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Abstract

Non-coding elements such as miRNAs play key regulatory roles in living systems. These ultra-short, ,21 bp long, RNA
molecules are derived from their hairpin precursors and usually participate in negative gene regulation by binding the
target mRNAs. Discovering miRNA candidate regions across the genome has been a challenging problem. Most of the
existing tools work reliably only for limited datasets. Here, we have presented a novel reliable approach, miR-BAG,
developed to identify miRNA candidate regions in genomes by scanning sequences as well as by using next generation
sequencing (NGS) data. miR-BAG utilizes a bootstrap aggregation based machine learning approach, successfully creating
an ensemble of complementary learners to attain high accuracy while balancing sensitivity and specificity. miR-BAG was
developed for wide range of species and tested extensively for performance over a wide range of experimentally validated
data. Consideration of position-specific variation of triplet structural profiles and mature miRNA anchored structural profiles
had a positive impact on performance. miR-BAG’s performance was found consistent and the accuracy level was observed
to be .90% for most of the species considered in the present study. In a detailed comparative analysis, miR-BAG performed
better than six existing tools. Using miR-BAG NGS module, we identified a total of 22 novel miRNA candidate regions in cow
genome in addition to a total of 42 cow specific miRNA regions. In practice, discovery of miRNA regions in a genome
demands high-throughput data analysis, requiring large amount of processing. Considering this, miR-BAG has been
developed in multi-threaded parallel architecture as a web server as well as a user friendly GUI standalone version.
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Introduction

miRNAs are now expected to regulate approximately 80% of

genes [1]. They are mainly involved in post transcriptional

regulation through transcript disruption and translational block-

ade. miRNAs can be found in the intergenic, intronic as well as

exonic regions [2,3]. In animal systems, once transcribed from the

genome either by RNA Polymerase II [4] or by RNA Polymerase

III [5], the transcripts (primary miRNAs) are recognized by the

Drosha-DGCR8 microprocessor complex. This complex cleaves

pri-miRNAs into pre-miRNAs. Thereafter, Exportin transports

these pre-miRNAs to the cytoplasmic space, utilizing Ran-GTP

transport pathway [6]. In cytoplasm, another RNAse III, Dicer,

cleaves the pre-miRNA into mature miRNA duplex [7].

The initial approaches for miRNA precursor discovery relied

mainly on detection of the hairpin-shaped structure, which is

common to all pre-miRNAs. However, groups like Bentwich et al

suggested that there are approximately 11 million hairpins in

human genome, making it a daunting task to correctly identify

miRNA precursor candidates [8]. Some novel features and rules

thus became imperative for better identification of miRNAs.

Initially, one approach was designed for C. elegans [9], on the basis

of the degree of conservation of miRNAs across various species.

Similar approach was adopted by miRSeeker [10] designed for

Drosophila. While searching for homology, miRSeeker also

considered sequence conservation along with criteria like base

pairing and presence of miRNAs in at least one of the arms of the

hairpin sequences. Although these tools were important mile-

stones, issues with their accuracy and consistency persisted widely,

leading to development of better approaches. Later, Bentwich et al

developed PalGrade [8], which assigned a stability score to every

hairpin, depending upon its secondary structure. It also imple-

mented a scoring scheme based on various features like hairpin

length, loop length, sequence repetitiveness, bulge length and type

of inverted repeat. Berezikov’s group analyzed genomic regions

with conserved profiles, employing Phylogenetic Shadowing, and

selected the sequences having ability to form hairpins [11].

Sætrom et al identified some miRNA specific properties like

structural conservation in miRNA primary transcripts, which

might ead to development of better performing precursor

identification tools [12].

Most of the initial approaches for miRNA candidate identifi-

cation relied upon the filter based protocols. These included

various combinations of rules derived for stem size, loop size,

number and size of bulges, GC content, etc. However, such

approaches may not be appropriate, particularly when the

instances exhibit deviation from the conservation rule. It has been

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e45782



observed that the multi-variate statistical approaches deliver better

than the rule based methods. One such pioneering approach had

been Triplet-SVM [13]. There, the authors opined for the need to

consider the fact that besides miRNAs, the hairpin structure also

exists with several other genomic elements. Therefore, the authors

considered psuedo-hairpins for a better model while preparing the

negative dataset. The same group also identified a property named

triplet element, which captured structural as well as sequence

information through support vector models. It resulted into a

remarkable increase in accuracy and performance consistency.

Subsequently, there was surge in use of different machine learning

approaches including Random Forests [14], Bayesian methods

[15] and many other SVM based tools, where inclusion of triplet

or its variants gained importance. Agarwal et al [16] developed a

method to discover miRNA precursors while applying context

sensitive HMM to model RNA secondary structures. The authors

used memory supported probabilist models to construct paired

regions as well as symmetrical bulges in miRNAs. Ritchie et al

developed MirEval [17], which combined windowed structural

scanning using Triplet-SVM’s methodology [13] and a protocol to

evaluate structural properties. It also implemented phyolgenetic

conservation through GERP method [18] and a sequence

homology search method introduced by Tanzen and Standler

[19]. Using Drosha processing site information along with regular

sequence and structural features implemented through SVM,

successful identification of miRNA precursors was demonstrated

by Helvik et al [20]. A recently developed tool MiRPara [21] took

a more realistic approach while considering datasets. The authors

proposed that the structures and sequences reported in miRBase

[22] might have incomplete information for miRNAs, as in actual

the precursors could have longer sequences. Therefore, actual

precursors might have different structural and compositional

features. The authors identified a few region specific sequence and

structural features for partial pri-miRNA sequences, which

performed well for large number of species.

As mentioned above, the initial approaches for miRNA

discovery had largely relied upon conservation of sequences across

various species, homology, hairpin detection and free energy

calculation. This resulted into localization of miRNA model

building and detection of similar kind of miRNA candidates.

Therefore, even with newer approaches, influence of homology

would suppress the identification of novel candidates and other

unseen properties of miRNAs. Thus, expansion of datasets also

became limited. Recent advances with Next Generation Sequenc-

ing (NGS) driven technologies helped in guiding the process of

miRNA discovery by providing a confidence measure through

read mapping to the reference sequences. This also encouraged

the genome wide scanning for miRNA candidates with better

speed and confidence, reporting novel miRNA candidate regions

which were otherwise missed by earlier techniques and tools [23].

Due to such developments, an approximate exponential increase

in number of novel miRNA families is notable in the recent

releases of miRBase (figure 1a–b). Leveraging from break-

throughs made by NGS, recently, some groups have developed

tools for detection of miRNA candidates using NGS read data.

miRDeep [24] has been one such tools for analyzing data from

Illumina Genome Analyzer sequencing platform and for identi-

fying miRNA candidates while considering reads distribution

across a reference. The mapped regions are considered to measure

the RNA secondary structure based information. Following

miRDeep, a few more such tools like miRNAkey [25],

miRanalyser [26] and MIReNA [27] have come up.

The present work reports a novel approach to identify miRNA

candidates with high accuracy and stable performance over wide

range of species. Biologically relevant novel features like miRNA

specific mature miRNA guided structural profile matrices and

structural triplet density variation profiles with respect to position

have been introduced to derive a superior and stable performance.

An ensemble machine learning methodology, Bootstrap Aggre-

gating (BAGging), has been implemented. It employs comple-

mentary classifiers like Support Vector Machine (SVM), Naive

Bayes (NB) and Best First Decision Trees (BFTree) to build the

final classifier models for large number of species, enhancing the

performance strongly. An NGS module has been built to find

miRNA precursor candidates, using Illumina read data. The

process of miRNA candidate detection requires large volume of

sequence data scanning, which makes it dependent upon extensive

computing. Considering this, the entire approach has been

implemented as a web-server as well as user friendly standalone

GUI version, both in parallel architecture.

Methods

Datasets
Six different species viz., Human, Mouse, Rat, Dog, Nematode

and Fruit fly were used in this study. For the above six species,

positive and negative datasets were created. The positive sets

included known miRNA containing sequences from the species

while the negative sets included pseudohairpin sequences gener-

ated from mRNAs, rRNAs, snoRNAs, snRNAs, tRNAs, and

SINE elements.

Genomic sequences were downloaded from UCSC [28] and

Ensembl [29]. The precursors, mature miRNAs and their co-

ordinates were downloaded from miRBase version 18 [22]. The

sequences for mRNA, rRNA, snoRNA, snRNA, SINEs and

tRNA, along with their co-ordinates were downloaded from

UCSC [28] and Ensembl [29]. SINE sequences were collected

after running RepeatMasker/Repbase [30].

Dataset Generation
Positive dataset generation. The central base of the

terminal loop was treated as the reference point. Mature miRNAs

were mapped into the pre-miRNAs and the genomic location of

various structural components were recorded. Considering the

central base of the terminal loop as the midpoint, genomic

sequences up to 200 bp were extracted from the flanking regions.

This placed the reference point appropriately at constant position,

providing uniformity across all possible dataset instances, irre-

spective of variation in length, loop size and relative positioning of

mature miRNA regions.

Negative dataset creation. In the negative dataset sequenc-

es, the terminal loops were identified. The middle base of the

terminal loop was considered as the reference central position for

every negative instance, as in case of the precursors for reference

position identification. The negative dataset consisted of different

types of RNA sequences including ribosomal RNA, small

nucleolar RNA, small nuclear RNA, transfer RNA, SINE

sequences and mRNA sequences, all taking pseudohairpin shapes.

For all instances, the genomic co-ordinate of central reference

position was considered for taking 200 bp sequence with equal

flanks. For the dataset of human pseudohairpins, 8,494 pseudo-

hairpins (used by Triplet-SVM) were downloaded and searched

across the genomic sequences [13]. RNAfold [31] was run against

the mRNA transcriptome data from all target species considered

here, to derive the pseudo-hairpin datasets. The sequences used to

create the training and testing datasets for all target species are

mentioned in Supporting Material S1.

Pre-miRNA Identification with miR-BAG

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e45782



Features Generation and Extraction
The feature data vectors were generated for 200 nucleotides

long primary windows, having three different sub-window types,

of which two were sliding windows. The features were classified

into two broad categories, based on the manner they were

estimated. Class I properties were estimated with overlapping

sliding windows run over full length of the sequences. Class II

properties were estimated for complete length sequences,

without the sliding window. A comparative study was performed

by changing the window size from 17 nucleotides to 45

nucleotides for deciding the most appropriate window size

regarding Class I properties. The best discrimination was

observed for window size of 21 nucleotides. Thus, window size

of 21 nucleotides with one nucleotide overlap for each sliding

window was employed. The major properties considered using

the sliding windows were: total normalized hydrogen bondings

per window, mononucleotide densities, dinucloetide densities

and structural triplet element densities for all 20 combinations

of the three structural characters: ‘‘ (‘‘, ’’)’’ and ‘‘.’’. Every such

window provided a relative position in a sequence and

associated values for the features mentioned above, giving

positional feature values with respect to the reference position.

The overall work-flow is mentioned in Figure 2.

Class II features were calculated for full length of the sequences

instead of the sliding windows. This class includes structural profile

based scoring feature and maximum number of consecutive paired

bases (CPB) observed in a given structure-sequence. CPB

represented the longest pairing stretch observed in a given

structural sequence. miRNA specific structural profile matrix

based scoring emerged as one of the most critical features observed

in the present study. It derives motivation from the fact that

miRNA precursors are structurally highly conserved for mature

miRNA regions, which are supposed to host a few binding sites for

various processing factors in miRNA genesis and localization. For

every target species, a library of position specific structural

matrices was created utilizing the pre-miRNA sequences men-

tioned in miRBase version 18. The secondary structures of pre-

miRNAs were derived using RNAfold [31]. This was followed by

mature miRNA region constrained alignment to evaluate the

structural similarity across various miRNA families and develop

structural similarity based clusters of miRNAs (figure 3).

For developing the structural profiles, information about

coordinates of mature miRNA regions was necessary. This

information was derived by mapping mature miRNAs into their

precursors, which in turn were also mapped into the correspond-

ing secondary structures. RNAfold [31] draws secondary structure

of RNA and gives output in dot-bracket form (‘‘(‘‘,’’.‘‘,’’)’’). To

distinguish mature miRNA regions from rest of the regions,

RNAfold [31] notations were transformed using the following:

(‘‘(‘‘2.’’M’’, ‘‘.’’2.’’O’’, ‘‘N’’ 2.’’ )’’. For the flanking regions

around the mature miRNA region, the transformation was done

as: ‘‘(‘‘2.’’L’’, ‘‘.’’2.’’D’’ and ‘‘)’’2.R.

The in-house developed scripts aligned the modified struc-

tural notations/encodings by aligning first for the mature

miRNA regions (containing M,O,N), followed by bidirectional

alignment for rest of the structural regions (L,D,R). By doing so,

the mature miRNA region constraints and guides a suitable

alignment, restoring structural information with respect to the

mature miRNA region. Such structural information could

otherwise be lost while aligning various precursor sequences

end to end (Figure 3). In this manner, structural proximities

between various precursor molecules were measured and

clusters of proximal precursors anchored at mature miRNA

regions were formed. For every miRNA, structural alignment

was done against the rest of miRNAs with 80% identity cut-off.

All closely similar miRNA structures formed miRNA specific

clusters, which were multiple-aligned using an in-house devel-

oped constrained progressive multiple structural alignment tool.

This generated a library of precursor miRNA structural profiles,

where every profile contained information about probability of

occurrence of a secondary structure state for every position in a

more accurate manner. The length of such profile is the

distance between the coordinates of the smallest node at the left

side and that at the right side of the mature miRNA region.

This ensures consideration of most informative and fully

aligning regions only. Every putative miRNA candidate is

scanned through this library of structural profiles to identify the

highest scoring regions. The highest score observed for sequence

becomes the representative score for the corresponding full

sequence. The same score is also taken as a feature component

for machine learning step (figure 3). For every profile, the

structural sequence is first scanned through a series of

overlapping sliding windows. The size of such windows is fixed

dynamically by the length of the profile, as described above.

Using the above mentioned procedure, a total of 1,411 miRNA

specific structural profiles were generated for human miRNAs.

Similarly, a total of 727, 320, 393, 222 and 207 structural

profiles were generated for mouse, dog, rat, C. elegans and

Drosophila miRNAs, respectively.

Finally, for every input sequence considered with 200 bp length,

there were 80 left sliding windows, 80 right sliding windows and

one fixed window. Each window had 40 features, 180 position

specific structure weighted bond information features and two

window independent features (CPB and Profile score), leading to a

total of 6,622 features, representing every 200 bp sequence.

Feature selection was performed to identify the most important

features contributing to the discrimination process. Feature

Figure 1. Trend of miRNA discovery with time. (a) Bar Graph depicting the number of miRNAs present in various versions of miRBase in animals,
plants and viruses. (b) The line diagram depicts the year-wise growth in the number of reported miRNAs.
doi:10.1371/journal.pone.0045782.g001

Pre-miRNA Identification with miR-BAG
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Figure 2. miR-BAG workflow. The complete work flow of miR-BAG, depicting the various classes of features calculated and the classification
schema.
doi:10.1371/journal.pone.0045782.g002

Pre-miRNA Identification with miR-BAG
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selection is a process for identification of features, which could ably

discriminate between the positive and negative instances. The

feature score was calculated using following equation.

F~
(Xi(z){Xi)2z(Xi({){Xi)2

1= n(z){1ð Þð Þ
P

Xk,i{Xið Þ2z 1= n({){1ð Þð Þ
P

Xk,1{Xið Þ2

Where,

F = Feature score

Xi(+) = Mean value for i-th feature in experimentally validated

positive instances

Xi(2) = Mean value of the i-th feature in negative instances

Xi = Overall mean value for the i-th feature

Xk,i(+) = Feature value for k-th positive instance for i-th feature

Xk,i(2) = Feature value for k-th negative instance for i-th

feature

The features considered in this study are independent and

unaffected from the arm location of the mature miRNA region in

the precursor sequence

Classification
miR-BAG uses an ensemble approach of machine learning,

bagging (Bootstrap AGgregating), to classify miRNA. It employs

JavaML [32] and Weka Classifier [33]. Ensemble methods like

Bagging have been reported to increase classification accuracy by

aggregating the classifications made by multiple complementary

classifiers. It overcomes over-fitting, bias-variance and thus,

delivers stable performance. Bagging does not focus upon some

specific instances or classifier, which makes bagging less prone to

over-fitting. Bagging repeatedly samples the data from the dataset

with replacement. A combination of different complementary base

classifiers forms a committee, which learns from different training

subsets, and the component classifiers are tested together for

performance. Models generated by the data are combined to form

a composite model C*. If a classifier is unstable, bagging tackles it

by reducing the errors of the classifier. It has been found that

bagging ensures better performance than any single classifier while

the possible error is always less than the error by a single classifier.

It also minimizes the impact of noise in a given data. miR-BAG

bagging classifier has three different classifiers: Naı̈ve Bayes,

Figure 3. Structural profile matrix derivation and application. The flow diagram represents the steps in structural profile matrix generation
and its application.
doi:10.1371/journal.pone.0045782.g003

Pre-miRNA Identification with miR-BAG
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Support Vector Machine (SVM) and Best First decision tree

(BFTree).

Naı̈ve Bayes removes the noisy features of data while estimating

conditional probability. A Naı̈ve Bayes classifier estimates the class

probability by assuming conditional independence between the

features, using the following equation:

P(Y DX )~
P(Y )Pd

i~1 P(XiDY )

P(X )

Where:

P(X) = Prior probability of observing the feature vector X.

P(Y|X) = Posterior probability of the given hypothesis Y

(identified class).

P(Xi|Y) = Posterior conditional probability of observing ith

feature’s value Xi, given prior of hypothesis.

Best First decision tree (BF Tree) expands the best nodes first

while creating the tree. The best node is the node whose split

reduces impurity. The above mentioned two methods reduce over-

fitting and do not need any huge learning set to classify. Also, such

classification utilizes each attribute to find a local optimal solution.

The third classifier implemented in the present study is Support

Vector Machine (SVM). SVM forms a decision boundary with

maximum error margin hyperplanes to classify instances, provid-

ing global solutions. The SVM kernel implemented in the present

work is a Gaussian kernel, having the following equation:

k X , Yð Þ~ exp {c X{Yk k2
� �

Where, k = Kernel of functions X and Y.

Inconsistency with variable datasets has been an issue with

kernels of SVM. A kernel may classify some datasets accurately

while on some other datasets its accuracy may decrease. With the

bagging approach implemented in the present study, each

classifier makes up for others’ demerit in a complementary

fashion, bringing stability and consistency along with high

accuracy.

The basic bagging algorithm:

Input:

D, a set of training samples.

Let K be the number of bootstrap samples.

C, a vector of learning schemes (Naive Bayes, BFTree and

SVM).

Pseudo code:

1 for I = 1 to k do

2 Create a bootstrap sample of size N, Di

3 for j = 1 to C do

4 Train a base classifier Cj on the bootstrap sample Di

5 end for

6 end for

7 C*(x) = argmax Si d(Ci(x) = y).

Performance Measurement
Different performance-measure tests were conducted: 1) Tests

with datasets for six different species pre-miRNAs (miRBase

version 18) [22]. Above mentioned sources were used to develop

the resources for positive and negative instances. 2) Performance

comparison with recently published tools: microPred [34], Triplet-

SVM [13], CSHMM [16], miRNA SVM [20], MiRPara [21] and

MirEval [17] 3) Ten fold cross validation based Receiver

Operating Characteristic Curve (ROC) tests for performance over

large datasets. The values for accuracy(Ac), sensitivity(Sn),

specificity(Sp) and MCC were calculated using the following

equations:

Sn = TP/(TP+FN)

Sp = TN/(TN+FP)

Acc = (TN+TP)/(TN+FP+TP+FN)

MCC = {(TP*TN)2(FP*FN)}/

!(TP+FN)*(TP+FP)*(TN+FP)*(TN+FN)

Where:

TP = True Positives

TN = True Negatives

FP = False Positives

FN = False Negatives

Sn = Sensitivity

Sp = Specificity

Acc = Accuracy

MCC = Matthew’s Correlation Coefficient

The Receiver Operating Characteristic Curves (ROCs) with

corresponding Area Under the Curve (AUC) were plotted for all

models using 10 folds cross validation. Open source ‘‘R’’-statistical

package and ROCR were used to build the ROC plots.

For all training and testing datasets considered in the present

study, thorough care was taken to avoid any bias created due to

redundancy and common occurrences of instances. All identical

entries common to the test and training sets were removed.

Therefore, the testing datasets are mostly with instances which

were never used during the training step. Also, they were never

seen before instances for the classifiers. All these precautions

minimized any possibility of bias.

Implementation of Parallelism
In miR-BAG, divide and conquer approach has been imple-

mented to achieve parallelism. Parallelism has been implemented

by applying Java Concurrent Library (JCL). Parallelism has been

implemented at three major levels: 1) Sequence 2) Windows and 3)

Matrices. Details about implementation of concurrency is given in

Supporting Material S2. In general, the program has inbuilt

capacity to decide the total number of threads to be utilized in a

processor, which could be useful in case of processor overload

variation.

Next Generation Sequencing Data Analysis
The FASTQ files for Bos taurus transcriptome was downloaded

form NCBI database GEO [35]. In this experiment, the authors

had reported Illumina reads for 95 different tissues and conditions

[GSE21544] [36]. The length of the reads in the FASTQ files was

16 bases. Sequences of miRNA hairpins were downloaded from

miRBase version 18 [22], non coding RNA sequences were

downloaded from Rfam [37] version 10.0, and the mRNA

sequences were downloaded from UCSC [28]. Genomic index for

Bos taurus was downloaded from Bowtie database [38]. The

downloaded FASTA sequences were converted to Bowtie indexes,

using Bowtie-Build. In total, 290,240,521 reads were generated in

the experiment. These reads were extracted from the FASTQ files

and count of each unique read was recorded. After considering the

unique reads only, the number of total reads decreased to

7,434,705. This step was performed to reduce the computation

time, memory requirement and processor load. Thereafter, these

reads were mapped across the miRNA precursor sequences, non-

coding RNA sequences and mRNA sequences to filter out the

already annotated reads using Bowtie with 10 hits threshold. The

remaining reads which did not map to any of the annotated

regions were considered for novel miRNAs identification.

Pre-miRNA Identification with miR-BAG
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Detection of known miRNA. The known pre-miRNA

sequences specific to Bos taurus were downloaded from miRBase

[22] and were mapped back to the genome to find their

coordinates. The coordinates were used to extract the sequences

with a total of 250 bases, which included the flanking regions.

miR-BAG was run with a human specific classifier model.

Identification of novel miRNA candidates. The final reads

which did not map to any of the already annotated RNA

categories were mapped to Bos taurus genome. The mapped

coordinates were extracted from the Bowtie result file. Using these

coordinates, sequences of 250 bases were extracted in FASTA

format from the genome file, which was downloaded from UCSC

while considering the read mapping region as the center. All these

sequences were searched for possible novel miRNA candidate

regions, using miR-BAG. MiRNA abundance was measured by

applying Read per million read count normalization (RPKM).

Server and Standalone Implementation
The entire server was implemented in Apache-Linux platform

using PHP. Majority of the codes were developed in C++, JAVA

and PERL. Statistical processing and calculations were imple-

mented through methods developed in ‘‘R’’ open source statistical

package. The standalone GUI version was developed in QT C++.

The entire work was carried out in Open Source OS environment

of Ubuntu and Fedora Linux platforms.

Results and Discussion

miR-BAG has been developed to identify miRNA precursors in

genomic sequences with high efficiency, accuracy and perfor-

mance stability. miR-BAG algorithm has applied some novel

sequence-structure based features and an efficient machine

learning protocol. As mentioned earlier, many of the previously

developed tools worked with conventional properties like mini-

mum free energy (MFE), phylogenetic conservation and hair-pin

loop detection. In miPred [39], the authors introduced an

approach independent of conservation, which was dependent

upon the Minimum Free Indexes proposed by Zhang et al [40],

using single sequence ab initio folding. As per the observations

made by Gardener and Giegerich [41], MFE might not be

discriminating enough, as the reliability of such methods decreases

with increase in the length of sequences. In case of miRNAs, this

becomes a matter of concern, as finding the TSS and exact

precursors is still a major challenge. Considering the limitations of

single sequence based ab initio folding, such uncertainty may have

impact over the accuracy of secondary structure determination

process. To analyze the contribution of minimum free energy in

distinguishing miRNAs from non-miRNA sequences, energy

distribution plots were drawn using RNAfold [31] (Supporting

Material S3). As could be observed from the plots, there has been

a large overlap between the MFE values for miRNA candidates

and non miRNA sequences, suggesting insufficiency of MFE as an

efficient discriminating property. Thus, single sequence structure

derived conventional properties may have some limitations as a

good discriminator.

Consistent Accuracy while Identifying miRNAs for Wide
Range of Species

Large volumes of different datasets were created for each species

considered in the present study. The process of dataset generation

is also dependent upon the availability of sequences for a given

species. The positive and negative sets were made by randomly

selection of sequences from the parent sets. For positive sets, this

consisted of known miRNA containing sequences, while the

negative sets consisted of various classes of RNA sequences.

Related information is summarized in Table 1 and elaborated in

the implementation section. While creating training and testing

datasets, a balance was maintained between the positive and

negative sets to prevent any issue arising due to class imbalance. In

negative sets, proportionate representation of negative instances

from various categories was maintained to ensure a balanced

representation. All possible redundancy in the datasets was

curtailed.

The developed species models included Homo sapiens, Rattus

norvegicus, Mus musculus, Canis familiaris, Caenorhabditis elegans and

Drosophila melanogaster. When tested over the experimentally

validated instances in the test set, the developed model for human

yielded an accuracy of ,91%. The classifier was able to identify a

total of 556 true negatives out of a total of 607 negative instances,

approaching a specificity value of 91.59%. The observed

sensitivity was at 89.8%, with a total of 449 true positives correctly

identified while 51 instances were identified wrongly as false

negative instances. Almost similar level of performance was noted

for other species (associated details are available in Table 1 and

Table 2), exhibiting high sensitivity and specificity values with

much smaller gaps.

On an average, about 92% overall accuracy was observed for all

species considered in the current study, suggesting high accuracy

of the classifiers with an average sensitivity of ,90% and an

average specificity of ,93%. Complete performance break up in

species specific manner has been summarized in Table 2. Besides

this, 10 folds cross validation based performance tests yielded good

quality ROC curves for all target species with high AUC values

(average AUC value = 0.94) (Figure 4). Similarly, the MCC

values for the classifiers also exhibited higher scores for most of the

species. The highest MCC was observed for dog and rat with a

value of 0.86 (Table 2). MCC and AUC are considered as an

appropriate indicator for performance, robustness and reliability

for a given classification system. These values emerged consider-

ably good for the species models developed in the present study.

The redundancy was curtailed from every dataset considered in

the present study and cases common to training and testing

datasets for the target species were not removed. Though the

subfamilies of a common miRNA family could be present in the

training and testing datasets, such condition did not create bias in

the classification system. At mature miRNA level, a substantial

similarity exists between the mature miRNA regions of instances

having a common miRNA family. However, in the present work,

information has been extracted from 200 bp precursor sequences.

In such sequences, despite of some instances sharing a common

miRNA family, the overall identity level is much lower than the

identity at mature miRNA level. Still, to assess the possibility of

bias introduced due to presence of similar sequences, a test was

performed. All relationship instances between training and testing

sets which exhibited .80% identity were removed. The perfor-

mance was analyzed for the new sets without such instances. The

total number of such sequences exhibiting .80% identity was

found to be much small in number than the total sequences

considered for testing. Extremely slight changes in performance

was noticed, where the performance drop never crossed even

0.9%, clearly suggesting that the classification system was free

from any such bias.

One may still argue that despite of having poor overall

similarity, existence of common family led mature miRNA region

similarity alone may cause some bias. Though the presented

algorithm considers the features contributed by a large region of

200 bp in position specific manner where significant existence of

such bias is least expected, a test was carried out to measure any

Pre-miRNA Identification with miR-BAG
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such bias. Considering the human miRNA families, the precursors

were distributed in such a manner that no common family existed

for any pair of training and testing instances. The training set

contained precursors belonging to entirely different miRNA

families than those in the testing set (Supporting Material S1). A

total of 573 positive instances in the training set and 392 positive

instances in the testing set were taken. Since the bias was expected

to be introduced through the positive instances only, same

negative instances were retained in the test and training sets as

were taken in the above mentioned tests for human. The new

classifier displayed almost a similar level of performance

(Sn = 87.7%, Sp = 92.4%, Ac = 90.5%) as was observed earlier,

concurring with the above mentioned observation that the

classification system does not suggest any significant bias.

miRNA Specific Structural Profile Matrix as the Top
Scoring Feature

Several properties have been used previously to form classifi-

cation systems which could be able to fish out the miRNA

candidates from sequence data. Several tools considered properties

as GC content or AU content of the sequence, number of bulges,

size of bulges, length of the hairpin and many others to distinguish

miRNAs and non miRNAs [8,34]. A comparative study was

performed to calculate the ranges of these criteria. For most of the

above mentioned features, there was a large overlap between the

various RNA categories considered. For instance, in case of

human, the GC content for miRNAs (avg: 0.53), rRNA (avg: 0.49),

snoRNA (avg: 0.43), snRNA (avg: 0.40), tRNA (avg: 0.56) and

pseudohairpins (avg: 0.56) exhibited large amount of overlaps. The

complete information for every species is provided in Table 3
(Supporting Material S4 for details). Thus, such features may not

be sharp enough to efficiently differentiate between miRNAs and

background sequences. Also, we have already discussed above

about the implications in considering MFE, a consistent feature in

most of the identification tools. Continued application of such

features as the central feature might be a reason for the observed

performance lag, which some tools exhibited here when tested for

different datasets in the present study.

As mentioned before, the structural triplet element features were

calculated in sliding windows. Xue et al [15] had captured both

structural and sequence features, considering full length of the

precursor at one go. However, in the present study the triplet

structural elements’ density profile variation alone with respect to

position could provide more information and discrimination than

considering triplet elements with central nucleotide information

without positional references. A possible reasoning for such

observation could be the fact that more than sequence level

similarity, structural level similarity is expected for elements like

miRNA precursors. Besides this, the positional information works

like a relative structural motif. Our analysis with and without

sliding windows confirmed this observation (Table 4). Also, it

appeared among the top scoring features during feature selection.

One of the most important parts of a miRNA candidate

sequences is the region containing the mature miRNA itself, which

controls the target gene’s expressions in spatio-temporal manner

[42,43]. It has been observed that structure of a functionally

critical entity is comparatively more conserved than its sequence.

Therefore, due to its functional importance, the structure of

Table 1. Number of sequences taken in testing and training sets.

Training Set Testing Set

Positive Negative Positive Negative

r sno sn t SINE ps r sno sn t SINE ps

Homo sapiens 584 98 98 98 86 5 250 500 97 97 97 86 5 225

Canis familiaris 158 34 34 34 0 0 55 159 33 35 35 0 0 53

Rattus norvegicus 195 43 45 44 0 0 60 196 30 30 30 0 0 84

Drosophila melanogaster 112 12 24 11 25 0 40 113 13 24 11 25 0 40

Caenorhabditis elegans 108 5 25 25 25 0 25 109 5 25 25 25 0 25

Mus musculus 348 75 75 75 0 0 123 348 75 75 75 0 0 123

*ps- pseudohairpin sequences from mRNAs, r– rRNA sequences, sno- snoRNA sequences, sn- snRNA sequences, t- tRNA sequences.
All possible sources of redundancy were eliminated while preparing the datasets. The test sets contained never seen before instances.
doi:10.1371/journal.pone.0045782.t001

Table 2. Performance of miR-BAG for different species.

Species TP FN TN FP Sensitivity (%) Specificity (%) Accuracy (%) MCC

Homo sapiens 449 51 556 51 89.80 91.59 90.78 0.81

Canis familiaris 143 16 150 6 89.93 96.15 93.01 0.86

Mus musculus 302 46 319 29 86.78 91.66 89.22 0.78

Rattus norvegicus 184 12 161 13 93.87 92.52 93.24 0.86

Drosophila melanogaster 102 11 108 5 90.26 95.57 92.92 0.85

Caenorhabditis elegans 97 12 98 7 88.99 93.33 91.12 0.82

*TP = True positive, FN = False negative, TN = true negative, FP = False positive, MCC = Matthew Correlation Coefficient.
Performance is described in terms of sensitivity, specificity, accuracy and MCC values obtained for each species.
doi:10.1371/journal.pone.0045782.t002
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miRNA containing region might be more conserved than the rest

of the precursor regions. Also, some recent studies have suggested

that this region harbors binding sites for factors critical for miRNA

biogenesis [44,45]. Though it is just a single feature among the

array of various features considered in this study, structural profile

matrices introduced in this study emerged as one of the most

discriminating features. It relied upon the property of structural

conservation in miRNAs. It exhibited high discrimination capacity

between the positive and negative instances (p-value ,0.0001,

Mann-Whitney test at 95% confidence interval). A test for its

contribution in the classifiers as a single feature suggested a drop in

the classifier performance if the profiles were not considered

(Table 5). This is a remarkable contribution, considering the fact

that structural profiles make just a single feature. This impact was

evident across most species taken in this study, suggesting the

universal validity of the structural profiles. The structural profile

matrices scoring plots were generated for the positive and negative

instances, considering all species involved in this study (Supporting

Material S3). The plots clearly displayed the demarcating ability of

matrix scores.

Furthermore, feature selection was performed to identify the

most discriminating features in every species studied here.

Structural profile matrices emerged as the highest scoring top

ranked feature in majority of the species, followed by positional

triplet structural elements. Table 6 shows the feature scores and

ranks for structural profile matrix feature for various species. The

top 15 features and their corresponding F-scores are mentioned in

Supporting Material S5.

Structural profiles were generated using all species specific

precursors. Since part of the same set was used as positive

instances for testing the classifier, one may doubt for presence of

some bias arising due to this. However, possibility of such bias in

profile based approaches is very less. The profiles dilute individual

identity of instances and promote domain specific group identity,

which was verified through some tests. The profiles developed

from human specific precursors were applied against cow, rat, and

C. elegans specific test datasets, which contained precursor

sequences specific to these species only (42, 61 and 99 species

specific precursors from cow, rat and C. elegans, respectively). The

datasets contained almost equal amount of pseudo-hairpin

instances. The human specific profiles were totally naive to these

instances. If a profile memorizes the individual instances used to

develop it and imbibes some bias, a poor performance is expected

if such profiles are used against never seen before instances. Also,

there should not be any major change in the performance if such

profiles are not used. Therefore, if there is some bias, the

classification system containing human specific profiles should

display no change in its performance if the classification system

works without these profiles. However, when tested over the above

mentioned unseen datasets (containing rat, cow and c. elegans

specific miRNAs), the same did not hold, and a sharp decline in

performance was observed after removal of human specific profiles

(Table 7).

In another test, using human miRNA precursors, the test and

training sets were created with entirely different sets of miRNA

families (Supporting Material S1). No instances from training and

test sets belonged to any common miRNA family. The negative

instances in both datasets were same as those taken in the above

mentioned benchmarking studies for human. The structural

profiles were built using the training set precursors only. The

resultant classifier’s performance with the new matrices was

measured for the test set having totally different set of miRNA

families. As observed earlier, the performance remained almost

similar (Sn: 88.3%, Sp: 92%, Ac: 90.83%), suggesting no

significant bias. About 1% drop in the accuracy was observed

when the classifier was run without the profiles. As already

mentioned above, such drop is significant one because the profile

matrices contribute only as a single feature.

Above results suggest that the profiles provide some structural

signatures specific to microRNA precursors, which could be useful

for miRNA identification. The applied approach also seems to be

free from any significant bias.

Figure 4. ROC plots for performance with 10 fold CV. The
Receiver’s Operating Characteristic Curves obtained for animal model
classifiers.
doi:10.1371/journal.pone.0045782.g004

Table 3. Average values for conventional features considered for miRNA precursors.

Species MFE (kcal/mol) GC content AU content Loop length Stem length
Number of
bulges Hairpin length

Animals 237.44 0.49 0.51 17 34 3 85

Homo sapiens 240.09 0.50 0.50 16 34 3 84

Canis familiaris 229.23 0.48 0.52 13 28 3 69

Mus musculus 236.80 0.49 0.51 17 36 3 85

Rattus norvegicus 239.49 0.50 0.50 18 36 4 91

Caenorhabditis elegans 234.37 0.42 0.58 19 35 3 89

Drosophila melanogaster 233.00 0.43 0.57 20 37 4 95

The average values for the various conventional features: Minimum Free Energy, GC content, AU content, loop length, stem length, number of bulges and length of the
hairpin.
doi:10.1371/journal.pone.0045782.t003
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Ensemble Installs a Balance
While developing miR-BAG, three different base classifiers were

implemented in an ensemble where each component classifier

displayed its own set of merits and demerits. The suitable

combination of classifiers was determined through hit and trial

selection of classifiers. The combination which maintained the

highest balance between sensitivity, specificity, and accuracy was

considered as the best one. It was observed that the combination of

BFtree, SVM and Naive Bayes not only classified the data with

high accuracy but also maintained a good balance between

sensitivity and specificity, a highly desirable property for a reliable

classification system. To investigate the importance of individual

classifier, performance of the classification system was measured

separately in absence of each of the component classifiers. Human

datasets were considered for this part of the study. When BFtree

component was removed from the combination and classification

was carried out using only SVM and Naive Bayes, the sensitivity

increased to 95%. However, the specificity dropped by ,17%,

causing fall in overall accuracy by ,7%. Almost similar pattern

was observed when the performance was measured without Naive

Bayes and SVM components, separately. Sharp drops in specificity

and overall accuracy values were clearly visible. Also, huge gaps

between specificity and sensitivity values were observed (Table 8).

Therefore, it is evident that bagging installs a balance between

sensitivity and specificity with high overall accuracy, providing a

better classification system. The best result was obtained when all

three of these classifiers were implemented in a combined form.

This is a remarkable property, as in genome wide scanning higher

false positive values cause impeding effect. Detailed information is

given in Table 8.

Faster Analysis Over Larger Data through Concurrency
Unlike other miRNA identification tools, miR-BAG runs on

single processor as well as on multi-processor machines in

concurrent mode. The parallel version of miR-BAG uses Java

Concurrent Library (JCL). miR-BAG JCL creates threads, which

are equally distributed across the number of processors provided

by the user for faster execution. These threads can be executed

simultaneously and independently on multiple processors, per-

forming similar operations for different sequences or concurrently

solving different parts of a simultaneously existing problem. The

execution time of miR-BAG algorithm reduced by manifolds with

implementation of concurrency, which also depended upon the

number of processors utilized by concurrent processes.

A study was performed to analyze the effect of parallelism upon

the classifier’s execution rate where the number of processors

varied (Figure 5). The result clearly suggested a reasonable

increase in the processing speed due to parallelism. For the

presented data, the input contained 1,500 sequences, each of

length 200 bp. Without parallelism, miR-BAG took 632.66

minutes to process the same job while with parallelism its

performance improved to 282.72 minutes for a single processor.

The same job took only around 36.37 minutes (0.6 hrs) when

executed with 12 processors in parallel. The execution perfor-

mance for 12 processors increased by 7.77 times when compared

to the single processor run (Figure 5). In the present analysis,

AMD Opteron Magny-cours (12 cores) processors (2.2 Ghz) were

used. These observations look important especially after consid-

ering the fact that miRNA discovery largely depends upon analysis

of high throughput data. At present, hardly any miRNA discovery

tool provides any such scope for performing large scale analysis in

concurrent mode, on any high end server as well as on any simple

desktop machine. Here, parallelism has been introduced at

processor as well as at threads level. The system has been designed
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to automatically decide the number of threads to be utilized from

each processor, depending upon the processor load.

miR-BAG Emerges as a Reliable Performer
miR-BAG was compared for performance with six existing tools

for miRNA precursor identification: Triplet-SVM [13], microPred

[34], CSHMM [16], MirEval [17], miRNA SVM [20] and

MiRPara [21]. The above mentioned human datasets were used.

The analyses suggested better performance by miR-BAG as shown

in Table 9.

Triplet-SVM [13] works with triplet structural elements,

considering position independent structural as well as sequence

based information. When tested, Triplet-SVM exhibited a

specificity value of 93.57% and a lower sensitivity value of

70.2%. Thus, the overall accuracy of Triplet-SVM was 83.02%

(Table 9). Almost the similar issue was apparent for miRNA SVM

[20], where the overall accuracy was ,71%. However, a huge

imbalance between its sensitivity (43.20%) and specificity (94.72%)

values was conspicuous. This suggested that miRNA SVM has an

inclination towards over-prediction of false negatives and overall

high prediction of negative instances. Almost the opposite was

apparent with CSHMM [16], where the tool was found more

inclined towards over-prediction for miRNA candidates. Fort the

same test set, CSHMM exhibited a sensitivity of 98.4% while

specificity took a dip at 24.05%, resulting into overall accuracy of

57.63%. CSHMM [16] applies memory backed context sensitive

HMM to model long distanced pairing between the bases in a

RNA secondary structure. However, as discussed above, it appears

that accurate identification of miRNA precursors relies more upon

measuring multiple model features instead of a few features.

Another tool, microPred [34], performed well (Sn: 90.44%, Sp:

77.72%) when tested over the same dataset which was used to

report its bench-marking results (Table 10). However, it exhibited

declined accuracy for other datasets (Table 9). For our

benchmarking dataset, microPred displayed 16.6% sensitivity,

67.54% specificity and 44.53% accuracy. microPred [34] consid-

ers different types of RNA families in its negative set, including

rRNAs, tRNAs and Y RNAs. It considers minimum free energy of

folded RNA for a fixed query length. It was found that microPred

was extremely sensitive towards the query length and a drastic

performance drop was noted if the input length was varied.

Variation in input length changed the structural and MFE

parameters, the properties upon which microPred relies immense-

ly. As already discussed above, free energy distribution does not

emerge as a strong discriminating feature, as a large amount of

negative and positive instances overlap with each other (Support-

ing Material S3). With this work, we suggest that the above

mentioned limitations of microPred could be fixed if the same

Table 5. Effect of structural profile matrix on classification.

Classification With Matrix Classification Without Matrix

Species Sensitivity(%) Specificity(%) Accuracy(%) Sensitivity(%) Specificity(%) Accuracy (%)

Homo sapiens 89.80 91.59 90.78 91.00 90.44 90.69

Canis familiaris 89.93 96.15 93.01 91.19 95.51 93.33

Mus musculus 86.78 91.66 89.22 89.94 87.93 88.93

Rattus norvegicus 93.87 92.52 93.24 92.34 91.37 91.89

Drosophila melanogaster 90.26 95.57 92.92 85.84 94.69 90.26

Caenorhabditis elegans 88.99 93.33 91.12 88.07 93.33 90.65

The structural profile matrix proves itself as an important feature which increases the performance of the classification system by providing a novel biological feature.
doi:10.1371/journal.pone.0045782.t005

Table 6. Feature rankings and F-scores for structural profile
matrix for different species.

Species Matrix based scoring

Rank F-score

Homo sapiens 17 0.532

Canis familiaris 2 1.162

Mus musculus 1 0.813

Rattus norvegicus 1 1.029

Drosophila melanogaster 49 0.335

Caenorhabditis elegans 1 0.722

Rank and feature scores obtained after performing feature selection show the
structural profile matrices among the top scoring discriminating features.
doi:10.1371/journal.pone.0045782.t006

Table 7. Structural profiles provide precursor specific
signatures universally.

TP FN TN FP Sn (%) Sp (%)
Acc
(%)

Cow Data

Classification with matrix 42 0 36 6 100 85.71 92.85

Classification without
matrix

37 5 34 8 88.09 80.95 84.52

Dog data

Classification with matrix 54 7 56 5 88.52 91.80 90.16

Classification without
matrix

50 11 57 4 81.96 93.44 87.04

C. elegans Data

Classification with matrix 94 5 93 9 94.94 93.00 93.96

Classification without
matrix

91 8 89 9 91.91 89.00 90.45

For never seen before datasets from cow, rat and C. elegans, the classification
systems with the profiles developed from human specific precursors performed
significantly better than the classification systems without human specific
profiles. This suggests that the profiles have domain specific memory instead of
instance based individual memory, making them useful for universal
characterization of the precursors.
doi:10.1371/journal.pone.0045782.t007
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process is done with sliding windows of some fixed length instead

of considering complete sequence at one go.

MiRPara [21] considers minimum fold energy of the query

sequence along with other parameters. This tool takes a realistic

approach while considering the dataset. It reasons that since the

submitted precursors might have incomplete sequence, structure of

precursor given in miRbase might differ from the actual one. Such

consideration looked genuine when MiRPara was tested over the

mentioned test set. Though the overall accuracy of MiRPara was

found lesser than Triplet-SVM by ,2%, the balance between its

specificity and sensitivity was found better than most of the tools

studied here, including Triplet-SVM. Also, MiRPara is available

as a stand-alone tool, thus it is useful for genome wide and large

scale analysis for miRNA identification (Table 9). Another tool,

MirEval [17], performed almost equally good and displayed

almost similar level of balance between its sensitivity (78.7%) and

specificity (80.6%). Its overall observed accuracy was 79.7%

(Table 9). MirEval [17] applies SVM, considering some structural

theories in combination with Triplet-SVM protocol. It delivered

sensitivity of 78.7%, specificity of 80.6% and overall accuracy of

79.7%. However, MirEval is available only as a webserver tool,

which limits its application for large scale analysis.

Compared to the mentioned tools, miR-BAG performed better

with overall accuracy of 90.78% and least difference was observed

between the values for sensitivity (89.8%) and specificity (91.59%).

An associated comparative ROC plotting has been made available

in Supporting Material S6. The sequences used for benchmarking

these tools are available in Supporting Material S1.

NGS Reads Guided Novel miRNA Discovery in the Cow
Genome

The Next Generation Sequencing data can detect even poorly

expressed RNAs, inluding coding as well as non-coding ones.

Recently, NGS read data has been used successfully in identifying

novel miRNAs [46]. Therefore, it becomes imperative for miRNA

discovery tools to provide an approach to detect miRNAs using

short read data. Considering this, miR-BAG provides an NGS

interface to identify miRNA candidates in genomes. This module

utilizes short read data directed reference mapping for guiding the

process of precursor identification. The working principle assumes

that within a 75 bp region in a given genomic sequence, a miRNA

candidate region would display two peaks for the mapped reads.

The NGS module of miR-BAG was used to discover novel

miRNA regions in Bos taurus genome. Bos taurus has a genome

sequence released with lesser number of known miRNAs

compared to extensively studied vertebrates like human and

mouse. It is an economically important species, which is also a

driving force for large scale industries like dairy. Apart from this,

its products are also used as a bioreactor for production of various

vaccines and other items [47,48]. Bos taurus has an average genome

size of 2,670,422,299 bp and a total of 31 chromosomes. The draft

assembly for Bos taurus was released in year 2009 [49]. Only 662

pre-miRNAs are reported for Bos taurus in miRBase version 18

[22]. Out of this, only 42 pre-miRNAs are specific to Bos taurus.

Using human model, miR-BAG-NGS module and Bos taurus

specific miR-seq reads data, miR-BAG correctly identified all 42

Bos taurus specific miRNA precursors, suggesting highly reliable

performance. The overall basic work-flow for miR-BAG NGS

module is explained in Figure 6.

Encouraged with this, Bos taurus genome was scanned for potential

novel miRNA candidate regions using available Illumina miRNA-

Seq read data. miR-BAG NGS module was applied for the same

purpose. Associated details are described in the implementation

section. Out of 7,434,705 unique reads, 7,332,970 reads were

mapped across the mRNA sequences of Bos taurus. Remaining

101,735 reads did not map to any mRNA. Such reads were mapped

across a number of noncoding RNA sequences downloaded from

Rfam. Only 34,253 reads mapped to Rfam sequences. Remaining

67,482 reads were searched against Bos taurus pre-miRNA sequences.

Total 1,952 reads were mapped on already known pre-miRNA

sequences from Bos taurus. Remaining 62,447 reads which did not

map to these non coding RNA sequences were mapped across the

genome for novel miRNA precursor discovery. Finally, miR-BAG

Table 8. The effect of applying ensemble approach with
bagging.

Combinations Sn (%) Sp (%) Acc (%)

All three classifiers 89.80 91.59 90.78

LIBSVM and Naive
bayes

95.00 74.46 83.73

BFTree and Naive
bayes

93.20 76.27 83.92

BFtree and LIBSVM 92.40 80.56 85.90

*Sn = Sensitivity, Sp = Specificity, Acc = Accuracy.
Tested over Homo sapiens datasets, it was found that every component/base
classifier was contributing in increasing the performance of the ensemble
classifier, installing balance in its performance.
doi:10.1371/journal.pone.0045782.t008

Figure 5. Impact of parallelism. Parallelism causes increase in
execution speed, which is highly desirable for large scale data
processing. Realistic miRNA discovery requires large scale data
processing.
doi:10.1371/journal.pone.0045782.g005

Table 9. Performance of miR-BAG against six different
software on unseen data.

Software Sensitivity (%) Specificity (%) Accuracy (%)

MiRPara 83.80 78.91 81.12

miRNA SVM 43.20 94.72 71.45

MirEval 78.75 80.65 79.73

Triplet SVM 70.20 93.57 83.02

microPred 16.60 67.54 44.53

CSHMM 98.40 24.05 57.63

miR-BAG 89.80 91.59 90.78

miR-BAG performed better than the compared tools.
doi:10.1371/journal.pone.0045782.t009
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identified total 22 novel miRNA candidate regions in Bos taurus

genome, well supported by read mapping based abundance

assessment for expression for those regions. All these candidate

sequences scored a value of one, which suggests highest confidence.

These candidates may be considered positively for further experi-

mental work and to unravel miRNA regulatory networks in cattle.

Information regarding the identified potential novel miRNA

candidate regions has been made available in Supporting Material

S7.

Availability
The webserver and standalone versions for miR-BAG are freely

available at: http://scbb.ihbt.res.in/presents/mirbag. The standa-

lone version (Linux based) can be downloaded from the download

tab of the server page. The package comes with an easy to do auto-

installer, which automatically installs the package. Details about

the server and stand-alone implementations are given in

Supporting Material S8.

Conclusion
It has been evident in recent years that large number of

miRNAs display substantial migration from the traditional rules

for miRNA identification. Moreover, novel miRNAs discovered

with the help of Next Generation Sequencing (NGS) data and

other technological advances suggest that there may be several

miRNAs candidates which are yet to be identified. This lag could

be due to a continued dissemination of certain traditional

classification rules, causing a plateau phase in the area of miRNA

discovery. The current work presented a view on this matter and

demonstrated that the approach presented here worked well for a

wide range of datasets from different species. Some recent

machine learning methodologies with novel biological observa-

tions have reported good performance. However, in the present

work it was found that several of such methods could not display

the required performance consistency and balance between

sensitivity and specificity. Wide gaps between sensitivity and

specificity evident in some erstwhile approaches made imperative

to develop an approach which could reduce the consistency issue

and the gaps between sensitivity and specificity values, with best

possible accuracy. Through the mentioned novel approach, this

study suggests that such goals are achievable. Further, inclusion of

novel biologically significant properties may improve the reliability

of miRNA discovery tools. The same was observed in this study

when structural profile matrices and consideration of positional

variation were introduced as the novel features. All associated

theories and implementations were tested comprehensively for a

wide range of datasets and species, confirming universality of the

presented approach for a wide range of species, with high

Table 10. microPred’s performance is sensitive to the query length.

Total number
sequences TP/TN FP/FN Accuracy (%)

Positive dataset (original) 691 625 66 90.44

Negative dataset (original) 754 586 168 77.72

Positive testing dataset (200 bp sequence length) 263 39 224 14.83

Negative testing dataset (200 bp sequence length) 82 52 30 63.41

*TP = True positive, FN = False negative, TN = true negative, FP = False positive.
microPred appears to be sensitive towards the exact length of input sequences. Its performance dropped drastically when it was tested over the dataset with query
length of 200 bp. The instances were from the same dataset (original) which was used by the authors of microPred for its performance benchmarking. However, the
instances taken in the present study were with longer length (200 bp) than their corresponding entries in the original dataset.
doi:10.1371/journal.pone.0045782.t010

Figure 6. Workflow of miR-BAG NGS module. The flow diagram
describes about the various steps involved during NGS reads data led
miRNA discovery.
doi:10.1371/journal.pone.0045782.g006
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reliability. Through extensive and variable benchmarking steps,

we could conclude that miR-BAG’ performed better than the

compared tools. The area of miRNA discovery requires scanning

of large volume of sequences and reads data, making it essential to

develop new tools with high processing speed. Considering this,

two required but not so common features have been implemented

in the presented tool: A) Implementation of concurrency at all

levels B) Availability of miR-BAG as a web server as well as a

stand-alone user friendly GUI version. Besides this, miR-BAG has

an inbuilt next generation sequencing associated pipeline to

identify novel miRNAs across a genome. This all makes it an

important miRNA discovery tool and a desirable resource in the

field of miRNA biology and regulatory studies.
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