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Objective. “Quantile-dependent expressivity” occurs when the effect size of a genetic variant depends upon whether the phenotype
(e.g., serum uric acid) is high or low relative to its distribution. Analyses were performed to test whether serum uric acid
heritability is quantile-specific and whether this could explain some reported gene-environment interactions. Methods. Serum
uric acid concentrations were analyzed from 2151 sibships and 12,068 offspring-parent pairs from the Framingham Heart
Study. Quantile-specific heritability from offspring-parent regression slopes (βOP, h2 = 2βOP/ð1 + rspouseÞ) and full-sib regression
slopes (βFS, h2 = fð1 + 8rspouseβFSÞ0:5 − 1g/ð2rspouseÞ) was robustly estimated by quantile regression with nonparametric

significance assigned from 1000 bootstrap samples. Results. Quantile-specific h2 (±SE) increased with increasing percentiles of
the offspring’s sex- and age-adjusted uric acid distribution when estimated from βOP ðPtrend = 0:001Þ: 0:34 ± 0:03 at the 10th,
0:36 ± 0:03 at the 25th, 0:41 ± 0:03 at the 50th, 0:46 ± 0:04 at the 75th, and 0:49 ± 0:05 at the 90th percentile and when estimated
from βFS ðPtrend = 0:006Þ. This is consistent with the larger genetic effect size of (1) the SLC2A9 rs11722228 polymorphism in
gout patients vs. controls, (2) the ABCG2 rs2231142 polymorphism in men vs. women, (3) the SLC2A9 rs13113918
polymorphism in obese patients prior to bariatric surgery vs. two-year postsurgery following 29 kg weight loss, (4) the ABCG2
rs6855911 polymorphism in obese vs. nonobese women, and (5) the LRP2 rs2544390 polymorphism in heavier drinkers vs.
abstainers. Quantile-dependent expressivity may also explain the larger genetic effect size of an SLC2A9/PKD2/ABCG2
haplotype for high vs. low intakes of alcohol, chicken, or processed meats. Conclusions. Heritability of serum uric acid
concentrations is quantile-specific.

1. Introduction

Serum uric acid concentrations reflect the equilibrium
between renal clearance and endogenous uric acid produced
from food-derived purines [1]. Hyperuricaemia, defined as
uric acid > 404 or >417μmol/L (>6.8 or >7mg/dL) [2],
occurs when renal excretion is inadequate or uric acid is
overproduced, for example, due to excessive intake of
sugar-sweetened beverages and purine-rich foods [2]. Inade-
quate excretion is mainly due to the high reabsorption of fil-
tered urate in the renal proximal tubules [3]. Hyperuricaemia
can lead to gout, i.e., an inflammatory response within joints
and tissues due to the deposition of urate crystals [2]. Age,
male sex, obesity, alcohol consumption, and insulin resis-
tance are also associated with increased hyperuricaemia and

gout risk [2]. Hyperuricaemia is a risk factor for diabetes,
hypertension, cardiovascular disease, and chronic kidney dis-
ease [2].

Individual variability in serum uric acid concentrations
is known to be partially genetic, with heritability estimated
from twin and family studies varying from 25% to 73% [4–
9]. The 28 loci with genome-wide significance identified thus
far account for about 7% of the interindividual variation in
uric acid concentrations, of which two, glucose transporter
type 9 (SLC2A9) and ATP-binding cassette subfamily G
member 2 (ABCG2), account for about half of the genetic
variance explained [10]. SLC2A9 in chromosome 4p16-
15.3 encodes glucose transporter 9 (GLUT9) that reabsorbs
uric acid in renal tubules [11]. ABCG2 in chromosome
4q22 encodes ATP-binding cassette subfamily G member 2
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(ABCG2) that reduces the transportation activity, resulting
in hyperuricaemia [11]. A genome-wide association study
of Japanese showed higher uric acid concentrations for the
rs2544390 T-allele at intron 1 ofLRP2 at chromosome
2q24-31 that encodes low-density lipoprotein receptor-
related protein 2 (megalin) [12]. How megalin affects urate
metabolism is not currently known.

“Quantile-dependent expressivity” hypothesizes that the
effects of genetic variants on phenotypes may depend on
whether the phenotype (e.g., uric acid concentration) is high
or low relative to its distribution [13]. The heritability of adi-
posity [13, 14]; plasma concentrations of triglyceride [13,
15], total cholesterol [16], high-density lipoproteins [13,
17, 18], leptin [19], adiponectin [20], plasminogen activator
inhibitor type-1 [21], and C-reactive protein concentrations
[22]; postprandial lipemia [23]; pulmonary function [24];
and intakes of alcohol [25] and coffee [26] are quantile-
dependent, whereas height and the intakes of other macro-
nutrients are not [13, 14, 25]. An important consequence
of quantile-dependent expressivity is that the selection of
subjects by characteristics that distinguish high vs. low
phenotype values is expected to produce different genetic
effects [18]. Traditionally, these have been interpreted as
gene-environment interactions where environmental con-
ditions modify genetic influences or where genotypes
modify the susceptibility of the phenotype to the environ-
ment [18]. However, many reported gene-drug, gene-diet,
and gene-environment interactions have been shown to
be potentially attributable wholly or in part to quantile-
dependent expressivity for adiposity (56 examples of inter-
actions [14]), postprandial lipemia (64 examples [23]),
serum triglycerides (76 examples [15]), total cholesterol
(22 examples [16]), high-density lipoprotein cholesterol
(88 examples [17, 18]), adiponectin (15 examples [20]),
leptin (16 examples [19]), plasminogen activator inhibitor
type-1 (21 examples [21]), and C-reactive protein concen-
trations (50 examples [22]).

Precision medicine attempts to identify genetic markers
to identify patients who are most likely to benefit from med-
ical treatment. When quantile-dependent expressivity
changes the genetic effect size when the phenotype is
increased or decreased, the genotype-specific changes in
the phenotype cannot move in parallel [13–15]. In this case,
the genetic marker may simply track the change in heritabil-
ity associated with higher vis-à-vis lower phenotype values
rather than revealing a physiological explanation for individ-
ual differences in treatment response.

It is not known whether uric acid heritability is quantile-
dependent nor whether some of its gene-environment inter-
actions may be attributable to quantile-dependent expressiv-
ity when subjects are selected for conditions that distinguish
high vs. low phenotype values. Therefore, quantile regres-
sion [27, 28] was applied to the uric acid concentrations of
sibships and offspring-parent pairs from the Framingham
Heart Study [29–31] to estimate heritability in the narrow
sense (h2 [32]) at different quantiles of the uric acid distribu-
tion. The discussion presents several purported interactions
involving uric acid concentrations that might be more sim-
ply explained by quantile-dependent expressivity.

2. Methods

The Framingham Study data were obtained from the
National Institutes of Health FRAMCOHORT, GEN3, FRA-
MOFFSPRING Research Materials obtained from the
National Heart, Lung, and Blood Institute (NHLBI) Biologic
Specimen and Data Repository Information Coordinating
Center. The hypothesis tested was not considered a part of
the initial Framingham Study design and is exploratory.
Our analyses of these data were approved by the Lawrence
Berkeley National Laboratory Human Subjects Committee
(HSC) for protocol “Gene-environment interaction vs.
quantile-dependent penetrance of established SNPs
(107H021)” LBNL holds Office of Human Research Protec-
tions Federal wide Assurance number FWA 00006253,
Approval number: 107H021-13MR20. All data collection
was conducted under the direction of the Framingham
Heart Study human use committee guidelines, with signed
informed consent from all participants or parent and/or
legal guardian if <18 years of age.

Uric acid concentrations were determined for examina-
tions 1, 2, 3, 4, and 13 of the Original Framingham Heart
Study Cohort, examinations 1 and 2 of the Offspring
Cohort, and examination 1 of the Third Generation
Cohort. Nonfasting serum uric acid concentrations from
the Original Cohort were measured as described by Jacob-
son [33]. Fasting serum uric acid concentrations from the
Offspring and Third Generation Cohorts were measured
on an autoanalyzer using a phosphotungstic acid reagent
[34]. Mean differences between cohorts due to fasting sta-
tus and methodological procedures should have been elim-
inated by the calculation of age- and sex-adjusted residuals
with each cohort. Results are presented as μmol/L
(1mg/dL = 59:48μmol/L).

2.1. Statistics. The primary hypothesis is whether the urate
heritability is quantile-dependent. The statistical methods
employed have been described in detail [14–26]. Briefly,
age and sex adjustment was performed using standard
least-squares regression within each cohort separately with
sex, age, age2, sex × age, and sex × age2 as independent vari-
ables. Individual subject uric acid concentrations were
obtained by averaging adjusted concentrations over all avail-
able exams. Offspring-parent regression slopes (βOP) were
computed using parents from the Original Cohort and their
offspring who participated in the Offspring Cohort and
using parents of the Offspring Cohort and their offspring
who participated in the Third Generation Cohort. Sibships
were identified from the Third Generation and Offspring
Cohorts. Full-sibling regression slopes (βFS) were obtained
by forming all kiðki − 1Þ sibpair combinations for the ki sib-
lings in sibship i and assigning equal weight to each sibling
as previously described [35]. Simultaneous quantile regres-
sion was performed using the sqreg command of Stata (ver-
sion. 11, StataCorp, College Station, TX), bootstrap
resampling was used to estimate variances and covariance,
and orthogonal polynomials were used to test for linear,
quadratic, and cubic trends in the regression slopes between
the 5th and 95th percentiles of the offspring or sib uric acid
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distribution [36]. Heritability in the narrow sense (h2) was
calculated by h2 = 2βOP/ð1 + rspouseÞ, where rspouse is the

spouse correlation, and by h2 = fð1 + 8βFSrspouseÞ0:5 − 1g/2
rspouse under specific restrictive assumptions [32].
“Quantile-specific heritability” refers to the heritability sta-
tistic, whereas “quantile-dependent expressivity” refers to
the biological phenomenon of the trait expression being
quantile-dependent. Results are presented as the mean ± SE.

The results from several published studies were reinter-
preted from the perspective of quantile-dependent expres-
sivity. This was done using genotype-specific mean uric
acid concentrations presented in the original articles or by
extracting them from published graphs using the Microsoft
PowerPoint formatting palette (Microsoft Corporation, Red-
mond, WA) as previously described [23]. The location of the
SNPs is presented in Supplementary Table 1. Their
interpretations are not necessarily those of the original
articles.

3. Results

As expected, Table 1 shows that average uric acid concentra-
tions were significantly higher in men than women
(P < 10−16).

3.1. Traditional Estimates of Familial Concordance and
Heritability. Spouse uric acid concentrations were signifi-
cantly but weakly correlated (rspouse = 0:1062). The
offspring-parent regression slope (βOP ± SE), calculated
from 2318 offspring with one parent and 4875 offspring
with two parents, was 0:2235 ± 0:0133, which corresponds
to a heritability (h2) of 0:4041 ± 0:0240. Estimated h2 was
similar in male and female offspring (0:4133 ± 0:0374 vs.
0:3956 ± 0:0307). The full-sib regression slope
(βFS ± SE : 0:2313 ± 0:0162) was calculated from 5761
full-sibs in 2151 sibships, which from Falconer’s formula
corresponds to heritability of h2 = 0:4419 ± 0:0322, with
no significant male-female difference (0:4076 ± 0:0424 vs.
0:4714 ± 0:0355).

3.2. Quantile-Dependent Expressivity. The offspring-parent
regression slopes at the 10th, 25th, 50th, 75th, and 90th percen-
tiles of the offspring’s uric acid distribution are presented in
Figure 1(a), along with their corresponding heritability esti-
mates. The regression slopes increased with increasing per-
centiles of the uric acid distribution. The heritability at the
90th percentile was 47% greater than the heritability at the
10th percentile (h2: 0.49 vs. 0.34, Pdifference = 0:002).
Figure 1(b) presents these slopes with those of the other per-
centiles between the 5th and 95th percentiles. It shows that
heritability increased linearly (i.e., slope ± SE : 0:0020 ±
0:0005 for each percent increment, Plinear = 0:001) with
increasing percentiles of the offspring’s distribution. There
was no statistically significant evidence of nonlinearity (i.e.,
Pquadratic = 0:60 ; Pcubic = 0:99). Individually, the quantile-
specific heritability estimates were significant (P ≤ 10−10)
for all percentiles between the 5th and 95th percentiles of
the offspring’s distribution. If the heritabilities were constant
over all quantiles as usually assumed, then the line segments
would be parallel in Figure 1(a), and Figure 1(b) displays a
flat line with a zero slope. Figure 2 displays the quantile
regression analysis for h2 estimated from full-sib regression
slopes (βFS). The full-sib regression slope increased 0:0012
± 0:0004, and heritability increased 0:0024 ± 0:0008 with
each one-percent increase in the uric acid distribution
(Plinear = 0:008).

3.3. Replication. Additional support for quantile-dependent
expressivity was obtained by analyzing the offspring-
parent and full-sib quantile regression in the first-
generation (offspring of the Offspring Cohort and their
Original Cohort parents) and second-generation (off-
spring of the Third Generation Cohort and their Off-
spring Cohort parents) family sets separately. Spouse
correlations (rspouse) were 0.1335 for the Original Cohort
and 0.0728 for the Offspring Cohort. Heritability
increased with increasing percentiles of the offspring dis-
tribution when estimated from βOP ð0:0024 ± 0:0011, P =
0:008Þ andβFS ð0:0022 ± 0:0012, P = 0:05Þ from the 2nd-

Table 1: Sample characteristics.

Original Cohort Offspring Cohort Third Generation Cohort

Sample size

Male 1257 2111 1854

Female 1312 2234 2098

Age∗ (years)

Male 50.5 (7.9) 39.4 (10.4) 40.4 (8.8)

Female 50.0 (8.1) 38.8 (10.1) 40.1 (8.8)

BMI∗ (kg/m2)

Male 26.3 (3.3) 26.7 (3.6) 28.0 (4.7)

Female 26.0 (4.5) 24.4 (4.7) 26.1 (6.1)

Uric acid∗ (μmol/L)

Male 306.8 (51.3) 376.5 (67.7) 375.6 (73.5)

Female 244.2 (49.9) 274.2 (61.4) 261.2 (62.2)
∗Mean (standard deviation).
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generation cohort, and when estimated from βOP ð0:0018 ±
0:0011, P = 0:09Þ andβFS ð0:0028 ± 0:0012, P = 0:02Þ in the
1st-generation cohort.

4. Discussion

Our analyses of offspring-parent and full-sib pairs from the
Framingham Heart Study suggest that serum uric acid con-
centrations exhibit quantile-dependent expressivity. Specifi-
cally, whereas genetic analyses traditionally assume that
effect size is constant throughout the phenotype distribution,
our analysis showed that heritability at the 90th percentile of
the offspring distribution was 47% larger than that at the
10th percentile when estimated from offspring-parent regres-
sion and 53% larger when estimated from the full-sib regres-

sion slope. The results were generally replicated in the first-
and second-generation family sets (the slightly weaker results
for the Original Cohort parents may be due to their nonfasting
samples and different urate assay vis-à-vis their offspring).

Quantile-dependent expressivity may explain some of the
purported gene-environment interactions involving uric acid.
Specifically, under quantile-dependent expressivity, the selec-
tion of subjects by characteristics that distinguish high vs. low
uric acid concentrations is expected to show different genetic
effects [18]. These differences have been traditionally attributed
to gene-environment interactions due to biological interaction
between the gene product and environmental conditions. None
consider the differences in average uric acid levels between envi-
ronmental conditions as their explanation. Quantile-dependent
expressivity may arise from concentration-dependent effects of
the genetic mutations affecting uric acid production, reabsorp-
tion, or clearance. The reported examples to follow represent
interactions that are consistent with quantile-dependent expres-
sivity because they show a larger genetic effect size at a higher
average serum concentration.

4.1. Gout. We are unaware of any published comparison of
genetic effect size vs. mean uric acid concentrations. There
is, however, Das Gupta et al.’s [37] report on uric acid levels
in newly diagnosed male gout patients and controls. Gouty
arthritis is the result of uric acid being crystallized as monoso-
dium urate when serum concentrations exceed the normal
range of 200–400μmol/L in men and 150–350μmol/L in
women [2]. The histogram of Figure 3(a) examines whether
the patient-control difference varied by rs11722228 genotypes
of the SLC2A9 gene that encodes the GLUT9 protein, the
high-affinity uric acid transporter that is primarily responsible
for uric acid reabsorption, and whose genetic variants explain
about 3% of the variance in uric acid concentrations [38].
Their data show that an effect of gout on uric acid concentra-
tions was significant for rs11722228 CC homozygotes
(P = 0:03) but not carriers of the T-allele (P = 0:22).
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Figure 1: (a) Offspring-parent regression slopes (βOP) for selected
quantiles of the offspring’s uric concentrations from 12,068
offspring-parent pairs, with corresponding estimates of heritability
(h2 = 2βOP/ð1 + rspouseÞ [32], where the correlation between spouses
was rspouse = 0:1062. The slopes became progressively greater (i.e.,
steeper) with increasing quantiles of the uric acid distribution. (b)
The selected quantile-specific regression slopes were included with
those of other quantiles to create the quantile-specific heritability
function in the lower panel. Significance of the linear, quadratic,
and cubic trends and the 95% confidence intervals (shaded region)
determined by 1000 bootstrap samples.
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Figure 2: Quantile-specific full-sib regression slopes (βFS) from 5703
full-sibs in 2036 sibships, with corresponding estimates of heritability
as calculated by h2 = fð8rspouseβFS + 1Þ0:5 − 1g/ð2rspouseÞ [32].
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Figure 3: Precision medicine perspective of genotype-specific uric acid differences (histogram inserts) vs. quantile-dependent expressivity
perspective (line graphs showing larger genetic effect size when average uric acid concentrations were high) for (a) Das Gupta et al.’s
[37] 2018 report on the uric acid difference between gout patients and healthy controls by SLC2A9 rs11722228 genotypes; (b) Yang
et al.’s [42] 2014 report on the uric acid difference between males and females by ABCG2 rs2231142 genotypes; (c) Lin et al.’s [43] report
on the uric acid difference between males and females by ABCG2 rs2231142 genotypes; (d) Lin et al.’s [43] 2020 report on the uric acid
difference between males and females by rs13120819 genotypes located 5′ of ABCG2; (e) Sarzynski et al.’s [47] 2012 report on the uric
acid difference before and after 29 kg weight loss following bariatric surgery by SLC2A9 rs13113918 genotypes; (f) Cheng et al.’s [48]
2017 report on the uric acid difference between obese and nonobese women by ABCG2 rs2231142 genotypes.
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The accompanying line graph in Figure 3(a) assesses
whether the genotype differences were quantile-dependent,
i.e., whether the genetic effect depended upon whether uric
acid concentrations were high (patients) or low (controls).
In fact, the line graph shows a greater difference between
the CC homozygotes and T-allele carriers
(241 ± 83 μmol/L, P = 0:004) at the higher average concen-
trations represented by the gout patients (498 ± 33μmol/L)
vis-à-vis the smaller genotype difference (88 ± 45μmol/L, P
= 0:05) at the lower average concentrations of the healthy
controls (411 ± 21μmol/L). This interpretation is consistent
with the quantile-specific heritability of serum uric acid con-
centrations displayed in Figures 1 and 2.

4.2. Sex. The rs2231142 (Q141K) polymorphism produces a
Glu141Lys amino acid substitution in exon 5 of ABCG2 gene
[39]. Multiple reports [10, 40, 41] show that the urate raising
effect of the ABCG2 rs2231142 gene polymorphism is
greater in men than women. Köttgen et al.’s [10] GWAS of
over 140,000 Europeans showed a 16.1μmol/L increase in
men vs. 10.8μmol/L in women. In Han Chinese, Yang
et al. [42] reported the significant interaction between sex
and the ABCG2 rs2231142 polymorphism (P = 0:02) as dis-
played in Figure 3(b). The male-female difference in uric
acid concentrations was greatest in TT homozygotes, inter-
mediate in TG heterozygotes, and least in GG homozygotes.
The line graph shows that this could be attributed to the
greater difference between genotypes at the higher average
serum concentrations of the males than females. In another
study of mostly Han Chinese ancestry, Lin et al. [43]
reported significant sex by gene interaction for rs2231142
(Pinteraction = 9:1 × 10−9) and rs13120819 located 5′ of
ABCG2 (Pinteraction = 4:3 × 10−7) in subjects ≤ 50 years of
age. The histograms of Figures 3(c) and 3(d) show the signif-
icant sex difference by genotype, which the line graph would
attribute to the larger genetic effect for the higher mean uric
acid concentrations of males than females. The authors
attributed the difference to the attenuating effects of estrogen
on the autosomal genetic effects, whereas quantile-
dependent expressivity suggests that estrogen decreases uric
acid concentrations and that the genetic effects are smaller at
the lower serum concentrations.

4.3. Adiposity. The higher uric acid concentrations that are
associated with greater visceral fat may be due to both
increased production and poor excretion and clearance [44].
The greater influx of plasma free fatty acids into the hepatic
portal vein and liver may stimulate hepatic triglyceride synthe-
sis, which in turn promotes uric acid production [45, 46]. In
addition, weight loss may improve renal uric acid clearance
because hyperinsulinemia and insulin resistance are reduced.

Bariatric surgery reduces serum uric acid concentrations.
Sarzynski et al. [47] reported that uric acid reductions fol-
lowing bariatric surgery were affected by SLC2A9
rs13113918, a coding SNP that produces a synonymous sub-
stitution (Leu79Leu). Specifically, the histogram in
Figure 3(e) (estimated from their figure 2) shows that the
number of rs13113918 minor (A) alleles significantly
affected two-year decreases in uric acid concentrations after

29kg weight loss (Pinteraction = 0:04). From the perspective of
quantile-dependent expressivity, the line graph in Figure 3(e)
shows that the large difference between genotypes before sur-
gery, when average uric concentrations were high
(326μmol/L), was substantially reduced two years postsurgery
when average uric concentrations were less (281μmol/L).

Cross-sectionally, data presented by Cheng et al. [48]
showed that the uric acid difference between obese and non-
obese women was significantly greater in A-allele carriers
than CC homozygote of the ABCG2 rs2231142 polymor-
phism (Figure 3(f) histogram, Pinteraction = 0:004). Alterna-
tively, the line graph suggests a larger difference between
genotypes at the higher mean concentrations of the obese
vs. nonobese females. Another paper, by Brandstätter et al.
[49], reported that BMI amplified the uric acid differences
between genotypes of the SLC2A9 rs6855911
(Pinteraction = 0:035), rs7442295 (Pinteraction = 0:023),
rs6449213 (Pinteraction = 0:024), and rs12510549
(Pinteraction = 0:053) polymorphisms, consistent with
quantile-dependent expressivity and the progressive increase
in uric acid concentrations in going from a BMI of <30, to
30-40, and to >40 kg/m2 (cf. Figure 1).

4.4. Alcohol Intake. Alcohol intake increases gout risk, par-
ticularly when consumed as beer and not as wine [50]. Alco-
hol affects renal urate transporters directly and uric acid
excretion [3]. Yang et al. [51] reported that alcohol intake
significantly modified the association between serum uric
acid concentrations and a haplotype of SLC2A9 rs3733591,
PKD2 rs2725220, and ABCG2 rs2231142 in Korean adults
(Pinteraction = 0:002). They categorized the haplotype as major
(0 minor alleles), heterozygote (1-2 minor alleles), and
minor (3-4 minor alleles) alleles. Figure 4(a) (derived from
their figure 2) shows that the uric acid difference between
Koreans consuming over 10 g/d of alcohol vs. less increased
from being smallest for the major haplotype, intermediate
for the heterozygote haplotype, the largest in the minor hap-
lotype. Alternatively, the accompanying line graph attributes
the histogram to the larger cross-sectional differences
between haplotypes at the higher average uric acid concen-
trations of the heavier drinkers.

Hamajima et al. [52] reported that the gene encoding
low-density lipoprotein receptor-related protein 2 (LRP2)
in intron 1 (rs2544390) was significantly associated with uric
acid concentrations in Japanese men (P = 0:01) and that the
uric acid raising effect of the TT homozygotes was accentu-
ated by alcohol intake (Pinteraction = 0:005). The histogram in
Figure 4(b) shows the greater difference between drinking
>5 times/wk vs. abstinence in T-allele carriers vs. noncar-
riers, whereas the line graph emphasizes the greater geno-
type difference in the drinkers.

4.5. Diet. Higher intakes of red meat, seafood, and fructose-
containing foods including soft drinks and low intakes of
dairy products, caffeine, and vitamin C have been associated
with gout and/or hyperuricaemia risk. Yang et al. [51]
reported that consumption of chicken and processed meats
significantly modified the association between serum uric
acid concentrations and their aforementioned
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SLC2A9/PKD2/ABCG2 haplotype (Pinteraction = 0:003 and
Pinteraction = 0:007, respectively). The histograms in
Figures 4(c) and 4(d) show that the uric acid difference
between Koreans consuming over 6.3 g/d of chicken or
3.0 g/d of processed meat vs. less was greatest for the minor
haplotype. Alternatively, the accompanying line graph shows
the alternative interpretation where the cross-sectional differ-
ences between haplotypes were greatest at the higher average
uric acid concentrations of the heavier consumers.

4.6. Limitations. Quantile-dependent expressivity is a novel
concept, and for this reason, most articles do not provide
the information needed to evaluate its applicability,
namely, genotype-specific uric acid concentrations strati-
fied by characteristics affecting overall average concentra-

tions. Our reliance on the simple formula
h2 = 2βOP/ð1 + rspouseÞ and h2 = fð1 + 8rspouseβFSÞ0:05 − 1g/ð2
rspouseÞ to estimate heritability [32] is unlikely to embody
the true complexity of uric acid inheritance. Our reinter-
pretations of the results presented by Das Gupta et al.
[37], Yang et al. [42, 51], Lin et al. [43], Sarzynski et al.
[47], Cheng et al. [48], Brandstätter et al. [49], and Hama-
jima and colleagues [52] do not disprove their original
explanations, rather they suggest an alternative interpreta-
tion that warrants consideration.

In conclusion, quantile-dependent expressivity poten-
tially provides a common principle underlying a plethora
of published gene-drug and gene-environment interactions.
The current analyses extend this phenomenon to uric acid
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Figure 4: Precision medicine perspective of genotype-specific uric acid differences (histogram inserts) vs. quantile-dependent expressivity
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concentrations. The gene-environment interactions cited
above are examples potentially attributable to quantile-
dependent expressivity.
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