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Invariant Natural Killer T (iNKT) cells are T lymphocytes expressing a conserved semi-

invariant TCR specific for lipid antigens (Ags) restricted for the monomorphic MHC

class I-related molecule CD1d. iNKT cells infiltrate mouse and human tumors and

play an important role in the immune surveillance against solid and hematological

malignancies. Because of unique functional features, they are attractive platforms for

adoptive cells immunotherapy of cancer compared to conventional T cells. iNKT cells

can directly kill CD1d-expressing cancer cells, but also restrict immunosuppressive

myelomonocytic populations in the tumor microenvironment (TME) via CD1d-cognate

recognition, promoting anti-tumor responses irrespective of the CD1d expression by

cancer cells. Moreover, iNKT cells can be adoptively transferred across MHC barriers

without risk of alloreaction because CD1d molecules are identical in all individuals, in

addition to their ability to suppress graft vs. host disease (GvHD) without impairing

the anti-tumor responses. Within this functional framework, iNKT cells are successfully

engineered to acquire a second antigen-specificity by expressing recombinant TCRs

or Chimeric Antigen Receptor (CAR) specific for tumor-associated antigens, enabling

the direct targeting of antigen-expressing cancer cells, while maintaining their CD1d-

dependent functions. These new evidences support the exploitation of iNKT cells for

donor unrestricted, and possibly off the shelf, adoptive cell therapies enabling the

concurrent targeting of cancer cells and suppressive microenvironment.

Keywords: NKT cells, CD1d, cancer immunotherapy, CAR, T cell receptor, adoptive cell therapy (ACT)

INTRODUCTION

Natural killer T cells (NKT cells) were originally characterized in mice as T cells that express
both a TCR and NK1.1 (NKR-P1a-c or CD161), a C-type lectin NK receptor (1–3). Invariant
NKT (iNKT) cells (or type I NKT cells) express a semi-invariant αβ TCR, formed by an invariant
TRAV11-TRAJ18 (4) rearrangement in mice, or the homologous invariant TRAV10-TRAJ18 chain
in humans (5), paired with a limited set of diverse Vβ chains, predominantly TRBV1, TRBV29, or
TRBV13 in mice (6) and TRBV25 in humans (5). The semi-invariant TCR recognizes exogenous
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and endogenous lipid Ags presented by the monomorphic MHC
class I-related molecule CD1d (7). Exogenous lipid Ags include
the prototypical α-Galactosylceramide (α-GalCer) (8) and a
number of bacterial-derived Ags (9). In addition, one of the
iNKT cell functional hallmarks is their avid autoreactivity upon
recognition of stress-associated cell endogenous lipids (10–13).

iNKT cells undergo a distinct developmental pathway
compared to T cells, leading to the acquisition of innate
effector functions already in the thymus. Thymic iNKT cells
indeed express markers usually upregulated by peripheral
effector/memory T cells, such as CD44 and CD69, together with
distinctive NK differentiation markers, such as NK1.1 (in some
mouse genetic backgrounds, CD161 in humans), CD122 (the IL-
2R/IL-15R β-chain), CD94/NKG2 and Ly49(A-J), and a broad
spectrum of TH1/2/17 effector cytokines (6).

Once migrated in the periphery, iNKT cells form a tissue
resident population that survey the cellular integrity and rapidly
respond to local damage and inflammation, jump starting the
reaction by cells of the innate and adaptive immune response.
In mice, iNKT cells with specific TH1, TH2 and/or TH17 effector
profiles differentially colonize peripheral organs, resulting in the
accumulation of specialized functions (14), whereas in humans
it is more difficult to identify functional subsets beyond the two
main CD4+ TH0 and CD4− TH1 (15).

Amid functions exerted by iNKT cells in tissues, their
active participation in the immune surveillance against
malignant transformation and tumor progression is particularly
well-established, strongly supporting their use in cancer
immunotherapy. In this review, we will outline the advantages of
harnessing iNKT cells particularly for adoptive immunotherapy,
also when compared to conventional αβ T cells, given that
they: (i) Control the tumor microenvironment (TME); (ii)
Can be redirected against cancer cells by engineering with a
tumor-specific CAR or TCR while maintaining their intrinsic
control of the TME; (iii) Are devoid of alloreactivity, being
restricted for the monomorphic CD1d molecule, allowing their
possible use off the shelf in a donor-unrestricted manner.

ROLE OF iNKT CELLS IN ANTI-TUMOR
IMMUNE RESPONSE

The role of iNKT cells in anti-tumor immune response
first emerged with the demonstration that the systemic
administration of IL-12 (16) or α-GalCer into tumor-bearing
mice resulted in iNKT cell activation, in turn promoting
anti-tumor CD8+ T and NK cell responses able to control
tumor progression (17–22). iNKT cells were also shown to
exert spontaneous immune surveillance (i.e. without exogenous
Ag stimulation) against methylcholanthrene-induced sarcomas
or different genetically engineered mouse tumor models
of sarcoma, lymphoma, prostate adenocarcinoma, Chronic
Lymphocytic Leukemia (CLL) and pancreatic adenocarcinoma
(23–30). In these studies, iNKT cell-deficient mice generated
by the deletion of the genes encoding the invariant TRAJ18
TCR chain (Jα18−/−) or CD1d (CD1d−/−) were challenged
with methylcholanthrene or crossed with tumor-predisposing

genetically engineered strains, resulting in earlier onset and
higher incidence of cancer with reduced survival. Adoptive
transfer of iNKT cells into Jα18−/− tumor bearing mice restored
the protection against cancer, in the absence of exogenous
stimulation (23, 30). Of note, the main CD4+ and CD4− iNKT
cell subsets were not equally effective in tumor control: in fact,
liver-derived CD4− iNKT cells were found to be the main
mediators of tumor immune surveillance in vivo, by sustaining
a TH1-type CD8

+ T and NK cell-mediated immune response via
IFNγ production (23).

In humans, clinical studies reported reduced frequencies and
functional impairment of iNKT cells in patients with a wide
range of solid and hematological malignancies (31). A decreased
number and/or frequency of circulating iNKT cells associated
with poor overall survival in prostate cancer (32), head and
neck squamous cell carcinoma (33), neuroblastoma (34) acute
myeloid leukemia (AML) (35) and CLL (24). Conversely, high
numbers of intra-tumoral or circulating iNKT cells correlated
with a good clinical outcome and improved survival in colorectal
cancer (36), neuroblastoma (37), periampullary adenocarcinoma
(38) and hematologic malignancies (39, 40), whereas circulating
iNKT cells often become functionally impaired in patients with
progressing cancers. In prostate cancer and in oral cell squamous
carcinoma, iNKT cells have a defective production of IFNγ,
acquiring a TH2 biased cytokine profile (41, 42). This defect
can be reverted in vitro by activating the patient-derived iNKT
cells in the presence of IL-2 or IL-12 (41), or in vivo upon
therapeutic administration of autologous dendritic cells (DCs)
pre-loaded with α-GalCer (43, 44). Studies in cancer patients also
showed that iNKT cells respond to chemotactic signals derived
from tumor cells, or cells of the tumor microenvironment, and
infiltrate different types of primary and metastatic solid tumors
(30, 45). iNKT cells infiltration in neuroblastoma is associated to
CCL2 expression on tumor cells and CCL20 producing-TAMs,
and iNKT cells preferentially infiltrate tumors that express high
levels of this chemokine (46, 47).

MECHANISMS OF TUMOR CONTROL BY
iNKT CELLS

iNKT cells can control tumor progression by direct or indirect
mechanisms. They can directly recognize and kill CD1d-
expressing malignant cells, which are mainly hematopoietic
malignancies (45, 48, 49). The mechanisms of direct killing
include perforin/granzyme B-mediated cytolysis, TNFα
production and TRAIL- and FasL- dependent apoptosis
(29, 50, 51). However, what tumor associated lipid antigen/s
iNKT cells recognize on cancer cells is currently unknown.
Malignant cells can synthetize ganglioside GD3 that can
stimulate iNKT cells in vivo (52); yet, it is likely that additional
stress-related lipid antigens may be produced by cancer cells
and presented to iNKT cells. Also in human cancers CD1d
is mainly expressed by the hematopoietic ones (45), whereas
very few solid tumors are CD1d-positive (53–55). Furthermore,
cancer cells can downregulate CD1d surface expression, thereby
limiting direct recognition by iNKT cells (55–57), even though
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they have shown to kill by perforin and/or granzymes at least
colon cancer cells also in a CD1d-independent manner (58).
The mechanisms underlying CD1d downregulation or loss
by cancer cells are largely unknown. β-2 microglobulin loss,
which can occur in progressing tumors, could affect CD1d in
addition to MHC-I expression, while epigenetic silencing of
MHC-I gene expression might also affect CD1d gene epigenetic
control. Nevertheless, the available experimental data suggest
that iNKT cells mainly control tumors by indirect mechanisms
that impact the tumor microenvironment. iNKT cells promote
the anti-tumor immune response through the maturation of
CD1d+ DCs and the secretion of IFNγ and IL-12, in turn
leading to the activation of anti-tumor CD4+ and CD8+ T cells
and of NK cells, which ultimately cooperate in the elimination
of both MHC-positive and -negative cancer cells (32, 59).
Furthermore, more recent evidence shows that iNKT cells
efficiently reprogram immunostimulatory functions of the TME
by modulating myelomonocytic populations.

iNKT CELLS SHAPE THE TME

Cancer cells undergo a progressive selection process in which
a continuous and reciprocal cross-talk with the surrounding
non-malignant cells of the TME plays a fundamental role for
their growth and spread. Cells of both adaptive and innate
immune response infiltrate the tumor stroma accounting for
a major proportion of the TME (60, 61). Tumor infiltrating
effector T cells, which can recognize tumor associated antigens
(TAA) and selectively eliminate cancer cells together with NK
cells, are in a critical equilibrium with immunosuppressive
CD4+CD25+Foxp3+ Tregs, providing one known mechanism
determining tumor control vs. progression (62). The TME
contains also B cells that can associate to either control
or promotion of tumor progression (63, 64) and, especially,
myelomonocytic cells that are the most abundant tumor
infiltrating leukocyte population, accounting for up to 50% of the
tumor mass (65). Tumor associated macrophages (TAMs) may
have either tumor-opposing or promoting functions (66). An
over-simplified model identifies TAMs with pro-inflammatory,
immunostimulatory anti-tumor functions (M1-like), opposed
to TAMs with pro-angiogenic, immunoregulatory tumor-
supporting ability (M2-like) (65, 67–73). Tumor associated
neutrophils (TANs), like TAMs, can be differently activated to
support tumor progression or enhance their antitumor functions
(74, 75), ranging from a pro-inflammatory N1 to a suppressive
N2 state (76). Tumor infiltrating Myeloid-derived suppressor
cells (MDSC), which can be divided in polymorphonuclear
(PMN) and monocytic (M) MDSCs (77), exert unequivocal
tumor-promoting activity (78); and can influence virtually every
type of cancer therapy, from chemo-radiation to immunotherapy
(61). DCs are also critical for eliciting potent anti-tumor T-
cell responses, and patients with higher migratory CD103+ DCs
have significantly increased overall survival (79). Cancer cells
have also the ability to recruit cells from nearby stroma: in
different tumors, stromal cell composition can vary substantially,
including fibroblasts, vascular endothelial cells, stellate cells, and

adipocytes. These cells secrete factors influencing proliferation,
invasion, metastasization, and angiogenesis, but also antitumour
immunity and responsiveness to immunotherapy (80). Overall,
the functional plasticity of the immune cells in the TME defines
a potential Achilles heel of the tumor, because reprogramming
a dysfunctional TME toward a tumor-opposing state, in
combination with the most advanced therapies, could result in
cancer control and possibly remission (81).

iNKT cells actively infiltrate tumors. In hepatocellular
carcinoma patients, the frequency of iNKT cells among
CD3+ intrahepatic lymphocytes was similar to that found in
peripheral blood (0.133%), but the iNKT cell frequency in
tumor infiltrating lymphocytes coming from matched samples
was doubled (0.271%) (82). An immunohistochemistry study
showed that a small number of Vα24+ NKT cells was detected
in the normal colorectal mucosa (2.6 +/– 3.7 cells/5 HPF),
whereas a remarkably higher number was found in colorectal
adenocarcinomas (15.2 +/– 16.3 cells/5 HPF), acquiring an
independent prognostic value for the overall and disease-free
survival rates (36). Vα24-Jα18 TCR mRNA expression was also
detected in 53% (34) or 57% (37) of neuroblastoma cases,
which also showed an higher overall survival rate compared
to the patients in which the iNKT cell TCR could not be
detected (34, 37).

Despite their low numbers, iNKT cells are normal
components of both mouse and human TMEs (24, 34, 47, 55),
where they can efficiently reprogram tumor opposing
state irrespectively of the CD1d expression by cancer
cells, by restraining the immunosuppressive functions of
myelomonocytic cells such as TAMs, MDSC and TANs
populations (83–85), as summarized in Table 1.

iNKT cells were first shown to inhibit MDSCs suppressive
activity in a model of influenza A viral infection in a
CD1d- and CD40- dependent manner (83). Several evidence
support this ability also in cancer. iNKT cells promote the
differentiation of MDSCs into functional DCs upon α-GalCer
injection in a mouse model of colon carcinoma, leading to the
activation of tumor-specific CD8+ and CD4+ T cells and the
triggering of NK cell cytotoxicity (86). iNKT cells also reduce
CD1d+ MDSCs numbers and activity (83, 87) enhancing the
conversion of immature MDSCs to mature APCs (83, 86).
In particular, in human melanoma patients, iNKT cells could
also reverse the immune-suppressive activity of a population
of neutrophils producing IL-10, by inducing their maturation
toward IL-12-producing cells via CD1d- and CD40- interactions,
ultimately reinstating the activation of tumor antigen-specific
CD8+ T cells (84). These iNKT cell anti-tumor effector
functions on immunosuppressive myelomonocytic cells in the
TME are exerted by CD1d-cognate recognition. Observations
in a humanized neuroblastoma mouse model highlight the
elimination by the transferred human iNKT cells of CD1d-
expressing TAMs, impairing their tumor-supporting activity
(85). The importance of the iNKT cell-TAM crosstalk is further
strengthened in the same humanized neuroblastoma model,
by showing that iNKT cells are recruited in the TME tumor
by CCL20-producing TAMs, but are progressively inhibited in
their anti-tumor activity by macrophage-induced hypoxia (47).
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TABLE 1 | iNKT cell interactions in the tumor microenvironment.

References Cell type Effect Interactors Model

De Santo et al. (83) MDSCs Inhibition, reduction of number of MDSCs CD1d-iTCR

CD40-CD40L

Influenza A infection

Ko et al. (86) MDSCs Differentiation of MDSCs into functional DCs, and

subsequent activation of tumor-specific CD8+ and CD4+

T cells and triggering of NK cell cytotoxicity

CD1d-iTCR colon carcinoma

Lee et al. (87) MDSCs Inhibition, reduction of number of MDSCs CD1d-iTCR Her-2/neu+ transfectoma

EL4 thymoma

De Santo et al. (84) Neutrophils Reduction in IL-10 secretion by neutrophils and increase

in IL-12 production; reduction of neutrophil immune

suppression

CD1d-iTCR

CD40-CD40L

melanoma

Song et al. (85) TAMs Elimination and impairment of TAM tumor-supporting

activity

CD1d-iTCR humanized neuroblastoma

Liu et al. (47) TAMs iNKT cells are recruited in the TME tumor by

CCL20-producing TAMs, and become progressively

inhibited by macrophage-induced hypoxia

Secreted

CCL20-CCR6

humanized neuroblastoma

Gorini et al. (24) Nurse like

cells

Selectively elimination of the CD1d-expressing M2-like

macrophage population called nurse-like cells (NLCs)

which sustain CLL cell survival

CD1d-iTCR Chronic lymphocytic

leukemia

Cortesi et al. (30) Macrophages Elimination of pro-tumor M2-like macrophages and

support of anti-tumor M1-like ones

CD1d-iTCR

CD40-CD40L

Fas-FasL

Prostate cancer

(TRAMP)

Janakiram et al.

(88)

Macrophages M2-like macrophages are increased in absence of iNKT

cells

mPGES-1

5-LOX

LSL-KrasG12D/+

pancreatic cancer

Wang et al. (89) Macrophages In the absence of iNKT cells, shift from CD206+ M2

toward iNOS+ M1 macrophages, and a reduction of

PMN-MDSC in polyps

– ApcMin/+ model for colon

cancer

Wang et al. (90) Macrophages M1-like switch of TAMs and activation of CD8T cells – ApcMin/+ model for colon

cancer

Listed are the studies, the cells interacting with iNKT cells and the effect of these interactions, the molecules involved and the model analyzed.

Notably, iNKT cells can discriminate between anti-tumor M1-
like cells and pro-tumor M2-like ones, selectively eliminating
pro-tumor M2-like macrophages while supporting anti-tumor
M1-like populations (24, 30). For instance, in a model of
oncogene-induced pancreatic cancer, M2-like macrophages are
increased in absence of iNKT cells, suggesting the preferential
targeting of this pro-tumor macrophage population by iNKT
cells (88). By investigating at the same time a transgenic mouse
model of CLL and patients with stable or progressive disease,
we showed that iNKT cells delay the onset and progression
of the leukemia by remodeling the supporting niche of the
leukemia cells through the selective elimination of the CD1d-
expressing M2-like macrophage population called nurse-like
cells (NLCs) (24), which sustain CLL cell survival (24, 91).
Furthermore, we have found that iNKT cells selectively restrict
M2-like TAMs in the TME, delaying the progression of an
autochthonous TRAMP mouse prostate adenocarcinoma model,
while in human prostate cancer the disease aggressiveness
correlates with reduced intra-tumor iNKT cells and increased
M2 macrophages, underscoring the clinical significance of this
crosstalk (30). Adoptively transferred iNKT cells were able
to infiltrate the TME of TRAMP mice and selectively kill
M2-like TAMs upon CD1d-stimulation and the combinatorial
engagement of CD40 and Fas. Although both molecules are
expressed to similar levels on either M1-like or M2-like TAM

populations, in vitro co-culture experiments between mouse
iNKT cells and M1- or M2- bone marrow-derived monocytes
revealed that the CD40L-CD40 pathway support the selective
survival of the M1 population, by antagonizing the apoptotic
death driven by Fas signaling. By contrast, CD40 expression did
not protect M2 cells from FAS-dependent killing, suggesting that
CD40 engagement may transduce distinct intracellular signals
betweenM1 andM2macrophages. Interestingly, the iNKT ability
to promote immunostimulatory Th1/M1-like conditions in the
TME seems to be context-dependent. In fact, iNKT cells naturally
promote the formation of polyps in the spontaneous murine
adenomatous polyposis coli (Apc) ApcMin/+ model for colon
cancer (89), associated with a shift from M1-like to M2-like
TAMs and decreased pro-inflammatory/ TH1 associated gene
expression, which were reverted in ApcMin/+ mice lacking
iNKT cells (89). However, the treatment of ApcMin/+mice with
strong iNKT cell agonists (α-GalCer and C20:2) reduced the
polyp size in the small intestine thanks to iNKT cell-dependent
intra-tumor activation of CD8T cells and M1-like switch of
TAMs (90). Yet, iNKT cells showed reduced frequencies and
PD-1 upregulation (90), suggesting an anergic state for iNKT
cells in α-GalCer-treated mice (92, 93). Consistently, the addition
of PD-1 blockade improved the treatment with the iNKT cell
agonist α-GalCer and enhance anti-tumor activities, resulting in
highly significant reduction of polyp numbers in the small and
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large intestine, maintenance of iNKT cells and a skew toward
a TH1-like iNKT1 phenotype specifically in polyps (94). The
dichotomous iNKT cell response in the different tumors may be
related to changes undergoing in the TME: in healthy intestine
NKT1 and NKT17 subsets are mostly represented, whereas as
tumor progresses iNKT cells infiltrating intestinal polyps start to
produce IL-10 (77).

Nevertheless, while on the one hand iNKT cells are emerging
as potent mediators of cancer immune surveillance, on the
other hand several mechanisms of tumor immune evasion from
iNKT cell control are becoming increasingly clear. For instance,
tumors can elicit the upregulating the inhibitory NK receptor
Ly49C/F/H/I causing iNKT cell unresponsiveness, as reported
in the TRAMP murine model (55). Of note, this dysfunctional
iNKT cell phenotype could be rescued in vitro by simultaneous
stimulation with α-GalCer and IL-12, which likely overrides
the inhibitory signal. Furthermore, likewise T cells, also tumor-
unresponsive iNKT cells were reported to express PD-1, and their
responsiveness could be reverted by PD-1/PD-L1 blockade (93).
Finally, additional mechanisms related to intra-tumor metabolic
dysregulation, hypoxia or accumulation of toxic products could
play a role in the induction of iNKT cell dysfunctions (95,
96). All these suppressive mechanisms impact the iNKT cell
counts and TH1 cytokines production in patients with late-stage
progressive disease and must be kept in mind for potential
therapeutic applications.

Collectively, these data show that iNKT cells exert their
main anti-tumor functions by primarily modulating different
myelomonocytic cell populations in the TME.

iNKT CELL ARE HIGHLY SUITABLE FOR
ADOPTIVE IMMUNOTHERAPY OF
CANCER

Given that immunosuppressive cues derived from the TME
represent the major hurdle that must be overcome by the current
adoptive cell therapy strategies to become efficient, particularly
in solid tumors (97, 98), the peculiar ability of iNKT cells to
reprogram immunostimulatory conditions in the TME could
be actively exploited to enhance the efficacy of the approach.
Furthermore, iNKT cells possess other unique features that
make them particularly suitable for adoptive immunotherapy of
cancer. First, they are restricted for the monomorphic CD1d
molecule, which is identical in all individuals permitting their
functions across MHC barriers without risks of alloreactivity
(99). Whereas not relevant in the autologous immunotherapy
setting, GvHD is the major concern for adoptive cell therapy with
allogeneic T cells, which are restricted for the polymorphic MHC
molecules, and can give raise to alloreactive anti-host response
by donor T cells. By contrast, iNKT cells have been shown in
pre-clinical models to suppress GvHD and are associated with
reduced GvHD in the clinic. Several studies have reported that
GvHD is exacerbated in CD1d−/− or Jα18−/− mice and that
stimulation of iNKT cells can increase anti-leukemia responses
while simultaneously mitigating the severity of GvHD (100).
Interestingly, in the context of hematopoietic stem cell (HSC)

transplantation, preclinical and clinical studies demonstrate that
iNKT cells significantly attenuate GvHD without abrogating
the graft vs. leukemia (GvL) effect, exerted through direct
and indirect mechanisms (99, 101–103). In pediatric acute
leukemia patients, this process has been correlated with the
engraftment of donor iNKT cells, as failure to reconstitute
iNKT cells after transplantation strongly correlates with disease
relapse (40). Studies into the mechanisms of GvHD suppression
showed that iNKT cells modulate the overall grafted immune
response through production of TH2 cytokines such as IL-
4, which restrains inflammatory donor T cells, and promote
Treg proliferation against both acute and chronic GvHD (103).
Adoptively transferred iNKT cells are at least 10 times more
potent than Tregs in protecting mice from lethal GvHD without
compromising the GvL effect (104). iNKT cells have the unique
ability to secrete both TH1 and TH2 cytokines, in particular
human CD4+ iNKT cells are able to secrete IL-4 and IL-13
whereas DN iNKT cells were able to secrete TH1 cytokines (15).
Thus, TH2 iNKT cells facilitate the engraftment of allogenic
donor cells against recurrence of leukemia, while the TH1 arm
generate antitumor response (105).

Because of the lack of toxicity in the allogeneic setting, iNKT
cells seem the ideal platform for the generation of “off-the-
shelf ” ready-to-use effector cells for adoptive immunotherapy of
cancer. Nevertheless, allogeneic iNKT cells must be somewhat
edited to downregulate their MHC expression to avoid a possible
rejectionmediated by the allogeneic host immune system. To this
purpose, iNKT cells have been differentiated in vitro from human
hematopoietic stem cells that express very low levels of HLA-
I and almost undetectable HLA-II molecules, which then can
be further engineered with CARs to generate stealth anti-tumor
effectors for the host immune response (106). An alternative
strategy to generate off-the-shelf allogeneic iNKT cells, currently
being assessed in early phase clinical trials for patients with
progressing B cell malignancies (ANCHOR NCT03774654),
relies in the co-expression of CD19-CAR, IL-15, and shRNAs
targeting beta-2 microglobulin and CD74 to downregulate
surface HLA class I and class II molecules. Although the strategy,
which is combined by the lymphodepletion of the recipients
before iNKT cell transfer, shows promise, it should be kept
in mind that the complete abrogation of MHC expression on
the transferred allogeneic cells should trigger the “missing self ”
response by NK cells, ultimately eliminating the gene-edited
iNKT cells. This may be mitigated by engineering the allogeneic
tumor-redirected HLA-edited effectors to express ligands for
the NK inhibitory receptors (107) or the “don’t eat me signal”
provided by CD47 to prevent phagocytosis by phagocytes (108),
which can cooperate to promote long term effects of the adoptive
cell therapy.

A possible pitfall for adoptive iNKT cell immunotherapy is
that the median frequency of these cells in the human peripheral
blood is 0.01% in most individuals and decreases further in
advanced cancer patients. However, iNKT cells easily expand
in culture and efficient protocols to activate and expand iNKT
cells from the patients have been established (109). Considering
the lack of histocompatibility barriers for iNKT cell functions,
allogenic donor source could also be an intriguing experimental
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TABLE 2 | iNKT cells used in clinical studies on oncological patients.

References Trial ID Tumor type n Treatment

Giaccone et al. (113) – Solid tumors 24 αGalCer

Nieda et al. (114) – Metastatic solid tumors 12 αGalCer/immature MoDC

Nicol et al. (115) – Metastatic solid tumors 12 αGalCer/immature MoDC

Chang et al. (116) – Advanced cancer 5 αGalCer/mature MoDC

Ishikawa et al. (117) UMIN000007321 NSCLC 11 αGalCer/immature DC enriched PBMC

Motohashi et al. (118) – NSCLC 6 αGalCer/IL-2-expanded PBMC

Uchida et al. (119) – Head and neck SCC 9 αGalCer /immature DC-enriched PBMC

Motohashi et al. (120) – NSCLC 23 αGalCer/immature DC-enriched PBMC

Kunii et al. (121) – Head and neck SCC 8 αGalCer/immature DC-enriched PBMC +

αGalCer/IL-2-expanded PBMC

Yamasaki et al. (122) UMIN000000852 Head and neck SCC 10 αGalCer-pulsed APCs + activated Vα24 NKT cell +

surgery

Kurosaki et al. (123) UMIN000001933 Head and neck SCC 17 a-GalCer/immature DC-enriched PBMC

Nagato et al. (124) NSCLC 4 αGalCer /immature DC-enriched PBMC

Richter et al. (44) NCT00698776 Multiple myeloma 6 αGalCer /mature MoDC + lenalidomide

Exley et al. (125) NCT00631072 Advanced melanoma 9 Ex-vivo expanded iNKT cells

Gasser et al. (126) Advanced melanoma 8 αGalCer + NY-ESO-1/mature MoDC

Heczey et al. (127) NCT03294954 Neuroblastoma 24 (R) Autologous GD2-CAR NKT cells expressing IL-15

– NCT04754100 Multiple myeloma 30 (R) agent-797 iNKT therapy

– NCT03774654 B cell malignancies 48 (R) Allogenic CD19-CAR NKT cells expressing IL-15

– NCT04751786 Advanced Solid Tumor

(NY-ESO-1+)

15 (R) iNKT cell activator PRECIOUS-01 + NY-ESO-1

encapsulated in nanoparticles

– NCT04814004 ALL, CLL, and B-cell

lymphoma

20 (R) Autologous CD19-CAR iNKT cells expressing IL-15

Listed are the studies, the trial ID number when available, the tumor type, the number of patients involved and the type of treatment. NSCLC, non-small-cell lung cancer; SCC, squamous

cell carcinoma; ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; R, recruiting.

alternative. To overcome the issue, concerning the generation
of a huge number of iNKT cells in vitro for clinical purpose,
Taniguchi and colleagues developed an interesting strategy based
on induced-pluripotent stem cells (iPSCs) technology. They were
able to derive iPSCs from mouse splenic iNKT cells and to
induce such high proliferative stem cells to differentiate into
functional iNKT cells in vitro. The iPSC-derived iNKT cells
recapitulated the adjuvant effects of physiologic iNKT cells and
suppressed tumor growth in vivo (110). The same results were
also obtained with human iPSC-derived iNKT cells, which could
be activated by α-GalCer-pulsed DCs and produced as much
IFNγ as natural parental cells but exhibited better cytotoxic
activity against various tumor cell lines. iPSC-derived iNKT
cells also possessed significant anti-tumor activity in tumor-
bearing mice (111). In a recent work iNKT cells were also
generated from human CD34+ HSC engineered to express the
rearranged TCR genes from a iNKT cell clone (112). This study
showed that HSC-iNKT cells have the expected properties of
human iNKT cells in terms of their distribution, phenotype, and
ability to secrete cytokines in a bone-marrow-liver-thymus (BLT)
humanized mouse model. Moreover, in vivo HSC-iNKT cells
could also protect against a multiple myeloma or a melanoma
that expressed CD1d, without the requirement of α-GalCer,
by the recognition of tumor-endogenous lipid antigens. iNKT
cells have been actively exploited in several clinical studies,
summarized in Table 2 (44, 106–113, 126).

In conclusion, iNKT cells are an attractive novel
alternative to conventional T cells for cancer immunotherapy.
Their CD1d restriction, tumor tissue tropism, ability to
restrict the suppressive TME support their exploitation
for advanced adoptive cell therapy to treat solid and
hematological malignancies.

iNKT CELLS CAN BE ENGINEERED TO
ACQUIRE A SECOND
ANTIGEN-SPECIFICITY

iNKT cells exert their anti-tumor effector functions
by modulating in a CD1d-cognate recognition manner
immunosuppressive myelomonocytic cells infiltrating the
TME. Hence, considering the increased use of CAR- or TCR-
engineered cells for adoptive cell therapy, it is likely that
allogenic iNKT cells could be exploited as single effector for the
dual targeting of cancer cells and suppressive tumor stroma,
which is considered a critical factor for the efficacy of any
adoptive cell therapy strategy. This approach implies that iNKT
cells must utilize both their endogenous TCR and the exogenous
tumor-specific CAR/TCR, unlike conventional T cells, in which
the current tendency is to eliminate the expression of the
endogenous TCRs to maximize the function of the transduced
receptors. In fact, in an autologous setting, the endogenous TCRs
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FIGURE 1 | Structure of CAR iNKT-cells. CAR iNKT-cells are composed of several parts: an extracellular single-chain variable fragment (scFv), a hinge for flexibility

and distance, a transmembrane spacer, different intracellular costimulatory molecules, and TCR CD3ζ subunit.

expressed by a bulk polyclonal T cell preparations are unlikely
to contribute to anti-tumor effects, while in an allogeneic
setting, these TCRs would instead cause GvHD. Moreover, the
expression of the endogenous TCR by CAR/TCR transduced
iNKT cells provide another advantage over T cells, which is the
ability to boosting their combinatorial anti-tumor functions with
α-GalCer (or other agonists) in vivo and enhance the overall
therapeutic effect of the engineered iNKT cells (128).

CAR therapies were first applied using conventional T cells,
granting the approval by the Food and Drug Administration
of two CAR-T cell therapies for acute lymphoblastic leukemia
and for advanced lymphoma. Human iNKT cells can also
be efficiently engineered to express GD2 CARs (against
neuroblastomas), CD19 CARs (against B cell lymphomas), and
CD38 or BCMA CARs (against multiple myeloma) (129–132),
depicted in Figure 1. CAR-iNKT cells kill their relevant antigen-
expressing tumor cell lines or patient-derived plasma cells in vitro
(129–132) and tumor xenograft models in vivo (129–131),
maintaining their CD1d-dependent functions. The lytic ability
of CAR-iNKT cells appears independent of the costimulatory
domain inserted in the CAR, whereas the CARs containing the 4-
1BB domain seems to promote a better expansion capacity (132).
GD2-CAR-iNKT cells persistence and anti-tumor activity can be
further increased wit CAR constructs co-expressing human IL-15
(133), while increasing the expression of CD1d on B-lymphoma

or leukemia cells with epigenetic drugs substantially enhanced
their targeting by CD19-CAR-iNKT cells, resulting in markedly
improved cancer control in mouse xenograft models (131).
Notably, in this way, intravenously administered CAR19- iNKT
but not CAR19-T-cells swiftly eradicated secondary brain
lymphoma (131). Furthermore, in an immunocompetent mouse
model of syngeneic B-cell lymphoma, CD19-CAR-iNKT cells
exerted potent direct cancer cell killing and were also able to
recruit host tumor-specific CD8 T-cell responses via facilitating
tumor-antigen cross-priming, in turn enhancing long term
cancer control (134). Phase I clinical trials with CAR-iNKT
cells already showed promising results, in an interim analysis
on children with relapsed or resistant neuroblastoma treated
with autologous iNKT cells engineered to co-express a GD2-
CAR with IL-15 (NCT03294954) (127). First, no dose-limiting
toxicities were observed. Second, CAR-iNKT cells expanded
in vivo, actively localized to tumormasses and, in one out of three
patients, induced regression of bone metastatic lesions. Other
two phase I clinical trials are exploring whether donor-derived or
allogenic-(NCT03774654 and NCT04814004, respectively) iNKT
cells transduced with CAR19 might help in patients with CD19+

lymphoma or leukemia.
iNKT cells can be also engineered to acquire a second

antigen-specificity by expressing recombinant TCRs that
recognize pathology relevant antigens and, in particular, tumor
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associated antigens. For instance, the transfer a human MHC-I
restricted TCR specific for a peptide epitope derived from the
Mycobacterium tuberculosis (Mtb) 38-kDa protein generated
iNKT cells able to specifically kill Mo-DCs pre-loaded with
the 38-kDa protein. The same TCR-engineered iNKT cells
maintained the recognition of α-GalCer-pulsed Mo-DCs,
suggesting that the endogenous iTCR was still fully functional
(135). Human iNKT cells were also efficiently redirected
against melanoma cell lines by engineering with a high affinity
TCRs specific for an HLA-2-restricted peptide epitope derived
from the tumor associated antigens (MART-126−35, PRAME,
Survin96−104). The TCR-iNKT cells efficiently killed antigen
expressing melanoma cells in vitro and showed HLA-restricted
antitumor activity in xenogeneic mouse models (136). However,
in this study the iNKT cell endogenous TCR was completely
displaced from the cell surface by the transferred TCRs, thus
thwarting all the natural antitumor functions of iNKT cells.
To overcome this limitation, there are several strategies that
can be borrowed from TCR transfer in T cells to avoid the
displacement of iNKT cell endogenous TCR, like modifications
facilitating intramolecular bonding between transgenic α and
β chains, fusing the chains to CD3ζ (137). Implementation of
these strategies also for TCR transfer in iNKT cells will enable
the generation of tumor retargeted cells which maintain, at the
same time, the peculiar iNKT cells capacity of TME remodeling,
having enhanced anti-tumor activities.

Notwithstanding all the above advantages of exploiting iNKT
cell engineering for adoptive cell therapy of cancer, there
also possible concerns connected with their use, for instance
considering the prompt and abundant secretion of different
cytokines by iNKT cells. The potent cytokine response produced
by CAR-T cells upon target recognition in vivo is in fact
responsible for the serious acute systemic toxicity (particularly
neurological) often observed in treated patients. We currently do

not know whether this side effect may reduce, or increase, when
using CAR-iNKT cells. A recent study reported that iNKT cells
transiently expressing a RNA-based anti-CSPG4 CAR produced
much lower quantities of IL-6 and other cytokines involved
in cytokine release syndrome (i.e., TNF and IFNγ) than the
CAR-transfected CD8+ T cells, even if they have equal specific
cytotoxicity (138). Nevertheless, the results of the ongoing CAR-
iNKT cell clinical trials will clarify the actual safety and toxicity
profiles of this approach, compared to CAR-T cells.

CAR- and TCR-iNKT cells therefore represent a potential
new generation of dual-specific effector cells that warrant
additional investigation to assess their anti-tumor efficacy
in adoptive cell therapy, compared to T cells. This paves
the way for advanced cell therapies in cancer patients, free
from the concerns for HLA matching and possibly exploiting
a redirected specificity toward tumor associated antigens
combined with the TME remodeling exerted by the unique iNKT
cell population.
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