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Previous research shows that each type of cancer can be divided into multiple subtypes,
which is one of the key reasons that make cancer difficult to cure. Under these
circumstances, finding a new target gene of cancer subtypes has great significance on
developing new anti-cancer drugs and personalized treatment. Due to the fact that gene
expression data sets of cancer are usually high-dimensional and with high noise and have
multiple potential subtypes’ information, many sparse principal component analysis
(sparse PCA) methods have been used to identify cancer subtype biomarkers and
subtype clusters. However, the existing sparse PCA methods have not used the
known cancer subtype information as prior knowledge, and their results are greatly
affected by the quality of the samples. Therefore, we propose the Dynamic Metadata
Edge-group Sparse PCA (DM-ESPCA) model, which combines the idea of meta-learning
to solve the problem of sample quality and uses the known cancer subtype information as
prior knowledge to capture some gene modules with better biological interpretations. The
experiment results on the three biological data sets showed that the DM-ESPCA model
can find potential target gene probes with richer biological information to the cancer
subtypes. Moreover, the results of clustering and machine learning classification models
based on the target genes screened by the DM-ESPCA model can be improved by up to
22–23% of accuracies compared with the existing sparse PCA methods. We also proved
that the result of the DM-ESPCA model is better than those of the four classic supervised
machine learning models in the task of classification of cancer subtypes.
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INTRODUCTION

As the most difficult-to-cure malignant disease in the world, how to defeat cancer has received
extensive attention from researchers (Siegel et al., 2016; Siegel et al., 2019). The latest research shows
that each type of cancer can derive many subtypes, whichmay be one of the reasons why personalized
cancer treatment is needed (Nguyen et al., 2008; Cancello et al., 2010; Houssami et al., 2012;
Symmans et al., 2017; and Waks and Winer, 2019). For example, the ceritinib capsule is a targeted
drug for lung cancer (the target gene is ALK) (Cooper et al., 2015; Raedler, 2015). However, existing
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studies have shown that it only has a good effect on a small
number of lung cancer patients. The reason for this problem is
that only 35–36% of lung cancer patients are caused by ALK gene
mutations, which means that the ceritinib capsule is only effective
for one subtype of lung cancer (Deeks, 2016). Therefore, the
identification and recognition of potential target genes
corresponding to cancer subtypes have become an important
task in cancer research (Banerji et al., 2012; Calon et al., 2015; and
De Cecco et al., 2015).

With the rapid development of the high-throughput
sequencing technology, there are a lot of biological data that
have been collected from many large-scale projects, which
provides a basis to establish machine learning models for
biomarker screening. At present, there are two types of
machine learning models for screening target genes of
potential cancer subtypes. One is the supervised classification
models. Gene expression data sets of cancer are usually high-
dimensional and with high noise and small sample sizes, which
easily lead to overfitting of supervised machine learning models
(Gao et al., 2019; Lee et al., 2020). Moreover, the other problem
with the supervised models is that the gene probes screened by
these models may not have good biological interpretation, and
different models may screen out very different gene probes in the
same data set (Xie et al., 2019; Yang et al., 2019). The other type is
the unsupervised biomarker extraction models. The principle of
these models is to perform cancer subtype clustering and target
gene screening based on potential patterns of samples. Among
them, the sparse principal component analysis (sparse PCA)
methods are widely used methods of unsupervised biomarker
extraction, which can capture the linear relationship of variables
to best explain the latent patterns of cancer subtypes. Moreover,
the potential target genes screened by the sparse PCA methods
may tend to have good biological interpretability (Shen et al.,
2009; Shen et al., 2012; and Min et al., 2018).

Currently, researchers have proposed some sparse PCA and
joint latent variable methods for identifying driver genes of cancer
or biomarkers of cancer subtypes. For example, in 2009, Shen
et al. (2009) proposed a cancer subtype clustering model
(iCluster) based on joint latent variable of data. In 2011, SAN
et al. (Navarro Silvera et al., 2011) used PCA and logistic
regression to analyze the risk factors of esophageal cancer and
gastric cancer. Shen et al. (2013) further extended the iCluster
model with LASSO, elastic net, and fusion LASSO methods to
allow feature selection in an integrated clustering environment.
The overall goal of these models is to obtain joint clustering of
samples and identify cluster-related features across data sets. In
2015, Sill et al. (2015) proposed a sparse PCA method
(S4VDPCA) with stable selection ability to process the
medulloblastoma brain gene expression data set and
revealed that the genes determined by the first two sparse
PC loadings significantly participated in the marrow and
several key pathways between the molecular subgroups of
blastoma. In 2018, Min et al. (2018) proposed an edge
group sparse PCA model (ESPCA) which effectively
enhanced the potential gene selection ability of sparse PCA.
Existing research shows that structured sparse models similar
to ESPCA can effectively improve the biological

interpretability and feature selection capabilities of the
models (Min et al., 2016; Min et al., 2019; Vinga, 2021).

However, the existing sparse PCA methods still have three
main issues. First, all these methods are reference-free methods,
which means that they do not consider the known subtype
classification information of the cancer data set (Reis-Filho
and Pusztai, 2011; Dai et al., 2015). The existing research
works have shown that reference-free sparse PCA methods
may discard some potential biomarkers in the process of
sparseness (Kim et al., 2019). The second one is that the
samples of the biological data contain a lot of noise (Teng,
2003; Linck and Battey, 2019), which will affect the final
results of the model and eventually lead researchers to find the
wrong potential target gene. The third issue is that most of the
existing sparse PCA methods use the greedy optimization
principle to select target gene probes, which will make the
model fall quickly into a local optimum.

In order to solve the three problems mentioned mentioned
above, this article proposes the DM-ESPCA model, which uses
the dynamic gene network, meta-learning approach, and random
sampling algorithm based on the greedy principle (Figure 1). The
purpose of the dynamic gene network is to enhance the feature
selection ability of the model to screen out potential target genes
that are more relevant to the cancer subtype. The meta-learning
approach is an efficient machine learning framework, which uses
a small number of high-quality samples to adjust the parameters
of the machine learning model to reduce the errors caused by the
noise data. We also proposed a random sampling algorithm based
on the greedy principle to obtain a better solution in the process
of sparseness.

The steps of the DM-ESPCA model are as follows: 1) filter
meta-data for each subtype in the cancer data set; 2) based on
meta-data, use known subtype classification information as prior
knowledge to calculate the correlation degree of each gene probe
corresponding to each subtype; 3) use the quantitative value of
correlation as a parameter to generate a unique biological
network for each subtype; and 4) build the DM-ESPCA model
using the dynamic gene network to screen biomarkers for each
subtype.

This article conducted experiments on three data sets, and the
results showed that the DM-ESPCA model is better than the
existing sparse PCAmethods. The heat maps and bio-enrichment
analyses show that the potential target genes screened by the DM-
ESPCA model have higher correlations and richer biological
information with the corresponding cancer subtypes. The
results of re-clustering and the accuracies of machine learning
classification models based on the potential target genes screened
by the DM-ESPCA model can be improved by up to 23 and 22%,
respectively.

MATERIALS AND METHODS

Data Sets
In this experiment, we used three cancer data sets to test the
performance of the DM-ESPCA model, including two breast
cancer data sets and one gastric cancer data set. All these data
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sets were assayed with the Human Genome U133 Plus 2.0
microarray (HG-U133_Plus_2). This gene chip contains
54,675 probes (Carlson et al., 2016). The following is a
detailed introduction to the data sets (Table 1):

First, we used a breast cancer subtype data set, numbered
E-GEOD-45827 (BCI, https://www.ebi.ac.uk/arrayexpress/
experiments/E-GEOD-45827/). Since breast cancer is a kind of
malignant cancer, its incidence rate ranks first among female
malignant cancers all year round and is still increasing year by
year (DeSantis et al., 2014; Fan et al., 2014). Therefore, the
analysis of breast cancer data sets is greatly significant.
Meanwhile, breast cancer has a clear subtype division, which
is mainly divided into four subtypes, including Basal, Her2,
Luminal A, and Luminal B (Tran and Bedard, 2011). The BCI
data set we used in this experiment contains 155 samples
(Supplementary Fig.1.A).

Next, we used another breast cancer data set, numbered
E-GEOD-65194 (BCII, https://www.ebi.ac.uk/arrayexpress/
experiments/E-GEOD-65194/). The purpose of using the BCII
data set is to verify whether our proposed model can correctly
classify the subtypes and whether it has sufficient stability in the
same cancer but different batches of data collection. Here, the
BCII data set also has four subtypes, including TNBC, Her2,
Luminal A, and Luminal B. Based on the existing studies, TNBC

and Basal can easily be regarded as the same subtype (Wiese et al.,
2013).We obtained BCII with 178 samples (Supplementary Fig.1.B).

Finally, we conducted an experiment using a gastric cancer
data set, numbered E-GEOD-35809 (GC, https://www.ebi.ac.
uk/arrayexpress/experiments/E-GEOD-35809/). Gastric
cancer is also a common malignant cancer (Crew and
Neugut, 2006). Its incidence rate remains high in the global
incidence statistics of malignant cancers (Hartgrink et al.,
2009). In addition, the existing studies have found that
gastric cancer also has multiple subtypes. The data set used
in this experiment includes three subtypes: proliferative,
invasive, and metabolic (Supplementary Figure 1C) (Lei
et al., 2013; Zeng et al., 2018). The purpose of using gastric
cancer data is to test whether the DM-ESPCA model can be
applied to different cancer subtypes’ research.

In this study, we used a mixed model of GC-RMA to
preprocess all these three data sets to reduce the negative
impact of the batch. Specifically, we discarded all the probes
with a log2 intensity of less than 4.

Gene Pathway Data Sets
The basic network data set used by the DM-ESPCA model is
obtained from the following database: Pathway Commons
database (http://www.pathwaycommons.org/).

Totally, the BCI and BCII data sets retained the same
29,873 gene probes, and the corresponding relationship
network retained 1,239,154 edges. The GC data set
retained 28,838 gene probes, and 1,181,312 edges were
retained in the corresponding relationship network.

Methods
In this section, we first introduced the general sparse PCA
framework (SPCA). Then, we introduced the ESPCA model.
Finally, we proposed the DM-ESPCA model which includes

FIGURE 1 | Flow chart of the DM-ESPCAmodel. (A) The DM-ESPCAmodel requires input gene expression and pathway data. (B) The DM-ESPCAmodel selects
meta-data by clustering all samples. (C)Workflow of the DM-ESPCA model to screen targeted genes. The DM-ESPCA model will generate a dynamic gene network for
each subtype. (D) Finally, this model will output the screened genes.

TABLE 1 | Details of the three data sets.

BCI BCII GC

Number of samples 155 178 70
Number of genes 54,675 54,675 54,675
Number of subtypes 4 4 5
ID E-GEOD-45827 E-GEOD-65194 E-GEOD-35809
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meta-data selection, the dynamic gene network, and the random
sampling algorithm based on the greedy principle.

SPCA
Suppose there is a genematrixX ∈ Rm,n containingm genes and n
samples. Using the L0 norm for sparseness, we can get the
following expression matrix (Yuan and Zhang, 2013):

maximize
‖u2‖≤ 1

uTXXTu, s.t. ‖ u0 ‖ ≤ s (1)

where u is the m × 1 vector to represent the first principal
component (PC) loading and s represents the number of genes
retained by the model, and u2 and u0 represent the L2 and L0
norms, respectively. Researchers usually use the SVD framework
to solve this problem (Lin et al., 2016). Therefore, the formula can
also be written as

maximize
‖u‖2 ≤ 1,‖v‖2 ≤ 1

uTXv, s.t. ‖ u‖0 ≤ s (2)

where v is n × 1 PC. The problem is solved using the following
strategies:

u← û������û������ , where û� P(z, s) and z � Xv (3)

v ← v̂

‖v‖, where v̂ � XTu (4)

where P(z, s) represents sparse projection. In the vector u, its
k-th element has the following defined:

[P(z, s)]k � { zk , if k ∈ supp(z, s)
0, otherwise

(5)

where supp(z, s) denotes the set of indexes of the largest s
absolute element of z.

ESPCA
In 2018, Min et al. proposed the edge group sparse PCA (ESPCA),
which uses known genome structures as prior knowledge (Min
et al., 2018). The ESPCA model is transformed from a traditional
point sparse to a group sparse which effectively improves the
feature screening ability of sparse PCA. Suppose G is a group
structure, in the gene interaction network, the two linked genes
can be considered as a group. Obviously, such edge groups are
overlapping. We denoted G � {e1, . . . , em} as an edge set with all
edges from a given gene interaction network. Here, the ESPCA
model is as follows:

‖ u ‖ES � minimize
∀G′∈G,support(u)⊆V(G′)

∣∣∣∣∣G′∣∣∣∣∣ (6)

where G′ is a subset of G , V(G′) is a vertex (gene) set induced
from the edge set G′, |G′| denotes the number of elements of G′,
and support(u) denotes the set of indexes of the non-zero
elements of u (Min et al., 2018). Based on formula 6, this
sparse model can be expressed as the following formula:

maximize
‖u‖2 ≤ 1,‖v‖2 ≤ 1

uTXv, s.t. ‖ u‖ES ≤ s (7)

where s is the amount of edges. The model is solved based on a
greedy algorithm.

DM-ESPCA
On the basis of SPCA and ESPCA models, we propose the DM-
ESPCA model. Compared to existing models, the DM-ESPCA
model has three main improvements. First, the DM-ESPCA
model generates independent dynamic network weights for
each PC based on known cancer subtype classification
information and integrates the weights into the sparse PCA
framework which enhances the model’s cancer subtype target
selection capabilities. Second, in the process of generating the
dynamic network weights of the DM-ESPCA model, the DM-
ESPCA model improves the sample quality and noise of the data
set by selecting a subset of meta-data. It ensures the accuracy and
reliability of the dynamic network weights. Third, the DM-
ESPCA model improves the traditional greedy algorithm and
proposes a random sampling algorithm based on the greedy
principle, which improves the local optimal solution of the
model. Next, we introduce the details of meta-data selection,
the dynamic network, and the random sampling algorithm based
on the greedy principle modules in the order of model
construction (Figure 2).

Meta-data Selection
The cancer subtype data sets are inevitably noisy, which will
mislead the results of machine learning models (since the cancer
subtype data sets are inevitably noisy and mislead the results of
machine learning models). To solve this problem, the
establishment of the dynamic network is based on meta-data
(high-quality samples) after preprocessing, not all samples. Here,
we adopt the idea of meta-learning to initialize model parameters
with high-quality samples as much as possible and guide the
operation of the entire model. It should be stated that the idea of
meta-learning here means that the model uses a batch of high-
quality sample data sets to guide the training of the model based
on all samples (Shu et al., 2019). It does not refer to the multi-task
meta-learning training mode similar to the MAML model (Finn
et al., 2017). The following content is the steps for selecting meta-
data from the cancer subtype data set:

First, we use all gene probes to cluster the subtype data sets
which adopt the K-means algorithm.

According to the known clustering information, we select h
samples closest to the cluster center point in each cancer subtype.

We repeat clustering multiple times, and the final result is that
the samples are stably selected each time.

Dynamic Meta-data Network
Existing sparse PCA methods are all reference-free methods.
Even in the ESPCA model, its used weights of the biological
networks for the principal components are the same. In this
article, we pre-calculate the correlation weights of each gene
probe and each cancer subtype based on general biological
knowledge and meta-data. These weights are used to establish
a dynamic biological network for each cancer subtype, thereby
enhancing the model’s gene screening ability.
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Here, we presented the DM-ESPCA model as formulas 8 and
12. First, we assume that eh � (ui, uj) ∈ G, ui, uj ∈ Rm, and the
weight wh of eh is defined as formula 8:

wh �
������
u2
i + u2

j

√
(8)

where ui and uj are the left and right gene probes of eh,
respectively.

Then, we adopted formula 9 to pre-calculate the correlation
weight tpi of p − th subtype and i-th gene probe in the dynamic
network of the DM-ESPCA model

tpi � (xi − x−i)�����
s2i
ni
+ s2−i

n−i

√ (9)

where xi and si are the average value and the standard
deviation of the i-th gene probe in the p-th subtype with
meta-data samples, respectively, and ni is the number of
samples of the p-th subtype in the meta-data. x−i and s−i
indicate the average value and the standard deviation of the
samples with the i-th gene probe not in the p-th subtype,
respectively, and n−i represents the number of the samples not
in the p-th subtype.

Therefore, the weight of the i-th gene probe in p-th subtypes in
the dynamic gene network can be expressed as

wph �
����������
tpiu2

i + tpju2
j

√
(10)

Here, the dynamic network of the p-th subtype can be
represented as Gp � {wpheh}m1 . According to formula (10), we
can construct a completely different gene network for each cancer
subtype. Our purpose of constructing the dynamic network is to
hope that the DM-ESPCA model screens the gene probes which
are most relevant to the corresponding cancer subtype. Then, we
can use the following dynamic meta-data (DM) network as the
sparse penalty:

‖ u ‖DM � minimize
∀G′

p∈Gp,support(u)⊆V(G′
p)
∣∣∣∣∣G′

p

∣∣∣∣∣ (11)

where G′
p is a subset of Gp, V(G′

p) is a vertex (gene) set induced
from the edge set G′

p, |G′
p| denotes the number of elements of G′

p,
and support(u) denotes the set of indexes of nonzero elements
of u.

Finally, the sparse model of this article can be represented as

maximize
‖u‖2 ≤ 1,‖v‖2 ≤ 1

uTXv, s.t. ‖ u‖DM ≤ k (12)

where u is the first PC loading, v is the first PC, and k is the
parameter to control the number of edges selected for each cancer
subtype.

Random Sampling Algorithm Based on the Greedy Principle
To solve sparse PCA methods, the key issue is how to solve a
projection problem with fixed v and z (z � Xv). This is a typical
NP-hard problem (Min et al., 2018). Many of the traditional
sparse PCAmethods use L0 and the greedy principle to screen the
gene probes with the largest weights. However, the greedy
principle will mislead a local optimal solution. Here, we
proposed a random sampling algorithm based on the greedy
principle to find a better solution of the DM-ESPCA model. We
adopted the idea of a simulated annealing algorithm and add
randomization to the traditional greedy algorithm. Existing
research shows that introducing randomization parameters
into the model can improve the local optimal solution
problem of the greedy algorithm (Van Laarhoven and Aarts,
1987; Rutenbar, 1989). In addition, due to the difficulty of
convergence caused by randomization parameters, we also
designed an independent parameter to reduce the
randomization rate during the model cycle and finally reduce
the randomization rate to 0 to ensure that the model can
converge. Note that we cannot guarantee that the algorithm
converges to the optimal solution due to the non-convexity of

FIGURE 2 | Algorithm of the DM-ESPCA model.
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this problem. Thus, we repeated our algorithm with a number of
different random initial solutions.

In algorithm 1, PG(z, k) is the sparse projection;
[PGp(z, k)]i(i � 1, . . . ,m) meets

[PGp(z, k)]i � { zi, ifGp(i) ∩ sample(I, k) ≠∅
0, otherwise

(13)

where Gp(i) is the edge set of the gene network corresponding to
the cancer subtype p and I � supp(normDM

Gp
(e′), (1 + ω) × k). If

gene i is selected, [PG(z, k)]i � zi; otherwise, [PG(z, k)]i � 0. k
represents the number of edges expected to be retained. ω is a
parameter that controls the random ratio. For example, if we set
the parameter k � 100, ω � 0.2, then the algorithm will keep 120
edges with the largest weight in each cycle and randomly select
100 of them as the result.

Finally, we use formulas 14, 15 to update vectors u and v until
the algorithm convergence:

u � Xv

where v̂ � XTu

u← û

‖û‖ , where û � PG(z, k) and z � Xv (14)

v ← v̂

‖v̂‖ , where v̂ � XTu (15)

Algorithm 1. Random sampling algorithm based on the greedy
principle sparse projection for the dynamic network

Require : X ∈ Rm×n, ν ∈ Rn×1, parameter k,ω, ρ,
edge set GP � {e1, e2, Len}

1 : Z � Xν
2 : for any weight of edge e inGP do

3 : w′
n �

����������
tPiΖ

2
i + tPjΖ

2
j

√
#Generate a dynamic network.

4 : updateGPn
′ � w′

n

5 : end for

6 : Let normDM
G′
P
(e′) � (����e′1����, . . . , ����e′n����)T

7 : I � supp(normDM
Gp

(e′), (1 + ω)× k)#Extract (1 + ω)×k edges.
8 : Jk� sample(I, k) #Randomly select k edges from I.

9 : if ω> 0 then ω � ω − ρ #Reduce random rate

10 : V G′
P
� V(G′

P)
11 : for any gene i in V G′

P
do

12 : ûi � zi
13 : end for

14 : u � û������û������
15: return u andPGP(z, k) � û

In order to ensure the convergence of the algorithm, when the
model completes the edge sparse projection, we use the parameter

ρ to reduce the randomness of the model, that is,
if ω> 0, ω � ω − ρ. Furthermore, the DM-ESPCA model can
be applied to generate multiple PCs and their PC loadings.
Specifically, given the current PCs, we adopted Min’s model to
compute the next PC and its loading (Min et al., 2018).

RESULTS

The experiments are divided into two steps. First, we use three
sparse PCA methods including DM-ESPCA, ESPCA, and SPCA
models to perform unsupervised sparse PCA on the cancer data
sets. This step will allow each model to screen the subset of the
potential target genes for each cancer subtype. We adopted three
indicators including heat map, the cluster results, and p-value to
evaluate the gene subset screen by eachmodel. We also conducted
a bio-enrichment analysis (Zhou et al., 2019) to count the key
biological pathways corresponding to these gene subsets, such as
the GO biological process (GO-BP), KEGG, and so forth, to
determine whether these gene subsets are related to the cancer
subtypes.

In order to further compare these gene subsets screened by
the three sparse PCA methods, we used all samples based on
the gene subsets to build four machine learning classification
models, such as the K-Nearest Neighbor (KNN) model, the
Support Vector Machines (SVM), the Logistic Regression, and
the Random Forest model (Hearst et al., 1998; Liaw and
Wiener, 2002; Peterson, 2009). In addition, we also built
four machine learning models based on all genes, which
was performed to compare whether the DM-ESPCA model
is better than the classic supervised learning model in
classification tasks. In sections 3.1–3.3, we only illustrate the
results of the KNN model, and the results of other models are
in the supplementary materials. Four classic statistical
indicators, including precision, recall, F1-score, and
accuracy, are used to evaluate the classification results. All
machine learning experiments use the 5-fold cross-validation
approach, and the final results are the averages of five runs.
(The detail of indicators is in the Supplementary Materials.)

Application to the BCI Data Set
In Figure 3A of the heat map analysis, we can find that the
DM-ESPCA model can clearly distinguish the four breast
cancer subtypes with clear boundaries. However, the gene
probes screened by the ESPCA and SPCA models could not
distinguish these four subtypes well (Supplementary Figure
S2, S3). Table 2 summarizes these clustering results, where
the clustering accuracy of the DM-ESPCA model reached
82.3%, which is 14.61% higher than the results of the ESPCA
model and 21.6% higher than that of the results of the SPCA
model (Supplementary Table S1). These results showed that
the DM-ESPCA model had a relatively strong distinguishing
ability for the four subtypes of breast cancer, especially in
Luminal B subtypes. In addition, according to the p-values
shown in Figure 7A and Supplementary Figure S10, the
performance of the DM-ESPCA model was significantly
better than that of the ESPCA and SPCA models in the
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correlation of Luminal A subtype. Moreover, the average
p-values of select genes in all subtypes are very low, which
means that the results of our proposed model are highly
related to breast cancer (Supplementary Table S2).

In order to further verify the gene screening ability of the
DM-ESPCA model, we conducted a bio-enrichment analysis.

It can be seen from Table 3 that the DM-ESPCA model can
find genes related to breast cancer in all four subtypes, but the
ESPCA and SPCA models can only be found in three subtypes.
From Figures 4, 5, we can see that the DM-ESPCA model can
find 1,286 biological pathways in the GO-BP and KEGG data

FIGURE 3 | Heat maps of the DM-ESPCA model. (A) Result of the BCI data set. (B) Result of the BCII data set. (C) Result of the GC data set. The row is the gene
probs; different color blocks of rows indicate genes selected by different PC loadings. The column is the samples. The color of each block in the heat maps is the
expression value of the genes.

TABLE 2 | Clustering results obtained by the three sparse PCA methods.

DM-ESPCA (%) ESPCA (%) SPCA (%)

BCI 82.30 67.69 60.70
BCII 82.35 75.16 59.87
GC 82.86 77.14 78.57

TABLE 3 | Number of PCs that can find gene probes related to the target cancer
for each model.

DM-ESPCA ESPCA SPCA

BCI 4 3 3
BCII 4 2 3
GC 3 0 0
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FIGURE 4 | Pathway numbers with screened genes of GO, KEGG, and Reactome in the bio-enrichment analysis; (A) number of pathways in the BCI data set; (B)
number of pathways in the BCII data set; (C) number of pathways in the GC data set. The blue bar is the DM-ESPCAmodel, the orange bar is the ESPCAmodel, and the
gray one is the SPCA model.

FIGURE 5 | Results of the DisGeNET dataset and PPI pathways of the Basal subtype in the BCI dataset; (A) relationship between the diseases and gene selected
by the DM-ESPCA model of the Basal subtype in the BCI dataset.The blue bar shows the z-score of each gene.Data collected from the DisGeNET dataset. (B) KeyPPI
pathways of part of the gene selected by the DM-ESPCA data set.
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sets. These results are much better than that of the ESPCA and
SPCA models.

Among the results of the enrichment analysis, the basal
subtype results of the DM-ESPCA model are particularly
encouraging. First, in the PPI networks, it found multiple
key target protein sites. Among them, ESR1, NRIP1,
FOXA1, RARA, and GATA3 are highly correlated with the
gene pathway R-HSA-9018519 of estrogen-dependent gene
expression (Figure 6B). The secretion of estrogen is one of
the important causes of breast cancer. We also found that the
z-scores of the aforementioned gene probes are generally high
(Supplementary Figure S8). Next, in the DisGeNET set, the
potential target gene probes screened by the DM-ESPCA
model are related to 32 known breast cancer disease
signatures (Figure 6A). Among them, the gene probes
ARHGAP1, ESR1, FBP1, GATA3, FOXA1, PDCD6IP, AR,
FASN, RARA, and TMED7 are directly related to the basal-
like breast carcinoma and HER2-negative breast cancer with
the data set numbers C3642347 and C4733095
(Supplementary Table S3). Finally, the enrichment analysis
results of the PaGenBase data set show that the gene set found
by the DM-ESPCA model is highly correlated with breast cells
(Supplementary Table S4). In general, the results of the gene
enrichment analysis clearly prove that DM-ESPCA has a
strong ability to select target genes of breast cancer subtypes.

The gene subset selected by the DM-ESPCA model also
achieved the best classification results; the accuracy reached
97%, the precision reached 98%, the recall reached 97%, and
the F1-score reached 97% (Figure 7B, Supplementary Table S5).
Simultaneously, the classification accuracy based on the gene
subset selected by the ESPCA model and its precision, recall, and
F1-score only reached 77, 79, 76, and 76%, respectively. The
classification accuracy based on the gene subset selected by the
SPCA model and its precision, recall, and F1-score only reached
75, 74, 71, and 74%, respectively. It is worth noting that even if we
use all genes to build four supervised machine learning models,
the best result of precision, recall, and F1-score only reached 85,
86, 85, and 85% (Logistic Regressionmodel), which is much lower
than the result of the DM-ESPCA model.

In summary, these results demonstrated that the DM-
ESPCA model can identify more biologically relevant gene
sets than the ESPCA and SPCA models. In classification tasks,
the DM-ESPCA model is better than ESPCA, SPCA, and
classic supervised learning models. From the perspective of
model construction, it is expected that the DM-ESPCA model
can obtain better results than ESPCA and SPCA in heat map,
cluster analysis, correlation analysis, enrichment analysis,
and classification experiments. Because the dynamic
network takes known cancer subtype classification
information as prior knowledge, this enables the DM-

FIGURE 6 | Functional pathways collected from the BCI data set Luminal A subtype; (A) results of GO-BP in the DMESPCA model; (B) results of GO-BP in the
ESPCA model; and (C) results of GO-BP in the SPCA model.

FIGURE 7 | Boxplots and classification comprehensive indicators of the BCI data set; (A) p-values of selected genes in all subtypes. (B) Results of KNN in three
sparse PCA methods and the use of all genes.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8699069

Miao et al. DM-ESPCA for Cancer Biomarkers Screening

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


ESPCA model to select cancer targets that are more relevant
to the corresponding cancer subtype. The screening of meta-
data further alleviates the problem of sample quality in the
data, and the random sampling algorithm based on the greedy
principle improves the local optimal solution problem of the
traditional greedy algorithm. In addition, we believe that the
dimensional challenges and overfitting problems of the data
prevent the machine learning model (use all gene probes)
from achieving a better performance, which is the same point
of view as existing research works.

Application to the BCII Data Set
In order to further verify the stability of the DM-ESPCAmodel in
the same type but different batches of cancer subtype data sets, we
also used the BCII data set to conduct the experiments, which
showed similar results compared with the BCI data set. According
to Figure 3B, the DM-ESPCA model could distinguish four
breast cancer subtypes well, and the boundary corresponding
to each subtype was very clear. In contrast, the heat map results of
the ESPCA and SPCA models were worse in the BCII data set,
and they were difficult to judge the boundary of the subtype
(Supplementary Figure S4, S5). In Table 2, the cluster accuracy
of the DM-ESPCA model reached 82.3%; however, the cluster
accuracies of the ESPCA and SPCA models only reached 75.1
and 59.8%, respectively. Similar to the results in the BCI data set,
the Lumina B subtype was difficult to distinguish; the DM-
ESPCA model could relatively accurately divide all samples into
four subtypes, including the Lumina B subtype. Neither the
ESPCA model nor the SPCA model could cluster Lumina B
subtypes well (Supplementary Table S6). Besides, in
Supplementary Fig.11, the DM-ESPCA model outperformed
the ESPCA and the SPCA models in p-values, especially the
correlation of a comprehensive Luminal A subtype
(Supplementary Table S7). These meant that the genetic
points screened by the DM-ESPCA model had a higher
correlation with cancer subtypes, which was more conducive
to the analysis by biological researchers.

An enrichment analysis showed that the DM-ESPCA model
selected gene probes containing the largest number of biological
pathways (Figure 4B). In addition, the DM-ESPCA model can
find gene probes known to be related to breast cancer diseases in
the DisGeNET set among all four principal components
(Table 3). In comparison, the ESPCA model can only find
genes related to breast cancer in two principal components,
while the SPCA model can find genes related to breast cancer
in three principal components. Especially in the Luminal B
subtype, the DM-ESPCA model can find 13 gene probes
related to eight breast cancer disease entries which show a
very high correlation with breast cancer (Supplementary
Figure S9).

Finally, based on Supplementary Fig.12, the optimal
classification results were obtained by the KNN method
based on the gene subset selected by the DM-ESPCA
model. Its accuracy, precision, recall, and F1-score reached
90, 90, 89, and 88%, respectively. In comparison, these four
classification indicators of the model based on the gene subset
selected by the ESPCA model could only reach 86, 86, 80, and

80%, respectively, while these four classification indicators of
the model based on the gene subset selected by the SPCA
model could only reach 82, 82, 80, and 80%, respectively
(Supplementary Table S8). The best results of precision,
recall, and F1-score for the supervised machine learning
model which used all genes only reached 85, 87, 85, and
85% (Logistic Regression model), which is lower than the
result of the DM-ESPCA model, 5, 3, 4, and 3%.

Based on the results of the BCII data set, we can see that in the
same cancer subtype, but in different data batches, the
performance of the DM-ESPCA model was very stable.

Application to the GC DataSet
To verify the applicability of the DM-ESPCA model in different
cancer data, we used a gastric cancer data set for experimentation.
Based on the result of the heat map (Figure 3C, Supplementary
Figure S6, S7), the DM-ESPCA model performed well, especially
in subtypes Invasive and Metabolic. In Table 1, the clustering
accuracy of the DM-ESPCA model reached 84.23%. Compared
with the ESPCA and SPCA models, the clustering accuracy of the
DM-ESPCA model increased by 9 and 6%, respectively
(Supplementary Table S9). Meanwhile, based on
Supplementary Fig.13, the p-values of the DM-ESPCA model
have had significant improvements compared with other models
(Supplementary Table S10).

In addition, it can be seen from Figure 3C, the DM-ESPCA
model has more number of GO, KEGG, and Reactome pathways
than the comparison methods in bio-enrichment analysis. In
particular, the DM-ESPCA model is the only one that can find
genetic probes related to all subtypes of gastric cancer. However,
neither ESPCA nor SPCA can find genes related to gastric cancer
in the three subtypes (Table 3).

Based on Supplementary Fig.14, the optimal classification
results were obtained by the KNN method based on the gene
subset selected by the DM-ESPCA model. Its accuracy, precision,
recall, and F1-score reached 95, 96, 95, and 95%, respectively. In
comparison, these four classification indicators of the model
based on the gene subset selected by the ESPCA model could
only reach 76, 72, 77, and 73%, respectively. While these four
classification indicators of the model based on the gene subset
selected by the SPCAmodel could only reach 86, 86, 86, and 86%,
respectively (Supplementary Table S11). The best results of
precision, recall, and F1-score for the supervised machine
learning model which used all genes only reached 90, 93, 90,
and 91%, respectively (Logistic Regression model), which is also
lower than the result of the DM-ESPCA model. In summary,
whether in the same cancer data sets with different batches or in
different cancer data sets, the DM-ESPCA model performed
better than the existing sparse PCA methods. Therefore, we
believe that the DM-ESPCA model could reliably and stably
screen the gene probes corresponding to the cancer subtypes.

Ablation Experiment
In order to further verify the influence of three main modules of
DM-ESPCA, which include the random sampling algorithm
based on the greedy principle, the dynamic network, and the
meta-data selection module on model performance, we
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performed ablation experiments based on the BCI data set
(Table 4, Supplementary Table S12). As shown in Table 4,
non-ω refers to the experimental results with the random
sampling algorithm based on the greedy principle module
removed (use the greedy algorithm instead). Non-DM refers
to the experimental results with dynamic network modules
removed. Non-Meta refers to experimental results with meta-
data selection modules removed. We use the results of clustering,
accuracy, precision, recall, and F1-score as evaluation metrics.
The classification experiments use the KNN method as the
classifier because the KNN method performs the best on the
three real data sets. The experimental results show that the three
main modules proposed in this article all have a significant
impact on the results. Among them, the removal of the meta-
data selection module has the greatest impact on the results. After
removing the meta-data, the clustering accuracy of the model
dropped to 65.38% and the result of classification accuracy
dropped to 79%. The experimental results mean that there are
indeed sample quality issues and data noise in the data set and
that it can be improved by incorporating the meta-data selection
module. The dynamic network also has a great influence on the
model. After removing the dynamic network module, the
clustering accuracy of the DM-ESPCA model can only reach
66.15%, which shows that dynamic networks can improve model
performance. In addition, the experimental results show that the
random sampling algorithm based on the greedy principle can
effectively improve the results of the model and alleviate the local
optimal solution problem of the greedy algorithm.

DISCUSSION

Since the beginning of the 21st century, with the development of
the gene sequencing technology, researchers have discovered that
the same cancer can be divided into different subtypes, which also
explains that the same drug is only effective for some cancer
patients but not for other patients. Therefore, how to find target
genes corresponding to cancer subtypes has gradually become an
important task of cancer research.

The traditional screening models for potential targets of
cancer subtypes have three main problems. The first problem
is that no known subtype classification information can be
used. In this study, we have shown that if researchers can
integrate the known subtype classification information as

prior knowledge to carry out cancer subtype screening
models and establish a dynamic gene network, then the
screening ability of potential cancer subtype targets of the
model can be greatly enhanced. The second is that the
experiment’s sample quality is uneven, and low-quality
samples will affect the final results of analyses. In this
article, we used the idea of meta-learning to screen high-
quality samples. The third point is that most of the existing
models adopt the greedy principle, which will make the model
quickly fall into a local optimum. We designed a new random
sampling algorithm to improve the model, which may find
better target genes.

Based on the aforementioned ideas, this article proposes the
DM-ESPCA model, which is based on meta-learning, the
dynamic gene network, and sparse PCA to screen the
corresponding potential target gene probes for each cancer
subtype. The bio-enrichment analysis shows that the DM-
ESPCA model can directly find gene probes related to the
corresponding cancer subtype. Moreover, all indicators
indicate that the DM-ESPCA model can reveal more modules
related to biology. Even in the task of classification of cancer
subtypes, the DM-ESPCA model is superior to the existing
supervised learning model. In summary, we believe that the
DM-ESPCA model is a good extension of the PCA-based
methods. This model can provide an effective tool for
researchers to find target genes corresponding to cancer subtypes.

Although the experiment has achieved good results, the
DM-ESPCA model can still be extended. We have proved that
the idea of meta-learning reduces the errors caused by the
noise data. However, the results of the gastric cancer data set
are not very satisfactory. The reason may mean that there is
still noise in the meta-data. We would consider using more
powerful statistical methods to filter the meta-data. In
addition, the random sampling algorithm based on the
greedy principle proposed in this article can also be
further improved. There are many optimization principles
for NP-hard problems that can be considered. This may
further improve the feature selection ability of the
proposed model. In addition, it is worth noting that there
are many multi-omics cancer subtype target screening
models. Compared with single omics, multi-omics data can
provide different views of the same batch of samples, which
may lead to new and interesting biological discoveries. In
theory, the DM-ESPCA model can be extended to a multi-
omics model. However, how to solve the multi-omics joint
sparse PCA problem still needs to be further discussed.
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