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Abstract: The main goal of this mini review is to summarise the most recent progress in the field of
conjugated graft copolymers featuring conjugation across the main chain, across side chains or across
both. The main approaches to the synthesis of conjugated graft copolymers are highlighted, and the
various trends in the development of new copolymer materials and the intended directions of their
applications are explored.
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1. Introduction

Graft conjugated macromolecules consist of numerous arms attached to an oligomeric or polymeric
core, with either the arms, the core or both being conjugated. Depending on whether the core is
conjugated or not, the arms can interact electronically with each other or are isolated from each other.
Although no direct conjugation route may exist between the neighbouring arms, they can interact with
each other through the formation of π-stacks or ordered assemblies, similar to what is observed for
bulk linear polymers [1]. The key parameters of such macromolecules are the chemical structure and
length (usually expressed as the degree of polymerisation) of the core and arms, as well as the grafting
density and distribution of arms along the core.

The synthesis of graft conjugated systems is possibly the most varied of the three mentioned types
of 3D-structured conjugated polymers, as it encompasses the methods used for the preparation of
star-shaped (mainly focusing on linking arms and cores—grafting “onto”) and dendrimeric (mainly
functionalization and branching at active sites—grafting “from”) systems, as well as a variety of
other methods, including reactive assembly of the core through the polymerisation of macromolecular
monomers (grafting “through”):

• Grafting “through”—typically includes anionic, free radical polymerisation and ring-opening
metathesis, and it is polymerisation from macromonomers. If graft copolymers are produced via
this approach, each repeat unit of the copolymer main chain has polymeric side chains, but the
distance between them may differ depending on the methods that were used. As an example,
in ring-opening metathesis where polynorbornene is used as a backbone, there are four carbon
atoms between side chains, and with the use of polymethacrylate there are only two carbon atoms.

• Grafting “onto”—in this method backbone and side chains are prepared separately. This approach
can be associated with two potential issues—limited grafting density and how to remove unreacted
side chains.
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• Grafting “from” allows high grafting density and long backbones to be obtained; in this
category, reversible deactivation radical polymerisation, atom transfer radical and reversible
nitroxide-mediated polymerisation can be used. These structures could potentially be used in drug
delivery systems, as super-soft elastomers, surfactants, lubricants, stimuli-responsive materials,
etc. [2].

The general schemes for the three main classes of synthetic pathways to graft conjugated polymers
are shown in Scheme 1. In terms of particular synthetic procedures, Bousquet et al. [3] reviewed a wide
array of synthetic methods. Even though the authors focused on the synthesis of polymer brushes
on substrate surfaces rather than on the development of graft macromolecules, the procedures for
producing polymer brushes on organic substrates are of interest, with many having been adapted or
used directly to produce graft polymers.
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The progress in the field of designing and synthesising graft conjugated polymers was recently 
summarised by Strover et al. One highlight of this work is the conclusion that the utility of graft 
copolymers with conjugated backbones could be improved by modifying their electroactivity or 
solubility with side chains. The chemical methods for synthesising copolymers are better for 
preparing large amounts of compounds, and are preferable for optoelectronic devices. The 
electrochemical method is instead useful for modifying surfaces. The choice of the copolymerisation 
approach is dependent on what applications and structure are desired. Grafting “from” is generally 
used for preparing densely grafted copolymers. With grafting “through”, well-defined and highly 
sophisticated structures can be produced. Lastly, grafting “onto” is possibly the most straightforward 
approach, because of the highly versatile click reactions employed [5]. 

Yassar et al. [6] have also included a number of graft polymers in their review of block 
copolymers used for photovoltaic applications. The issues related to the control of the morphology 
of any produced polymeric layers are highlighted, and the need for better understanding of the 
various process parameters is emphasised. Consequently, only the most recent advances in the field 
are summarised below, with a focus on potential optoelectronic applications of the reported 
macromolecular systems. 
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Scheme 1. Outline of the three main approaches to the synthesis of graft polymers. Based on [4]. The
A and Z groups are used to indicate the reactive groups in each type of reaction. The example of
polyethylene grafting was selected rather than the species reported in this work in order to maintain
clarity and focus on the reactions that may be used for obtaining these macromolecules.

The progress in the field of designing and synthesising graft conjugated polymers was recently
summarised by Strover et al. One highlight of this work is the conclusion that the utility of graft
copolymers with conjugated backbones could be improved by modifying their electroactivity or
solubility with side chains. The chemical methods for synthesising copolymers are better for preparing
large amounts of compounds, and are preferable for optoelectronic devices. The electrochemical
method is instead useful for modifying surfaces. The choice of the copolymerisation approach is
dependent on what applications and structure are desired. Grafting “from” is generally used for
preparing densely grafted copolymers. With grafting “through”, well-defined and highly sophisticated
structures can be produced. Lastly, grafting “onto” is possibly the most straightforward approach,
because of the highly versatile click reactions employed [5].

Yassar et al. [6] have also included a number of graft polymers in their review of block copolymers
used for photovoltaic applications. The issues related to the control of the morphology of any produced
polymeric layers are highlighted, and the need for better understanding of the various process
parameters is emphasised. Consequently, only the most recent advances in the field are summarised
below, with a focus on potential optoelectronic applications of the reported macromolecular systems.
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2. Recent Developments and Applications of Graft Copolymers

2.1. Basic Research on Graft Copolymers

Abd El-Salam et al. [7] report the grafting of poly(2-hydroxyaniline) on chitosan (Scheme 2).
The authors investigated the effect of different copolymerisation conditions on the properties of their
copolymers, confirming their structure via infrared (IR) spectroscopy. The mechanism and kinetics of
the grafting copolymerisation reaction are discussed in great detail. The samples of the copolymers
were investigated in terms of their adsorption parameters. These materials show favourable adsorptive
properties towards removing transition metals from aqueous media. It however remains unclear
whether the materials are true copolymers or a blend of homopolymers produced via polymerisation
of the monomer adsorbed on chitosan particles.
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Heydari et al. [8] (Scheme 3) proposed a method to obtain water-soluble polyaniline (PANI)
copolymers by grafting poly(styrene-alt-maleic anhydride) with PANI, yielding conductive comb
copolymers (PANI-g-PSMA) with highly improved processability. First, PANI nanoparticles were
prepared by chemical synthesis under ultrasonic irradiation. Then the poly(styrene-alt-maleic
anhydride) (PSMA) was synthesised by free-radical polymerisation. Concurrently, PANI was grafted
on the PSMA backbone to prepare a comb-like conductive copolymer for improving its processability,
as a new method.
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Another interesting report [9] deals with the synthesis of polypyrrole (PPy) grafted onto a
thiophene-functionalised polystyrene (PS) macromonomer via the chemical oxidative polymerisation
of pyrrole in the presence of the macromonomer (Scheme 4). Hatamzadeh et al. employed a very
thorough product purification methodology, involving the sequential dissolution of non-grafted
polymer chains. First, non-grafted polystyrene was dissolved in cyclohexane and then PPy was
dissolved in tetrahydrofuran (THF), leaving only the graft copolymer, which was insoluble in both
these solvents; this result can also be considered as evidence for the occurrence of copolymerisation.
The growth of PPy on the functionalised PS enhanced the solubility and processability of the copolymer,
when compared with PPy. Despite its linkage to a non-conjugated system, the PPy segments maintained
good redox activity and overall, the synthesised graft copolymer was found to show acceptable stability
of its redox properties.
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In another variation of their approach, Massoumi et al. investigated the grafting of PANI on
poly(vinyl chloride) (PVC) [10]. The chemically obtained aniline-functionalised PVC macromonomer
was employed in a mixture with aniline and polymerised both chemically and electrochemically
(Scheme 5). The chemical structure of both types of graft copolymers were confirmed by IR and nuclear
magnetic resonance (NMR) spectroscopy, with the copolymers being investigated electrochemically
and via conductometry. Expectedly, the graft copolymers were found to exhibit lower electrical
conductivity as lesser electroactivity than PANI.
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2.2. Graft Conducting Polymer Hydrogels

Conducting hydrogels are gels that, upon contact with water, absorb it and undergo swelling,
while maintaining their conductive properties. Most of this type of hydrogel contain polyaniline,
polypyrrole, or poly(3,4-ethylenedioxythiophene) (PEDOT), fulfilling the role of conductive segments.
There are also more complex structures, such as gelatine-grafted polyaniline, carboxymethylchitosan,
oxidised dextran or polyaniline hydrogels with poly(acrylic acid), grafted with gelatine, and alginate.
Even though these compounds exhibit interesting properties and have many prospective applications,
they are difficult to investigate in terms of their structure and performance [11].

Guo et al. [12] obtained quaternised (chitosan with grafted glycidyltrimethylammonium chloride)
chitosan-grafted-PANI (QCS-g-PANI) by chemical synthesis in aqueous HCl (Scheme 6), in the presence
of ammonium peroxydisulphate at room temperature. The degree of grafting was found via gravimetry,
as a ratio of the mass of PANI, dissolved away in NMP, to the mass of the introduced monomer.
This method may have some issues, as it does not take into account the molecular weight of the
attached PANI grafts. These two compounds were used to reduce the toxicity of quaternised chitosan
(QCS), while improving its electroactivity by using PANI, and the Authors also hypothesised that the
synergetic effect of QCS and PANI would increase antibacterial activity of the obtained hydrogels. The
obtained hydrogels showed good antibacterial activity for Gram-positive and Gram-negative bacteria
(5% surviving cells for Escherichia coli and 10% surviving cells for Staphylococcus aureus in vitro, at a
bacterial concentration of 106 CFU/mL), for QCS40P3-ODex (6 mg of aniline and 194 mg of QCS40).
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Guo et al. have further employed their methodology in order to produce chitosan-g-PANI
copolymers with dextran polymer as a cross-linker for use as drug carriers (Scheme 7). The release of
the drug amoxicillin was controlled via voltage application, inducing doping/dedoping of the PANI
segments interacting with the drug, similar to the approach reported for PEDOT-based drug delivery
systems [13,14].

Molecules 2019, 24, x FOR PEER REVIEW 6 of 21 

Scheme 6. Grafting of glycidyltrimethylammonium and poly(aniline) on chitosan [12]. 

Guo et al. have further employed their methodology in order to produce chitosan-g-PANI 
copolymers with dextran polymer as a cross-linker for use as drug carriers (Scheme 7). The release of 
the drug amoxicillin was controlled via voltage application, inducing doping/dedoping of the PANI 
segments interacting with the drug, similar to the approach reported for PEDOT-based drug delivery 

Scheme 7. Grafting of PANI on chitosan [12]. 

Guo et al. have also synthesised hydrogels that showed rapid self-healing. These hydrogels 
consisted of a solution of N-carboxyethyl chitosan and synthesised copolymer dextran-graft-(aniline 
tetramer)-graft-(4-formylbenzoic acid). To synthesise this copolymer, hexamethylene diisocyanate-
graft-aniline tetramer was first obtained and subsequently substituted with dextran. Afterwards, 4-
formylbenzoic acid was grafted (Scheme 8). The hydrogels showed in vivo (in rats) injectability and 
in vitro biodegradability, and they indicated self-healing ability because of Schiff base bonds [15]. 

Scheme 7. Grafting of PANI on chitosan [12].

Guo et al. have also synthesised hydrogels that showed rapid self-healing. These
hydrogels consisted of a solution of N-carboxyethyl chitosan and synthesised copolymer
dextran-graft-(aniline tetramer)-graft-(4-formylbenzoic acid). To synthesise this copolymer,
hexamethylene diisocyanate-graft-aniline tetramer was first obtained and subsequently substituted
with dextran. Afterwards, 4-formylbenzoic acid was grafted (Scheme 8). The hydrogels showed in vivo
(in rats) injectability and in vitro biodegradability, and they indicated self-healing ability because of
Schiff base bonds [15].
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In a different attempt, the obtained hydrogels were based on N-carboxyethyl chitosan and
(oxidised hyaluronic acid)-graft-(PANI tetramer) (Scheme 9) and were designed as injectable drug
carriers for delivering amoxicillin (antibiotic). They used IR spectroscopy to confirm the structure of
the obtained copolymer and hydrogel. The hydrogels showed good antibacterial properties, helping
prevent wound infection. With the addition of aniline tetramer (AT), the healing process of wounds
became faster than for hydrogels with copolymers with less grafted aniline tetramer, with higher
granulation tissue thickness [16].
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Guo and Ma also reviewed the subject of graft copolymers, focusing on systems used in tissue
engineering. The biggest disadvantages of conducting polymer are that they are rarely biodegradable.
Due to this fact, aniline/pyrrole-based copolymers with hydrolysable groups are becoming increasingly
popular. Guo and Ma claimed that they obtained an elastomer based on polylactide, poly(ethylene
glycol) (PEG) and aniline trimer which showed a strain at break higher than 1600%. This could be
used in skeletal muscle tissue engineering. For example, poly(l-lactide-co-ε-caprolactone) fibres were
positive for sarcomeric myosin. Additionally, copolymer can be used for nerve or for skin tissue
engineering; PEDOT/chitosan/gelatine had good biocompatibility and improved neuron-like rat cell
adhesion and proliferation [17].

Li et al. [18] present a simple approach to preparing injectable conductive interpenetrating polymer
network (IPN) hydrogels with enhanced mechanical properties. The in-situ IPN-forming conductive
hydrogels were based on gelatine-graft-PANI and carboxymethyl chitosan, which were cross-linked
with oxidised dextran (Scheme 10). The conductivity, swelling ratio and pore size of the hydrogels were
controlled by the PANI content, which was estimated based on gravimetric investigations. The injectable
conductive hydrogels showed good cytocompatibility with adipose-derived mesenchymal stem cells,
and greatly enhanced the cell proliferation of C2C12 myoblasts. The in vivo (rat) biocompatibility of
the hydrogels was also confirmed by subcutaneous implantation, although a mild foreign-body-type
immune response was observed upon implantation.
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2.3. Graft Copolymers for Sensing Applications

Pandey and Ramontja [19] report an interesting approach to the modification of natural polymers,
with their report on the grafting of aniline units onto xanthan gum (XG) in order to develop a new
sensing material (Scheme 11). Grafting was realised via a procedure involving microwave irradiation,
with the influence of the irradiation parameters also being studied. They also suggested a mechanism
for this grafting, postulating that the first radical is produced through the decomposition of ammonium
peroxydisulphate (APS). Simultaneously APS acts as the oxidising agent in the oxidative polymerisation
reaction of polyaniline. The last postulated stage is a PANI radical and an XG radical consolidated
into XG-g-PANI. The chemical structure of the copolymer is reported to have been confirmed by IR
spectroscopy, but no such structure is presented in the manuscript. The fabricated copolymer sample
was tested as a material for sensing ammonia vapour. Prototype sensors were found to show high
response, even at room temperature, in the ammonia vapour concentration range of 1–100 ppb, as
well as reasonable response and recovery times (on the order of 10–30 s), making this a promising
sensing material.
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Bicak et al. [20] proposed two methods of grafting poly(ethylene glycol) (PEG) chains on PANI,
in order to bestow water solubility on the copolymer (Scheme 12). A combination of oxidative
polymerisation and copper-catalysed azide–alkyne cycloaddition (CuAAC) click reaction is described.
The method pertains to the reduction of the CuBr2 catalyst during the oxidative copolymerisation of
aniline and aminophenyl propargyl ether to Cu(I) species, which catalyse the CuAAC reaction between
thus-formed PANI with pendant alkyne groups and independently prepared azide-functionalised PEG
both simultaneously and sequentially. The resulting copolymer, whose structure was confirmed by
IR and NMR spectroscopy, was used as a sensor material for the detection of glucose. The prototype
sensors showed linear response for solutions containing between 0.05 and 1 mmol/dm3 of glucose,
with a limit of detection of 0.02 mmol/dm3 of glucose; these parameters were maintained even after
20 days of the sensor being stored in air, at −4 ◦C.
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Another interesting approach to thiophene-based copolymers was reported by Molina et al. [21],
who synthesised a macromonomer of polycaprolactone equipped with a 3-thienyl end group (T1), which
was electrochemically polymerised with hydroxymethyl-3,4-ethylenedioxythiophene (T2) (Scheme 13).
Expectedly, the T1 macromonomer could not be polymerised, but T2 readily produced a homopolymer.
The structure of this homopolymer, as well as that of the copolymer of T1 and T2 was identified by IR
spectroscopy. The homopolymer and copolymer were tested in terms of their biocompatibility, with
the introduction of T1 into the structure of the copolymer considerably reducing the cytotoxicity of the
material, making it a potential candidate for producing implantable dopamine sensors.
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In another work Molina et al. [22] report the synthesis of PPy-poly(Schiff base) copolymers, grafted
with PEG chains for the detection of serotonin. The synthesis of the graft copolymers was conducted
sequentially, with a pyrrole-terminated PEG-bearing macromonomer first being synthesised chemically
and later electrochemically polymerised in the presence of pyrrole to yield the final graft copolymer
(Scheme 14). The structure of the copolymers was confirmed by IR spectroscopy, and bioactivity
investigations showed that the copolymer had better biocompatibility than PPy (approx. 10–20%
higher cell viabilities in comparison), as well as some antimicrobial activity. The serotonin-sensing
properties were determined based on the peak maximum current density, as determined by differential
pulse voltammetry, yielding serotonin detection limits of 0.04 and 0.07 µM for PPy and the investigated
graft copolymer, respectively.
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2.4. Graft Copolymers for Optoelectronic Applications

An interesting approach to graft copolymers is reported by Smirnov et al. [23], who produced
fibrous mats for supercapacitor applications by electrospinning polyacrylamide (PAM), onto which
PANI was grafted (Scheme 15). The structure of the copolymer was confirmed by IR spectroscopy,
although only qualitative analysis is included in the report. Instead, although Smirnov et al. did
employ several co-monomer ratios during their investigations, they assumed complete conversion
of both co-monomers and their total inclusion in the copolymer, and report copolymer compositions
based on the co-monomer feed ratios. It was found that by increasing the aniline to acrylamide ratio
the fibre diameters could be decreased from 569 nm (for 20:80 aniline/acrylamide ratio) to 248 nm
(40:60 ratio), but eventually (at ratios above 40:60) the resultant copolymer solutions became unfeasible
for electrospinning, because they contained residual crystalline particles from PANI and were only
suitable for electrospraying. The resultant fibrous mats were investigated in terms of their capacitance,
showing at most 102 F/g (measured at 0.3 A/g), evidencing that this graft copolymer class consists of
promising materials for supercapacitors.
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Wang et al., who earlier reported the synthesis of a series of conjugated graft copolymers [24–27]
consisting of different conjugated cores, with poly(3-hexylthiophene) (P3HT) arms being grafted onto
thiophene (Th) moieties of the cores, recently investigated a number of these copolymers (Scheme 16
PB1a–d) in prototype organic field-effect transistors (OFETs) and organic solar cells (OSCs) [28]. The
performance of most of these donor–acceptor (D–A) copolymers in OFET configurations was relatively
poor, exhibiting low ON/OFF current ratios and acceptable to extremely high threshold voltages (in
the range of ~2–60 V). The former may be due to the balanced hole and electron mobility of these
systems, as the best ON/OFF ratios of 1.14 × 102 and 3.82 × 106 were obtained respectively for the
purely hole-transporting copolymer PB1a and for the mostly electron-transporting copolymer PB1b.
The investigated compounds were mixed with both poly(3-hexylthiophene) and a fullerene derivative
(PC61BM) and used in bulk hetero-junction (BHJ) OSCs, achieving power conversion efficiency (PCE)
values of up to 2.27%. However, it is worth noting that in this case PB1b was used as a surfactant for
the tried and true P3HT/PC61BM system. Unfortunately, the authors did not include the investigation
of an OSC containing only P3HT/PC61BM and lacking the PB1b surfactant in the manuscript, making
the impact of this addition on the power conversion efficiency of the OSC unclear.
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Heinrich and Thelakkat [29] also used P3HT chains as arms, grafted onto a non-conjugated
polystyrene (PS) core. They studied the impact of different structural parameters of this class of
compounds on their properties, focusing on their charge carrier mobility. Interestingly, despite
the inter-chain distances between P3HT arms resulting from a predetermined grafting scheme, the
graft copolymers were shown to be crystalline, similar to linear P3HTs. The authors investigated
PS-graft-P3HT copolymers (Scheme 16 PB2) in OFET configurations and compared them to the
performance of pure linear P3HT references, achieving comparable results. A strong correlation of the
charge carrier mobility and ON/OFF current ratio with the length of the P3HT arms was also observed.
Although the ON/OFF current ratios achieved for the graft copolymers were comparable with those
achieved for P3HT, that the number-average molecular weights of the copolymers were many times
higher than those of P3HTs showing similar ON/OFF current ratios. As such, even though similar
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performance may be achieved, the processing of the copolymers may yet prove to be a significant
limiting factor for the application of these new materials.

Another graft system equipped with P3HT arms was reported by van As et al. [30], who used
P3HT chains capped with norbornene (NB) moieties as macromolecular monomers, to assemble a
non-conjugated core through ring-opening metathesis polymerisation in a “grafting-through” process.
The synthesised norbornene-functionalised P3HTs and graft polymers (PB3) were investigated in
comparison with commercially available P3HT and linear P3HT samples of different molecular weight.
The authors further investigated the performance of all systems in BHJ OSC configuration, using a
mixture of the polymer and fullerene derivative as the active layer, reporting PCEs in the range of
0.3–2.3%. The best performance was observed for commercially available P3HT, with systems with a
higher molecular weight generally showing higher PCEs. Although OSCs utilising the synthesised
graft polymers showed slightly lower PCEs than those using linear P3HTs, they showed noticeably
higher built-in voltages than devices based on linear P3HTs.

Polysiloxanes grafted with both non-conjugated (PEG) and conjugated (P3HT) chains have been
reported in our earlier works. These species were synthesised using hydrosilylation methods. This
method depends on the grafting of co-monomers to the polysiloxane backbone through vinyl end
groups (Scheme 17). Our copolymers show major spectroelectrochemical features similar to those of
P3HT, but also feature improved doping/dedoping reversibility. Apart from improved stability and
doping/dedoping reversibility, these graft copolymers were employed in prototype solar cells, showing
power conversion efficiency values up to 2.11%—more than was achieved for solar cells containing
the same amount of P3HT [31]. As such, this discovery can be considered an improvement in terms
of device cost-efficiency, allowing lower amounts of P3HT to be used for their manufacture, rather
than in terms of improved performance. It is worth noting that the obtained copolymers show lower
conductivity in the undoped state than P3HT [32].
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2.5. Graft Copolymers for Specialised Applications

Massoumi and Jaymand [33] report the grafting of polythiophene (PTh) onto poly(methyl
methacrylate) (PMMA), performed both chemically and semi-electrochemically, as well as
electrospinning of the copolymers with gelatine to produce conductive nanofibres (Scheme 18).
Both PTh samples and the copolymers were investigated in terms of their electrochemical response and
conductivity, yielding similar responses and slightly lower conductivity values for the copolymers that
contained PMMA. Interestingly, the electrospun nanofibres showed conductivity lower by roughly two
orders of magnitude than PTh and the copolymers. Although this may be the result of the incorporation
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of gelatine, no investigation of the doping level of the samples was conducted, and these differences in
conductivity may stem from differences in the degree of doping. The authors perceive their nanofibres
as promising materials for tissue engineering scaffold applications.
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In turn, Rezaei et al. [34] focused on the development of a new adhesive, by grafting PANI
onto novolacs (Scheme 19). Interestingly, grafting was performed by treating the hydroxyl groups of
novolacs with p-aminobenzoic acid, introducing amine groups into the novolac chains, which were used
as grafting sites for PANI. The structure of the copolymers was confirmed by IR and NMR spectroscopy,
although no quantitative investigation, particularly into the grafting density, was included in the
manuscript. In terms of the mechanical properties, the copolymers showed properties similar to
those of novolacs, with aniline units curiously causing a decrease in both the tensile strength and
elasticity (elongation at break) of the materials. Interestingly, grafting PANI onto novolacs appeared
not to influence the conductivity of PANI significantly, with the copolymers and pure PANI showing
conductivity values on the same order of magnitude. As such, the copolymers are an interesting
material choice for conductive adhesives, with a multitude of potential applications.
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Barlas et al. [35] report the use of a fluorescent poly(p-phenylene) derivative, equipped with
cyclodextrin units in the main chain and with poly(ethylene glycol) grafts (Scheme 20), as a novel
material for tumour cell imaging and radiotherapy. This previously synthesised and investigated
molecule was then conjugated with Au nanoparticles, and these nanoconjugates were investigated for
their cytotoxic and cytostatic effects, with a concentration of 100 µg/mL being found as the minimum
required for producing a decrease in cell viability. Fluorescence imaging studies showed that the
derivative containing cyclodextrin units resulted in a noticeably higher quality of the image than
was previously achieved for poly(p-phenylene) equipped with PEG grafts, making this material a
promising candidate for therapeutic applications.
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Controlled anti-cancer drug delivery is a relatively new field of application for conjugated
polymer materials, often relying on doping/dedoping to charge a polymer matrix with a drug and
release it upon the application of stimuli [13]. Guler et al. [36] recently reported an interesting graft
polymer for drug delivery applications, consisting of a conjugated core and non-conjugated arms.
However, in this case the drug loading/release mechanism is based on pH rather than doping, with the
conjugated polyparaphenylene core used both as scaffold for functional groups (acting as bonding
sites for loading drug molecules into the matrix) and as a sensitising agent for radiotherapy. The
polymer/drug composite was shown to be more effective than the pure drug in bio-conjugation studies,
and significantly more effective in radiotherapy studies.

Cabuk et al. [37] have also undertaken the subject of grafting chitosan with conducting polymers,
but opted to graft it with PPy (Scheme 21). The copolymer was investigated in terms of its electrokinetic
properties in aqueous media, showing a shift of the ζ-potential of the copolymer towards more positive
values than in the case of PPy. Suspensions of the copolymer in silicone oil were found to show
some electrorheological activity, exhibiting viscoelastic behaviour and showing a reversible nonlinear
deformation when placed in an electric field. As such, the graft copolymer may have potential as a
material for vibration damping applications.

A novel application of graft copolymers, as materials for wastewater treatment, is reported by
Abd El-Salam et al. [38], who utilised a graft system composed of poly(2-methylaniline) and chitosan
(Scheme 22). Investigation of the wastewater treatment potential of both “parent” homopolymers
and the graft copolymer showed that while poly(2-methylaniline) had very poor coliform removal
properties and chitosan showed acceptable performance, the copolymer was found to be approximately
twice as efficient as chitosan at removing coliform bacteria, making it a promising material for
wastewater treatment. The authors attribute this increased efficiency to the presence of more function
sites on the surface of the graft copolymer.
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PAM-graft-poly(2-methoxyaniline) was synthesised [39] by the oxidative chemical grafting
copolymerisation of 2-methoxyaniline onto PAM (Scheme 23). The grafting was performed in aqueous
HCl using ammonium peroxydisulphate as an oxidising agent. The efficiency of the prepared polymeric
samples to remove some metal ions from contaminated water was investigated, removing 27.9%, 99.4%
and 51.1% of manganese (II), lead (II) and chromium (II), respectively, from a solution containing
2 mg/mL of each ion. In light of these results, the obtained graft copolymer can be considered a
selective adsorbent for Pb (II) ions present in a mixture with Mn (II) and Cr (II) ions.

Graft copolymers can also be used as anti-corrosion coatings, as exemplified by the report by
Babaladimath et al., who chose PANI grafted onto xanthan gum as a potential coating material [40]
(analogous to the reaction shown in Scheme 11). The grafting was achieved by polymerisation of
aniline in the presence of xanthan gum, under acidic conditions, employing microwave irradiation. In



Molecules 2019, 24, 3019 16 of 21

terms of anti-corrosion properties, although the report seems to have some minor data conflicts, Tafel
polarisation experiments showed that the graft copolymer significantly reduced the corrosion currents
in comparison with bare aluminium surfaces. A similar conclusion can be drawn from electrochemical
impedance spectroscopic measurements, where the samples coated with the graft copolymer showed
a significantly higher charge transfer resistance than bare aluminium surfaces. As such, the graft
copolymer could be a promising and specialised anti-corrosive coating material.
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3. Summary and Future Outlook

Of the reviewed articles, the vast majority (28 reports) focus on specific applications of either
newly produced macromolecules or known macromolecules not considered beforehand in particular
applications. Among the selected works, the development and application of hydrogels seems to have
recently attracted the interest of researchers dealing with copolymers (six reports), owing mostly to
their biomedical applications. Simultaneously, the once extremely popular subjects of optoelectronic
(six reports) and drug delivery applications seem to have declined slightly. Among the specialised
applications, we can see the development in wastewater treatment methods and its emerging interest
in new copolymer materials (two reports). Although there are some reports focusing more on the
mechanical aspects of the copolymers (two reports), dealing with adhesives or the manufacture of
copolymer fibres, the increased conductivity of the copolymers, stemming from the inclusion of
conjugated repeat units in their structure, may only find niche applications due to the increased cost of
producing such materials, as opposed to traditional homopolymers. Although not as recent as some of
the others, one particularly interesting application is the use of conjugated unit-bearing copolymers in
vibration damping, due to their electrorheological properties.

In terms of structural investigation of the copolymers, the methodology is virtually identical to the
one employed for the study of homopolymers, leaning heavily on IR and NMR spectroscopy (Table 1).
One key difference between the two is the use of gravimetric methods to study the amount of grafts
introduced into a homopolymer sample. Although gravimetry can provide reliable information about
the composition of the produced copolymer, it cannot be used to discern between the different species
in the sample. As such, the technique is heavily susceptible to the effects of impurities present in the
samples. In the case of preparing graft copolymers, this may include non-grafted chains of either of
the “parent” homopolymers, reagents occluded within the polymer matrix, etc. Consequently, this
technique should be used only with thorough care, as in the model case of Hatamzadeh et al. [9]. It is
worth noting that recently, only a few works have even attempted to quantitatively investigate the
composition of the copolymers they were dedicated to, making the usefulness of the results presented
in works lacking such studies uncertain.
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Table 1. Summary of the structural identification methods used in the reviewed works.

Copolymer Copolymer Structural Identification Study of Copolymer
Molecular Weight

Quantitative Composition
of the Copolymer Literature

Poly(2-hydroxyaniline)-co-chitosan IR No No [7]
PANI-graft-PSMA IR No No [8]

PS-graft-PPy IR GPC Yes [9]
PANI-graft-PVC IR No No [10]
QCS-graft-PANI IR, gravimetry No Yes [11]

Chitosan-graft-PANI IR No No [12]
Dextran-graft-(aniline

tetramer)-graft-(4-formylbenzoic acid) IR, NMR No No [15]

(Oxidised hyaluronic acid)-graft-AT IR No No [16]
Gelatine-graft-PANI IR No No [18]

XG-graft-PANI IR, gravimetry No No [19]
PEG-graft-PANI IR, NMR No No [20]
PTh-graft-PCL IR No No [21]

PPy-poly(Schiff base) copolymers-graft-PEG IR No No [22]
PAM-graft-PANI IR No No [23]

Conjugated cores-graft-P3HT Prior works SEC n/a [28]
PS-graft-P3HT NMR, IR MALDI-TOF, SEC No [29]

PolyNB-graft-P3HT NMR MALDI-TOF, GPC No [30]
Polysiloxanes-graft-PEG-graft-P3HT NMR, IR No Semi [31]

PANI-graft-novolac NMR (macromonomer only), IR No No [34]
Poly(p-phenylene-β-cyclodextrin)-graft-PEG Prior works No No [35]

Poly(p-phenylene)-graft-PEG Prior works GPC No [36]
Chitosan-graft-PPy Prior works, Elemental analysis No No [37]

Chitosan-graft-poly(2-methylaniline) IR No No [38]
PAM-graft-poly(2-methoxyaniline) IR, NMR, Gravimetry No No [39]

PEG-graft-PANI IR, Gravimetry No No [40]
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In terms of the approach to the grafting mechanism, grafting “from” appears to be the most
commonly used approach, with 15 works utilising it. In terms of the sheer synthetic pathway, it is
worth mentioning the frequent use of oxidative polymerisation, particularly mediated by (NH4)2S2O8

(APS)—especially in the case of grafting PANI. Apart from those, there are few reports using
click chemistry and polymerising macromonomers, as well as mention of introducing grafts via
electrochemical methods. Nevertheless, the more straightforward and cost-efficient a method, the
more works tend to employ it. This is due to the relatively young age of the field; most reported
applications are general in nature and can rely on various copolymer materials, with highly specialised
application–material (or material class) pairs yet to emerge.

Based on the trends presented in this mini review, we can expect future works to slowly be
shifting their focus away from general and basic investigations into the properties of conjugated graft
copolymers and towards reporting new and specialised applications that can utilise the properties
specific to each copolymer class. The emergence of these specialised applications and their need for
high-performance materials is expected to promote developing and manufacturing materials tailored
for those particular applications.
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Abbreviations

APS ammonium peroxydisulphate
AT aniline tetramer
BHJ bulk hetero-junction
CuAAC copper-catalysed azide–alkyne cycloaddition
IPN interpenetrating polymer network
IR infrared
NMR nuclear magnetic resonance
OFET organic field-effect transistor
OSC organic solar cell
P3HT poly(3-hexylthiophene)
PAM polyacrylamide
PANI polyaniline
PANI-g-PSMA polyaniline-graft-poly(styrene-alt-maleic anhydride)
PCE power conversion efficiency
PEDOT poly(3,4-ethylenedioxythiophene)
PEG poly(ethylene glycol)
PMMA poly(methyl methacrylate)
PPy polypyrrole
PS polystyrene
PSMA poly(styrene-alt-maleic anhydride)
PTh polythiophene
PVC poly(vinyl chloride)
QCS quaternised chitosan
QCS-g-PANI quaternised chitosan-graft-polyaniline
THF tetrahydrofuran
XG xanthan gum
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