which ultimately contribute to the 
leakage of intracellular contents (Chen et al., 2007; Dufourcq et al., 
1982; Forouhar et al., 2003). 

Moreover, CTX-membrane insertion and internalisation are stepwise 
lipid-dependent mechanisms (Wang et al., 2006). The pore formation 
process is glycosphingolipid (SGC)-dependent which requires a series of 
coupling interactions: (1) begins with binding of CTX monomer to the 
SGC molecule, (2) followed by dimerization of the CTX, and (3) alter
ation of the conformation of SGC that ultimately induces CTX oligo
merisation. In addition, CTX is also shown to be internalised into the 

cells and co-localised with mitochondria. The membrane-damaging ac
tivity of CTX is highly dependent on the phosphatidylserine (PS) lipid 
present on the membranes (Konshina et al., 2011). In addition, 1-palmi
toyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) has also been 
demonstrated to be involved in complex formation with CTX from Naja 
atra and Naja naja venoms (Gorai et al., 2016). Moreover, CTX exhibits 
favourable interactions with membrane cholesterol to facilitating its 
endocytosis into cells (Lee et al., 2014; Wang et al., 2006). It can be 
concluded that CTX interacts with various anionic/zwitterionic lipids in 
the membrane which promotes their ability to induce membrane 
deterioration. 

The differential binding affinity of CTX is determined by the distinct 
distribution of hydrophobic amino acid residues and the spatial 
configuration of the three-fingered loops (Dubovskii et al., 2005). The 
binding domains of CTX are formed by residues 5–11, 46–50, and 24–29, 
31–37 which mostly consist of hydrophobic amino acids encompassing 
the tips of loops I to III (Dubovskii et al., 2001). Notably, the Lys residues 
at the penetrating domain also allow the anchoring of the CTX as its 
polar group is found near the micelle/water interface while the 
non-polar residues can extend to the hydrophobic core of the membrane 
bilayer (Dubovskii et al., 2001). Moreover, the degree of 
membrane-damaging activity is also highly influenced by different lipid 

Table 2 
Cytotoxicity of various cytotoxins from different cobra species against different cancer cell lines.  

Species CTX type Cell types IC50/LD50 References 

Naja atra CTX III K562 human leukaemia cells 1.7 μg/mL Yang et al. (2005) 
Human leukemic T-lymphocytes 2 μM Stevens-Truss et al., 1996 
CAL27 oral squamous carcinoma cells 0.28 μM Chien et al. (2010) 
SAS human tongue carcinoma cells 0.35 μM 
Ca9-22 oral squamous carcinoma cells 0.15 μM 

Naja haje CTX I A549 human lung adenocarcinoma cells 132 ± 9 μg/mL Feofanov et al. (2005) 
HL60 promyelocytic leukaemia cells 2.6 ± 0.1 μg/mL 

CTX II A549 human lung adenocarcinoma cells 116 ± 6 μg/mL 
HL60 promyelocytic leukaemia cells 1.9 ± 0.1 μg/mL 

Naja naja CTX III K562 human leukaemia cells 2.63 μg/mL Chen et al. (2009) 
MDA-MB-231 human breast cancer cell line NA Tsai et al. (2016) 

NN-32 U937 cell human leukaemia cells NA Das et al. (2013) 
Naja oxiana CTX I A549 human lung adenocarcinoma cells 16.6 ± 0.6 μg/mL Feofanov et al. (2005) 

HL60 promyelocytic leukaemia cells 0.58 ± 0.03 μg/mL 
CTX II A549 human lung adenocarcinoma cells 1.7 ± 0.1 μg/mL 

HL60 promyelocytic leukaemia cells 0.33 ± 0.02 μg/mL 
K562 human leukaemia cells NA Strizhkov et al. (1994) 

CTX HepG2 human hepatocellular carcinoma cells 26.59 μg/mL Ebrahim et al. (2016) 
MCF-7 human breast cancer cells 28.85 μg/mL 
DU145 human prostate carcinoma cells 21.17 μg/mL 

Naja sumatrana P-type CTX A549 lung cancer epithelial cells 0.88 ± 0.06 μg/mL Chong et al. (2020) 
PC-3 prostate epithelial cells 3.13 ± 0.58 μg/mL 

sumaCTX MCF-7 breast cancer cells 3.89 ± 0.39 μg/mL Teoh and Yap (2020) 
Naja kaouthia S-type CTX A549 lung cancer epithelial cells 1.22 ± 0.09 μg/mL Chong et al. (2020) 

PC-3 prostate epithelial cells 4.46 ± 0.36 μg/mL 
MCF-7 breast cancer cells 12.23 ± 0.74 μg/mL 
HL60 promyelocytic leukaemia cells 0.18 ± 0.01 μg/mL Feofanov et al. (2005) 

CTX I U937 human leukaemia cells 3.5 μg/mL Debnath et al. (2010) 
K562 human leukaemia cells 1.1 μg/mL 

Naja nigricollis CTX-1N A549 non-small cell lung adenocarcinoma cells 0.8 ± 0.2 μM Conlon et al. (2020) 
MDA-MB-231 breast adenocarcinoma cells 7 ± 1 μM 
HT-29 colorectal adenocarcinoma cells 9 ± 1 μM 
HUVEC human umbilical vein endothelial cells 7 ± 1 μM 

CTX-2N A549 non-small cell lung adenocarcinoma cells 1.4 ± 0.2 μM 
MDA-MB-231 breast adenocarcinoma cells 6 ± 1 μM 
HT-29 colorectal adenocarcinoma cells 8 ± 1 μM 
human umbilical vein endothelial HUVEC cells 7 ± 1 μM 

CTX-3N A549 non-small cell lung adenocarcinoma cells 7 ± 1 μM 
MDA-MB-231 breast adenocarcinoma cells >30 μM 
HT-29 colorectal adenocarcinoma cells >30 μM 
HUVEC human umbilical vein endothelial cells 22 ± 2 μM 

CTX-4N A549 non-small cell lung adenocarcinoma cells 0.9 ± 0.2 μM 
MDA-MB-231 breast adenocarcinoma cells 8 ± 1 μM 
HT-29 colorectal adenocarcinoma cells 25 ± 3 μM 
HUVEC human umbilical vein endothelial cells 2 ± 0.2 μM 

Naja ashei CTX Human histiocytic lymphoma U-937 cells 126.80 ± 2.94 mg/L/1 × 10^6 cells Dyba et al. (2021) 
HL60 promyelocytic leukaemia cells 121.29 ± 1.42 mg/L/1 × 10^6 cells  
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compositions of the membranes which contributes to the charge dif
ferences of the lipid polar parts (Dyba et al., 2021). In addition to pore 
formation, CTX can interact with membrane acceptors to form oligo
meric transmembrane channels that lead to ion fluxes (Dufton and Hider 
1988; Ksenzhek et al., 1978). The formation of ion channels induces 
osmotic fragility and eventually cytolysis (Dufton and Hider 1988; 
Thelespam and Möllby, 1979). In brief, extensive evidence demonstrates 
that the CTX-membrane interaction is highly attributed to the hydro
phobic three-finger loops of CTX. The penetration of CTX into the hy
drocarbon region of the membrane is a plausible explanation for 
CTX-induced compromised membrane integrity. 

3. Activation of cell death pathways 

3.1. Apoptosis 

Most studies have shown CTX-induced cell death by activating 
different apoptotic pathways. Apoptosis, commonly known as pro
grammed cell death, is a regulated cell elimination event resulting from 
the activation of cysteine-aspartic proteases (caspases) via extrinsic 
death receptors and/or intrinsic mitochondrial signalling pathways 
(Feinstein-Rotkopf and Arama, 2009; Hengartner, 2000; Thornberry and 
Lazebnik 1998). 

Cytotoxin has been reported to induce calcium (Ca2+) influx which 
causes elevated Ca2+ levels in the cytosol (Langone et al., 2014). Cyto
toxin from Naja atra venom induces apoptosis via the Ca2+/protein 
phosphatase 2 A (PP2A)/5′ adenosine monophosphate-activated protein 
kinase (AMPK) axis in U937 human myeloid leukaemia cell line at 
concentrations of 150 nM (Chiou et al., 2019). The Ca2+/PP2A/AMPK 
signalling pathway is initiated by the CTX-mediated Ca2+ influx that 
leads to PP2A degradation, followed by phosphorylation of AMPK to 
trigger mitochondrial fragmentation, lysosomal disruption, phosphory
lation of p53, and the activation of mitochondrial apoptotic pathway 

(Baumann et al., 2007; Langone et al., 2014; Sekar et al., 2018; Toyama 
et al., 2016). 

Moreover, CTX has been shown to trigger reactive oxygen species 
(ROS) generation which leads to apoptosis (Chen et al., 2008; Chiou 
et al., 2021). Cytotoxin-induced ROS production is associated with 
elevated intracellular Ca2+ levels, followed by the overexpression of 
NADPH oxidase 4 (NOX4), a major contributor to intracellular ROS 
(Chiou et al., 2021). The downstream events involve the activation of 
p38 MAPK/c-Jun-mediated Fas and p38 MAPK/ATF-2-mediated FasL 
cell death signalling pathways. On the other hand, upregulation of the 
Fas gene has also been observed after CTX injection in mouse skeletal 
muscle cells (Hirata et al., 2003). Fas/FasL-mediated apoptosis is 
commonly characterised as the death receptor (DR) signalling pathway 
which involves the recruitment and activation of caspase-8 and 
caspase-10 (Green and Llambi, 2015; Wang et al., 2001; Yamada et al., 
2017). 

Extrinsic apoptosis pathways also involve phosphorylation of c-Jun 
N-terminal kinase (JNK), a mitogen-activated protein kinase (MAPK) 
mediated pathway. For example, CTX-VI from Agkistrodon acutus (Zhang 
and Cui 2007) was found to trigger JNK phosphorylation to stimulate 
the receptor-mediated extrinsic apoptosis pathway (Park et al., 2012a, 
2012b), which also involves the overexpression of Fas-FasL (Zhang and 
Cui, 2007). FAS-associated death domains (FADDs) are important for the 
execution of DR-extrinsic apoptosis which is crucial for the activation of 
caspase-8. Therefore, the extrinsic DR pathway may be one of the 
mechanisms that explain the CTX-induced apoptosis. 

In addition to the extrinsic DR signalling pathways, CTX also triggers 
intrinsic mitochondrial-mediated apoptosis (Chien et al., 2008; Yang 
et al., 2005, 2007). It has been suggested that, after internalisation, CTX 
is co-localised with mitochondria and disrupts the mitochondrial 
network that leading to mitochondrial fragmentation (Gasanov et al., 
2015; Zhang et al., 2019). This is attributed to an interaction between 
CTX and cardiolipin components of the mitochondrial membrane 

Fig. 2. The percentage of cytotoxin in different cobra venom from diverse geographical locations. On average, 47% of cobra venom’s dry weight consists of 
cytotoxin. The percentage of cytotoxin is acquired from the venomics profile of different cobra species (Asad et al., 2019; Beraldo et al., 2021; Chanda et al., 2018; 
Choudhury et al., 2017; Huang et al., 2015; Lauridsen et al., 2017; Liu et al., 2017; Malih et al., 2014; Petras et al., 2011; Shan et al., 2016; Sintiprungrat et al., 2016; 
Tan et al., 2015b; Tan et al., 2017, 2019, 2020; Wong et al., 2018, 2021; Xu et al., 2017; Yap et al., 2014). 
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(Aripov et al., 1989; Zhang et al., 2019). Arg, Lys and Leu are the major 
amino acid residues that facilitate the binding of CTX to the outer 
mitochondrial membrane (OMM) (Li et al., 2020). Apart from the direct 
membrane-interacting action, the CTX-activated AMPK pathway can 
also mediate mitochondrial fragmentation via phosphorylation of the 
mitochondrial fission factor (Toyama et al., 2016). Outer mitochondrial 
membrane permeabilisation is often coupled with an alteration of 
mitochondrial membrane potential (ΔΨm) and subsequent activation of 
apoptotic pathways (Körper et al., 2003). Teoh and Yap (2020) have also 
demonstrated a dose-dependent change in ΔΨm with an initial mito
chondrial hyperpolarisation at low CTX concentration (approximately 2 
μg/mL) followed by mitochondrial membrane depolarisation when the 
CTX levels increase. A notable alteration in mitochondrial membrane 
potential was also observed in human breast adenocarcinoma cells after 
exposure to CTX-II from Naja oxiana (Ebrahim et al., 2014). Following 
the impairment of ΔΨm, cytochrome c is released from mitochondria. 
The mitochondria-released cytochrome c binds to apoptotic 
protease-activating factor 1 (APAF 1) and promotes its oligomerisation 
(Zou et al., 1997). Subsequently, the initiator caspase-9 is recruited to 
the oligomer to form an apoptosome (Yuan et al., 2010). After its pro
cessing, the activated caspase-9 cleaves and activates the executioner 
caspase-3 which directs the cell to undergo apoptosis (Ebrahim et al., 
2014; El Hakim et al., 2011; Green and Llambi, 2015; Wang and Wu, 
2005). Cytotoxin from Naja oxiana triggers a time-dependent increase in 
caspase-3 activity in human promyelocytic leukaemia, hepatocellular 
and prostate carcinoma (Ebrahim et al., 2015). Similarly, CTX from Naja 
sumatrana venom could also activate caspase-3 and -7 at its IC50 (4 
μg/mL), following deprivation of ΔΨm (Teoh and Yap, 2020). 

Furthermore, several studies have also indicated that CTX-induced 
apoptosis is accompanied by the upregulation of proapoptotic proteins 
including Bax, Bad, and endonuclease G, as well as the downregulation 
of anti-apoptotic proteins such as Bcl-2, Bcl-XL, Mcl-1, X-linked inhibitor 
of apoptosis protein (XIAP), and survivin (Chien et al., 2010; Lin et al., 
2010; Su et al., 2010; Tsai et al., 2006; Yang et al., 2006). Together with 
the modulation of apoptotic proteins, CTX induces apoptosis via the 
concomitant inactivation of epidermal growth factor receptor (EFGR), 
phosphatidylinositol 3-kinase (Pl3K)/Akt, and Janus tyrosine kinase 2 
(JAK)/signal transducer and activator of transcription 3 (STAT3) 
apoptotic signalling pathways (Chien et al., 2010; Lin et al., 2010; Su 
et al., 2010; Tsai et al., 2016). Altogether, these findings suggest that 
cobra venom CTX induces both extrinsic and intrinsic apoptotic 
pathways. 

3.2. Cell cycle arrest 

In addition to apoptotic cell death, cell cycle arrest has been reported 
in MCF-7 and K562 cells with the treatments of 4 μg/mL and 0.3 μM of 
CTX, respectively (Ebrahim et al., 2014; Yang et al., 2007). This is likely 
due to the inhibition of protein kinase C (PKC) (Chiou et al., 1993), 
whereby PKC plays a significant role in all stages of the cell cycle (Black 
and Black, 2013). Cytotoxin-induced intrinsic apoptosis is associated 
with cell cycle arrest at the sub-G1 stage and an increase in hypoploid 
DNA content (Debnath et al., 2010). This is corroborated by the findings 
reported by Chien et al. (2008) who reported an increase in DNA frag
mentation and poly (ADP-ribose) polymerase (PARP) cleavage upon 
CTX treatment in HL-60 cells. PARP cleavage is caused by an elevated 
Bax/Bcl-2 ratio which initiates downstream signalling cascades for nu
clear DNA fragmentation, and eventually apoptosis. Under normal 
physiological conditions, the cell cycle is divided into 4 phases: Gap 1 
(G1) phase, S phase, Gap 2 (G2) phase, and M phase (Hunt et al., 2011). 
The G2/M phase in the cell cycle is terminated by CTX as evidenced by 
the downregulation of G2/M regulatory proteins including cyclin A, 
cyclin B1, cyclin-dependent kinase 2 (Cdk 2), and the cell division cycle 
25C (Cdc25C) (Yang et al., 2007). In addition, CTX induces apoptosis 
through S-phase arrest and the inactivation of proto-oncogene tyrosi
ne-protein kinase (Src) in a time- and dose-dependent manner (Chien 

et al., 2010). A remarkable decline in cell cycle regulatory proteins 
which including cyclin A, cyclin B, and CDK1 is also observed following 
S-phase arrest (Chien et al., 2010). Cyclins and Cdks are positive regu
lators of cell cycle progression (McGowan, 2003). Additionally, the 
progression of the cell cycle is also regulated by Src via the PI3K, STAT3, 
and Akt signalling pathways (Liu et al., 2013). As CTX exerts cytotox
icity by diminishing these cell cycle regulators, it is convincing that 
intrinsic apoptosis is a CTX-mediated cell death pathway. 

3.3. Necrosis and necroptosis 

Necrosis is an uncontrolled mode of cell death that occurs due to 
extensive damage or severe stress that often includes mechanical stress 
or perturbations of both extracellular and intracellular environments 
(Green and Llambi, 2015). The hallmarks of cellular necrosis are char
acterised by cell swelling and rupture of plasma membranes which 
causes cytoplasmic leakage (Yuan and Kroemer, 2010). Although nec
roptosis exhibits similar cellular morphological changes, it is a caspase 
independent regulated cell death (Dhuriya and Sharma, 2018) which 
involves the death receptors Fas and tumour necrosis factor receptor 1 
(TNFR1) (Galluzzi et al., 2014; Vercammen et al., 1997). Sequential 
cascade events of necroptosis are regulated by receptor-interacting 
protein (RIP) kinase (Degterev et al., 2005; Zhang et al., 2009). 

Given the ability of CTX to interact with phospholipid membranes, 
the lysosomal membrane could be another target for the internalised 
CTX to execute its cytotoxicity (Li et al., 2020). This is supported by 
Feofanov et al. (2005) who demonstrated a remarkable accumulation of 
CTX in lysosomes. Cytotoxin-induced lysosomal cell death leads to the 
release of cathepsin B protease, a lysosomal cysteine enzyme that causes 
cell death, compromising lysosomal membrane integrity (Aits and 
Jäättelä, 2013; Liu et al., 2019; Wu et al., 2013). Cathepsin B elicits 
various physiological functions in the digestive system, circulatory 
system, cell proliferation, and cell death mechanisms (Patel et al., 2018). 
It is noteworthy that the cathepsin-mediated cell death pathways have 
been extensively studied including apoptosis, necrosis, and autophagy 
(Foghsgaard et al., 2001; Kaminskyy and Zhivotovsky, 2012; Patel et al., 
2018; Turk and Stoka 2007). The occurrence of necrosis depends on the 
amount of cathepsin released, which correlates with the degree of 
lysosomal rupture (Turk and Stoka, 2007). A moderate level of cathepsin 
activates apoptosis whereas higher levels of cathepsin trigger necrotic 
cell death (Ebrahim et al., 2014). Lysosomal-mediated apoptosis is also 
associated with the mitochondrial-dependent intrinsic pathway. This is 
because cathepsin also promotes mitochondrial membrane per
meabilisation, thus elevating pro-apoptotic proteins’ levels and releases 
cytochrome c (Aits and Jäättelä, 2013). 

Loss of lysosomal integrity appears to be correlated with the expo
sure levels of CTX, as observed in N. oxiana CTX-II treated human 
leukaemia, breast, prostate, and liver cancer cells (Ebrahim et al., 2015). 
Similar observations have been reported for CTX-I from N. atra venom 
which induces lysosomal membrane permeabilisation that leads to the 
release of cathepsin B (Aits and Jäättelä, 2013; Liu et al., 2019; Wu et al., 
2013). Pathological dermonecrosis is also observed when a minimal 
necrosis dose of N. atra venom CTX was administered intradermally into 
a mouse model (Liu et al., 2020), further explaining CTX-induced ne
crosis. Similar in vivo necrosis was observed in the skeletal muscle cells 
of mice following intramuscular injection. (Ownby et al., 1993). 

Thus far, necroptosis has only been reported in a few CTX from 
different Naja venoms. For example, CTX1 from N. atra venom has been 
reported to induce necroptosis in HL-60 and KG1a leukaemia cells (Liu 
et al., 2019), as the survival of these cells is rescued after addition of 
necroptosis inhibitor necrostatin-1, indicating that necroptotic cell 
death is executed by CTX1. On the other hand, high concentration of 
CTX (29.8 μg/mL) from N. sumatrana venom has also been found to 
activate necroptosis in MCF-7 breast cancer cells through elevation of 
HSP90AA1, HSP90AB1 and peptidyl prolyl isomerase in the cells (Hiu 
and Yap, 2021). 
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It is noteworthy that the CTX exhibits selectivity towards different 
cell lines, resulting in various degrees of cytotoxicity. On average, 47% 
of cobra venom’s dry weight is CTX (Fig. 2), which appears to pre
dominant toxin in the venom. Thus, it contributes significantly to the 
clinical manifestation of dermonecrosis involving cutaneous, muscular, 
and connective tissues (Iddon et al., 1987; Rivel et al., 2016; Wong et al., 
2010). In a pilot clinical study of N. atra envenomation (Lin et al., 2022), 
only 14.2–1541.4 ng/mL of CTX were detected in the patients’ excised 
necrotic tissues, which was substantially lower than the IC50 reported in 
laboratory findings (21.93 μg/mL, Huang et al., 2019). Besides, N. atra 
venom contains approximately 54.17% of CTX which could induce 
necrotic lesions in the in vivo model upon administration of a dose of 30 
μg (Liu et al., 2020). The pathological effects of CTX in causing signifi
cant dermonecrosis are likely attributed to its relative abundances and 
concentrations at local envenomed sites (MOH Malaysia, 2017; Rivel 
et al., 2016; Liu et al., 2020). This further supports the clinical obser
vation of dermonecrosis caused by CTX. 

The mechanistic actions of CTX are summarised in Fig. 3. 

Abbreviation 
FAS/FASL, Fas and Fas Ligand; TNFR1, tumour necrosis factor re

ceptor 1; PP2A, protein phosphatase 2; AMPK, AMP-activated protein 
kinase; Cyt C, cytochrome c; APAF 1, apoptotic protease-activating 
factor 1; CASP-3, caspase-3; CASP-8, caspase-8; CASP-10, caspase-10; 
MAPK, mitogen-activated protein kinase; EFGR, epidermal growth fac
tor receptor; PI3K, phosphatidylinositol 3-kinase; Akt, RAC-alpha 
serine/threonine-protein; JAK, Janus tyrosine kinase 2; STAT, signal 
transducer and activator of transcription 3; ROS, reactive oxygen spe
cies; NOX4, NADPH oxidase 4; RIPK, receptor interacting protein ki
nases; HSP90AA1, heat shock protein 90 alpha family class A member 1; 

HSP90AB1, heat shock protein 90 alpha family class B member 1; PPIA, 
peptidyl prolyl isomerase. 

4. Concentration-dependent transition of cell death pattern 

A few hypotheses have been proposed to explain the molecular 
mechanisms elicited by CTX; not only biophysical alteration of cell 
membranes causes cytolytic action, but also involves activation of 
apoptotic pathways and cell cycle arrest, as discussed above. In contrast, 
CTX can produce necrotic features in dead cells such as membrane 
permeabilisation. It has also been found that CTX readily accumulates in 
lysosomes without disrupting the plasma membrane, resulting in ne
crosis. Differential cell death patterns exerted by CTX are likely to be 
attributed to the concentration of CTX whereby, the apoptotic effects 
may only be observed in a limited range of toxin concentrations 
(Ebrahim et al., 2015); the mode of cell death may rapidly switch from 
apoptosis to hypothetical necrosis when the concentration increases. 
This phenomenon was observed in N. oxiana venom CTX-I and CTX-II 
(Ebrahim et al., 2015). The percentage of necrotic cells significantly 
increased beyond a specific concentration, in different cell lines: MCF-7 
(CTX-I, 10.24 μg/mL; CTX-II, 5.85 μg/mL), HepG2 (CTX-I, 41.33 μg/mL; 
CTX-II, 28.98 μg/mL), DU-145 (CTX-I, 26.14 μg/mL; CTX-II, 4.26 
μg/mL), and HL-60 (CTX-I, 28.14 μg/mL; 14.87 μg/mL). 

Both CTX-I and CTX-II caused membrane perturbation as demon
strated by a surge in extracellular lactate dehydrogenase (LDH) activity. 
Furthermore, CTX-I and CTX-II induced concentration and time- 
dependent apoptosis via the cathepsins-mediated lysosomal pathway. 
Apoptotic effects were observed only in a limited range of toxin con
centrations (<2 μg/mL). The cell death patterns changed rapidly from 
apoptosis to necrosis when toxin levels increased beyond 8 μg/mL in 

Fig. 3. A summary of the mechanistic actions of cobra venom cytotoxin (CTX) was created using BioRender.com. The basic hydrophobic loops of CTX interact with 
the phospholipid bilayer and destabilise cell membranes for cytolysis. Nevertheless, various intracellular cell death signalling pathways have been targeted by CTX. 
Cytotoxin triggers Ca2+ influx and activation of the Ca2+/PP2A/AMPK pathway. This causes mitochondrial fragmentation. Furthermore, the internalised CTX 
following membrane permeabilisation could also co-localise at mitochondria to stimulate intrinsic mitochondrial-mediated apoptosis. Cytochrome c is then released 
following deprivation of mitochondrial membrane integrity and bind to APAF 1, which then recruits caspase-9 to form an apoptosome. The apoptosome activates the 
executioner caspase-3 for intrinsic apoptosis. Apoptosis is also associated with upregulation of proapoptotic proteins and inactivation of EFGR, Pl3K/Akt, and JAK/ 
STAT3 pathways. In addition, CTX also induces extrinsic apoptosis involving Fas receptors. In addition, intracellular accumulation of Ca2+ activates NOX4 
expression, a major contributor to oxidative stress which triggers p38 MAPK/cJUN/ATF-2 apoptosis pathways. Cell cycle arrest is a downstream cytotoxic effect of 
CTX. On the other hand, lysosomal-associated necrosis has also been reported for CTX-induced cell death, attributed to highly elevated cathepsin B following 
lysosomal membrane permeabilisation. Besides necrosis, CTX also induces caspase-independent, regulated necroptosis involving activation of TNFR1-RIPK signalling 
cascades, which is also associated with upregulation of antiapoptotic proteins such as HSP90AA1, HSP90AB1 and PPIA. 
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MCF-7 cells (Ebrahim et al., 2014). Furthermore, the time-dependent 
manner of CTX-induced cell death has also been reported in MCF-7 
cells, whereby a significant elevation of apoptotic cells was detected 
with prolonged exposure time at 24 h (Ebrahim et al., 2014). 

Similarly, a concentration-dependent transition mechanism of cyto
toxicity was also reported in the N. sumatrana CTX, namely sumaCTX 
(Hiu and Yap, 2021; Teoh and Yap, 2020). SumaCTX displayed the 
highest selectivity for cytotoxic effects in MCF-7 cell lines, when 
compared to human bronchial epithelial cells. The cytotoxicity of 
sumaCTX might occur before 24 h. SumaCTX triggers caspase − 3/7 ac
tivity at its IC50 (4 μg/mL) concentration. In addition, mitochondrial 
hyperpolarisation was observed in cells treated with lower toxin levels, 
which is presumably a prerequisite and sensitisation event in the early 
stages of apoptosis. As the toxin concentrations increased, mitochon
drial membrane integrity was compromised, leading to typical 
apoptosis-associated depolarisation. Nevertheless, time-dependent pat
terns of apoptosis were not observed at higher toxin concentrations, 
thus, prolonged exposure to sumaCTX in MCF-7 cells did not promote the 
progression of apoptosis, as demonstrated by caspase activation and 
alteration of mitochondrial membrane potentials. On the other hand, 
there were accountable levels (8–24%) of the PI + population at high 
levels of sumaCTX treated cells, as revealed by annexin-V/propidium 
iodide double staining cytometry which was indicative of hypothetical 
necrosis. To further ascertain whether necrosis occurred, the free form of 
necrosis marker, high mobility group box protein 1 (HMGB1) was 
measured following cellular exposure to high levels of sumaCTX. How
ever, the absence of HMGB1 refuted the occurrence of necrosis in MCF-7 
cells treated with high levels of sumaCTX. SumaCTX appeared to trigger 
caspase-dependent mitochondrial-mediated apoptosis without tran
sitioning to primary necrosis when toxin levels increased. Since a 
considerable percentage of the PI + cell population was observed and it 
did not indicate the occurrence of necrosis at high levels of sumaCTX, it 
posed a question of underlying mechanistic action at high toxin levels. It 
was found that increasing sumaCTX concentrations promoted membrane 
permeabilisation as reflected by an elevated extracellular LDH activity 
and calcein-AM fluorescence intensity (Hiu and Yap, 2021). Label-free 
quantitative (LFQ) secretome analyses showed that sumaCTX caused 
stress response, inflammation, metabolic deprivation, and necroptosis, 
without apoptotic proteins in high sumaCTX treated MCF-7 cells. These 
findings concluded that sumaCTX triggered a concentration-dependent 
transition of apoptosis to necroptosis together with membrane per
meabilisation when the toxin levels increased. 

Therefore, the activation of either necrosis or necroptosis by CTX is 
highly dependent on the toxin’s concentration, whereby low toxin levels 
promote apoptosis. This observation is crucial to comprehend 
concentration-dependent molecular cytotoxicity of CTX. 

5. Synergistic effects between cytotoxin and other venom 
components 

Synergism is known to potentiate venom toxicity, particularly be
tween CTX and phospholipase A2 (PLA2). This was first observed in a 
significant haemolytic effect exerted by a combination of N. naja venom 
PLA2 and CTX (Condrea et al., 1964). In contrast, each venom toxin did 
not exhibit any haemolytic effect. Subsequent studies also show a sig
nificant increase of haemolytic activity when CTX and PLA2 coexisted 
following a drastic reduction of cell survival time and lowered activation 
energy (Louw and Visser 1978; Bougis et al., 1987). The enhanced 
cytotoxicity after the co-administration of CTX and PLA2 is hypothesised 
to occur through supramolecular synergism resulting from the formation 
of CTX-PLA2 hetero-oligomers (Pucca et al., 2020). Although the 
mechanism remains understudied, the synergism presumably depends 
on the structural and biochemical properties of the toxins (Pucca et al., 
2020). There are three possible strategies to achieve synergistic effects, 
which are 1) the production of the same final effects through distinct 
pathways; 2) recognising the targets involved in the same or correlating 

biological pathway(s); 3) chaperoning of one toxin to another toxin 
(Xiong and Huang 2018). In addition, remarkable synergism in cyto
toxicity has also been observed in N. kaouthia venom toxins, which is 
attributed to the formation of a non-covalent heteromeric complex be
tween cytotoxic kaouthiotoxin (KTX) with PLA2, without altering the 
biochemical properties of PLA2 (Mukherjee, 2010). Altogether, syner
gistic actions of CTX and PLA2 enhance the cytotoxic effects of CTX. 

6. Conclusion 

Cytotoxin is abundant in the cobra venom and undeniably plays a 
major role in causing local necrotic lesions at the wound site upon 
snakebite. Cytotoxin exhibits differential cytotoxic effects in different 
cells. One of the prominent cell death mechanisms exerted by CTX is 
direct cytolysis, which is attributed to its hydrophobicity and direct 
interaction with membrane phospholipids. The oligomerisation of CTX 
is responsible for pore formation which causes leakage of intracellular 
components. Nevertheless, CTX exhibits more than just direct cytolytic 
effects, it has also been found to activate different apoptotic signalling 
pathways and cell cycle arrest. Cytotoxin-mediated lysosomal damage in 
necrotic cell death is a plausible mechanism for the clinical observation 
of dermonecrotic effects of snakebite envenomation. It is also note
worthy that synergistic effects may present in real-life snakebite cases in 
which other venom components can potentiate the CTX-induced cyto
toxicity. The synergism could also account for the enhanced necrotic 
effect even with lower CTX doses used in laboratory settings. Recent 
findings have also demonstrated the occurrence of necroptosis in CTX- 
treated cells. However, extensive research is required to establish 
possible mechanistic actions underlying necroptosis in real envenom
ation cases, especially using human skin models. Although the mecha
nism of CTX-induced necroptosis remains unclear, future studies 
involving -omics and bioinformatics can be performed at the molecular 
level to decipher the molecular mechanisms associated with the transi
tion of cell death pattern. These findings have implications for the dis
covery of biomarkers of CTX-induced cell death, especially in the 
context of dermonecrosis. This certainly contributes to the development 
of toxin-directed biotherapeutics targeting CTX and its pathological 
effects. 
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