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Quantitative MRI Biomarkers 
of Stereotactic Radiotherapy 
Outcome in Brain Metastasis
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About 20–40% of cancer patients develop brain metastases, causing significant morbidity and 
mortality. Stereotactic radiation treatment is an established option that delivers high dose radiation 
to the target while sparing the surrounding normal tissue. However, up to 20% of metastatic brain 
tumours progress despite stereotactic treatment, and it can take months before it is evident on 
follow-up imaging. An early predictor of radiation therapy outcome in terms of tumour local failure 
(LF) is crucial, and can facilitate treatment adjustments or allow for early salvage treatment. In this 
study, an MR-based radiomics framework was proposed to derive and investigate quantitative MRI 
(qMRI) biomarkers for the outcome of LF in brain metastasis patients treated with hypo-fractionated 
stereotactic radiation therapy (SRT). The qMRI biomarkers were constructed through a multi-step 
feature extraction/reduction/selection framework using the conventional MR imaging data acquired 
from 100 patients (133 lesions), and were applied in conjunction with machine learning techniques for 
outcome prediction and risk assessment. The results indicated that the majority of the features in the 
optimal qMRI biomarkers characterize the heterogeneity in the surrounding regions of tumour including 
edema and tumour/lesion margins. The optimal qMRI biomarker consisted of five features that predict 
the outcome of LF with an area under the curve (AUC) of 0.79, and a cross-validated sensitivity and 
specificity of 81% and 79%, respectively. The Kaplan-Meier analyses showed a statistically significant 
difference in local control (p-value < 0.0001) and overall survival (p = 0.01). Findings from this study are 
a step towards using qMRI for early prediction of local failure in brain metastasis patients treated with 
SRT. This may facilitate early adjustments in treatment, such as surgical resection or salvage radiation, 
that can potentially improve treatment outcomes. Investigations on larger cohorts of patients are, 
however, required for further validation of the technique.

Brain metastasis is the most common intracranial malignancy in both men and woman1. Despite advances in 
surgical, systemic and radiotherapy treatments, patients with brain metastasis still have poor overall survival 
(OS) and quality of life2,3. Treatment options for brain metastases include whole brain radiation therapy (WBRT), 
single fraction stereotactic radiosurgery (SRS), hypo-fractionated stereotactic radiation therapy (SRT), surgical 
resection, and systemic therapy4,5. The traditional treatment paradigm for patients with brain metastasis was 
WBRT. However, WBRT has increasingly been replaced with focused radiation techniques such as SRS or SRT 
to spare the cognitive and quality of life impacts of WBRT in patients with a limited number of brain metasta-
ses6–11. Nonetheless, between 10–20% of tumours progress locally after stereotactic radiation treatment12–16. Local 
response to stereotactic radiation treatment is conventionally evaluated based on changes in tumour size using 
anatomical/structural magnetic resonance imaging (MRI). However, changes in physical dimensions of a treated 
tumour may take months before it is evident on follow-up images. Furthermore, early changes in size are not 
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always correlated with the long-term local control (LC) of the tumour. Predicting LF of tumours early after SRT 
can facilitate effective treatment adjustments and potentially lead to improved treatment outcomes.

The precision medicine paradigm in healthcare decision-making has shown promise to improve cancer 
treatment outcomes17–19. Biomarkers from genomic and proteomic data derived in primary cancers of the lung, 
breast, ovary or brain can be used to stratify patients into different diagnostic/prognostic groups leading to 
more-effective treatment paths20–25. Acquiring genomic and proteomic biomarkers are, however, challenging in 
terms of implementation as they are invasive, not always technically feasible, and in some cases not robust as they 
may not represent the entirety of the tumour26,27. A reason for this observation is the fact that tumours are often 
spatially heterogeneous, and hard to characterize completely using core biopsy specimens28,29.

A number of recent studies have proposed quantitative imaging techniques to characterize different malig-
nancies, including breast, lung, prostate and brain cancer, and monitor/predict their response to anti-cancer 
therapies30–39. To identify the quantitative imaging biomarkers with high sensitivity and specificity in such appli-
cations, computational methods have been adapted through an emerging field of research named radiomics40–44. 
The radiomic analysis often utilizes the images obtained as part of the standard of patient care, and can be imple-
mented in the clinical routines with minimal overload. Further, the 3D volumetric images frequently applied in 
radiomics permits a comprehensive assessment of the entire tumour volume and surrounding regions. Recent 
studies have reported strong links between the radiomic signature of various tumours and their phenotype and 
genomic and proteomic profiles45–47. Aert et al. demonstrate that the computed tomography (CT) based radi-
omic features characterizing the spatial heterogeneity in lung and head and neck tumours are associated with 
underlying gene-expression patterns45. In another study, Zhu et al. indicate that in invasive breast cancer the 
transcriptional activities of various genetic pathways and miRNA expressions are associated with the tumour 
shape and texture in dynamic contrast-enhanced magnetic resonance (MR) images46. Similarly, Grossmann et 
al. report that the intra-tumour heterogeneity and intensity dispersion in CT images acquired from lung cancer 
patients are associated with the molecular characteristics of the tumour, including the activity of RNA polymerase 
transcription and the autodegration pathway of a ubiquitin ligase47.

A number of previous studies have investigated the efficacy of different radiomic biomarkers in cancer diag-
nosis, treatment response monitoring, and outcome prediction48–53. A study by Gómez Flores et al. suggests 
that ultrasound radiomic features can be used to characterize benign versus malignant breast lesions48. Li et al. 
demonstrate the potential of MR radiomic features to predict OS in Glioblastoma multiform49. Other studies 
have correlated radiomic biomarkers derived from positron emission tomography (PET) and CT images with 
loco-regional recurrence (LR), distance metastasis (DM), and OS in head and neck50, and lung cancer patients51.

In this study, quantitative MRI (qMRI) biomarkers was investigated through a radiomics analysis framework 
(Fig. 1) to predict the outcome of LF in brain metastasis patients treated with SRT. MR images were acquired 
from 100 patients (133 tumours) triaged for hypo-fractionated SRT before and within three months after the 
treatment, as part of our institutional standard of care. Various geometrical and textural features were extracted 
from gadolinium-contrast-enhanced-T1-weighted (T1w) and T2-weighted-fluid-attenuation-inversion-recovery 
(T2-FLAIR) images within the tumour and edema regions and the corresponding margins. A multi-step feature 
reduction and selection method consisting of correlation-based feature reduction, feature ranking, and forward 
feature selection based on bootstrap 0.632 + area under the curve (AUC) was used to construct the optimal qMRI 
biomarkers (consisted of four or five features). The feature selection results demonstrate that the qMRI biomark-
ers extracted from the edema, tumour margin and the lesion margin have more prognostic power compared to 
features extracted from the tumour itself. A support vector machine (SVM) classifier was used to predict the 
SRT outcome in terms of LC or LF. The results demonstrate a good potential of qMRI biomarkers to predict the 
survival-linked LC/LF in brain metastasis patients treated with SRT.

Results
Figure 1 demonstrates the scheme of the radiomics analysis framework applied in this study to develop qMRI 
signatures of metastatic brain lesions treated with SRT for the LC outcome evaluation. A total of 3072 imag-
ing features were extracted from four sub-regions of each lesion: the tumour, edema, tumour-margin, and the 
lesion-margin, as described in the Methods.

The heat maps of the derived qMRI features are detailed in Fig. 2. Figure 2a shows the R-squared heat map 
generated using the Pearson correlation coefficient obtained for each pair of the extracted features. The heat 
map identifies several clusters of redundant features with high levels of inter-feature correlation. An R-squared 
threshold of 0.8 was used to reduce clusters of highly-correlated features to a single representative feature with the 
largest natural dynamic range. This process reduced the number of features from 3072 to 927. A non-parametric 
Mann-Whitney U test was applied to quantify the level of statistical difference exhibited by each feature between 
the lesions with different local outcomes (LC versus LF). Figure 2b demonstrates the p-value heat maps obtained 
for different sub-regions of the lesion after the redundant features are eliminated. The heat maps highlight several 
qMRI features demonstrating a statistically significant difference between the lesions with an overall LC ver-
sus LF outcome (p-value < 0.05). Similar results were obtained for the 6-month and 12-month LC/LF outcomes 
(Supplementary Figures 1 and 2).

The Mann-Whitney U test was used in conjunction with a 50-fold sampling scheme to rank the features for 
the overall, 6-month, and 12-month LC/LF outcomes, followed by a forward feature selection with bootstrap 
0.632 + AUC . +AUC( )632 . Table 1 demonstrates the optimal qMRI biomarkers obtained for each outcome. The 
optimal qMRI biomarker consists of five features for the overall LC/LF outcome, and four features for the 
6-month and 12-month outcomes.  Among the 13 distinct features selected, four features 
(LM-WLHL-G-MaxProb-T2, TM-WLHL-G-MaxProb-T2, LM-WHLL- G-MaxProb-T2, E-WHLH-H-Max-T2) were 
statistically extremely significant (p-value < 0.001), seven features (E-WHHL-H-Max_T2, T-H-Min-T2, 
TM-W HLH-H-Min-T1,  E-MedianLBP-T1,  T-MedianLBP-T1,  E-W HLH-H-MeanAbsDe v-T2, 
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TM-GE-Convexity-T1) were statistically highly significant (p-value <  0.01), and two features 
(TM-WHLH-H-Min-T2, LM-WHLL-H-Range-T2) were statistically significant (p-value < 0.05), between the LC 
versus LF outcomes. The selected features mainly characterize the heterogeneity in the surrounding regions of 
tumour including edema, tumour-margin, and lesion-margin.

Figure 3 contrasts two representative tumours, one with LC on long-term follow up (Fig. 3a) and the other 
one with a LF (Fig. 3b). The parametric maps at first follow up show significantly different changes from the 
baseline between the tumours. Specifically, the LM-WLHL-G-MaxProb-T2, E-WHHL-H-Max_T2, T-H-Min-T2, 
TM-WHLH-H-Min-T2, and LM-WHLL-H-Range-T2 parametric maps demonstrate a mean change of 88% versus 
−40%, −52% versus 16%, −59% versus −2%, −95% versus −65%, and −54% versus 27%, respectively, for the 
LC vs LF case, respectively.

Early prediction of SRT outcome.  Table 2 summarizes the results of LC/LF outcome prediction using the 
optimal qMRI biomarkers with an SVM classifier. The table presents the prediction results in terms of . +AUC 632

  
as well as the leave-one-patient-out (LOPO) cross-validated sensitivity, specificity, and accuracy. The maximum 

. +
AUC 632  was 0.82, using 7 features for the 6-month and overall LC/LF, and 6 features for the 12-month local 
outcome. The optimal qMRI biomarkers (the smallest set of features as presented in Table 1) resulted in an 

. +
AUC 632  of 0.80, 0.81, and 0.79 for the 6-month, 12-month and overall LC/LF, respectively. In addition, the opti-
mal qMRI biomarkers could predict the 6-month, 12-month and overall LC/LF outcomes with a cross-validated 
accuracy of 80%, 82% and 80%, respectively.

Risk assessment.  The performance of the qMRI optimal biomarkers presented in Table 1 was further evalu-
ated through long-term (five years) risk assessments in terms of the local outcome and overall survival using the 
Kaplan-Meier (KM) analysis. The risk assessment was performed for two separate cohorts: those predicted with 
a LC (cohort 1) versus LF (cohort 2) outcome by the radiomic framework. Figure 4 demonstrates the estimated 
long-term LC outcome of the tumours and overall survival of the patients. The plots show the KM clinical local 
control/survival curves obtained for the tumours/patients categorized based on the cross-validated 6-month, 
12-month and overall LC/LF predicted outcomes at the first follow up using the optimal qMRI biomarkers. A 

Figure 1.  Scheme of the radiomics-based outcome prediction framework. (a) The binary masks including 
the tumour delineated by expert oncologists (A), edema segmented semi-automatically (B), tumour-margin 
(C), and the lesion-margin (D). (b) Extracting the geometrical and textural features from T1w and T2-FLAIR 
images within the binary masks. (c) Correlation-based feature reduction (A), and multi-step feature selection 
(B). (d) Outcome prediction (LC versus LF) using the SVM classifier.
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Figure 2.  The qMRI feature heat maps. (a) The R-squared heat map generated using the Pearson correlation 
coefficients for all pairs of the extracted features. (b) The p-value heat maps for different sub-regions of the 
lesion generated using the Mann-Whitney U test (overall LC versus LF) for each feature after the redundant 
features were eliminated.

Outcome Selected Features p-value

Overall LC/LF

Lesion-Margin_Wavelet_ILHL_GLCM_MaximumProbability_T2 (LM-WLHL-G-MaxProb-T2) 0.0003

Edema_Wavelet_IHHL_Histogram_Maximum_T2 (E-WHHL-H-Max_T2) 0.002

Tumour_Histogram_Minimum_T2 (T-H-Min-T2) 0.007

Tumour-Margin _Wavelet_IHLH_Histogram_Minimum_T2 (TM-WHLH-H-Min-T2) 0.02

Lesion-Margin _Wavelet_IHLL_Histogram_Range_T2 (LM-WHLL-H-Range-T2) 0.03

6-Month LC/LF

Tumour-Margin _Wavelet_ILHL_GLCM_MaximumProbability_T2 (TM-WLHL-G-MaxProb-T2) 0.0001

Tumour-Margin _Wavelet_IHLH_Histogram_Minimum_T1 (TM-WHLH-H-Min-T1) 0.004

Edema_LBP_Median_T1 (E-MedianLBP-T1) 0.002

Tumour_LBP_Median_T1 (T-MedianLBP-T1) 0.002

12-Month LC/LF

Lesion-Margin_Wavelet_IHLL_GLCM_MaximumProbability_T2 (LM-WHLL- G-MaxProb-T2) 0.00004

Edema_Wavelet_IHLH_Histogram_Maximum_T2 (E-WHLH-H-Max-T2) 0.00005

Edema_Wavelet_IHLH_Histogram_MeanAbsoluteDeviation_T2 (E-WHLH-H-MeanAbsDev-T2) 0.003

Tumour-Margin _Geometric_Convexity_T1 (TM-GE-Convexity-T1) 0.007

Table 1.  The optimal qMRI biomarkers obtained for each outcome.
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statistically extremely significant difference (p-value < 0.001) was observed between the clinical local control 
curves of the two tumour cohorts categorized based on the optimal qMRI biomarkers of all three outcomes. Also, 
the survival curves obtained for the two patient cohorts categorized using the optimal qMRI biomarkers of the 
overall, 6-month, and 12-month outcomes demonstrated a statistically significant (p-value = 0.01), statistically 
highly significant (p-value < 0.01), and statistically extremely significant (p-value ≤ 0.001) difference, respectively.

Figure 3.  Representative parametric maps of the features in the optimal qMRI biomarker for the overall LC/
LF outcome. The parametric maps show the spatial variations in the features derived from the MR images 
acquired at the baseline and the first follow up for representative tumours with LC (a) and LF (b) outcomes. 
The mean relative change from the baseline at the first follow up (∆mean) is given for each feature. Biomarker 
abbreviations: LM-WLHL-G-MaxProb-T2: Lesion-Margin_Wavelet_ILHL_GLCM_MaximumProbability_T2; 
E-WHHL-H-Max_T2: Edema_Wavelet_IHHL_Histogram_Maximum_T2; T-H-Min-T2: Tumour_Histogram_
Minimum_T2; TM-WHLH-H-Min-T2: Tumour-Margin _Wavelet_IHLH_Histogram_Minimum_T2; LM-WHLL-
H-Range-T2: Lesion-Margin _Wavelet_IHLL_Histogram_Range_T2.

Outcome


. +AUC 632  
(Maximum)



. +AUC 632  
(Optimal qMRI 
Biomarker) Accuracy Sensitivity Specificity

Overall LC/LF 0.82
7 features

0.79
5 features 80% 81% 79%

6-Month LC/LF 0.82
7 features

0.80
4 features 80% 83% 79%

12-Month LC/LF 0.82
6 features

0.81
4 features 82% 80% 85%

Table 2.  The prediction results for overall, 6-month, and 12-month LC/LF outcomes.
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Discussion
In this study, the qMRI biomarkers derived from conventional T1w and T2-FLAIR images were investigated 
through a radiomics-machine learning framework to predict the local outcome in patients with brain metastasis 
treated with SRT. A total of 3072 geometrical and textural features were extracted from MR images of 100 patients 
(133 lesions) who underwent SRT for brain metastases. The features were extracted within the tumour, edema, 
tumour-margin, and lesion-margin before and at the first follow up after the treatment. The relative change from 
the baseline was calculated for each feature. The number of features was reduced to 927 using a correlation-based 
analysis. Subsequently, the best features were selected using Mann-Whitney U test in conjunction with a 50-fold 
sampling scheme, and a forward selection strategy to construct optimal biomarkers of overall, 6-month and 
12-month LC/LF outcomes. The optimal qMRI biomarker consisted of 5 features for the overall LC/LF, and 4 

Figure 4.  The Kaplan-Meier clinical local control and survival curves. The tumours were categorized into two 
cohorts based on the overall (a), 6-month (b), and 12-month (c) LC/LF predicted outcome at the first follow 
up (Cohort 1: predicted as LC; Cohort 2: predicted as LF using the qMRI optimal biomarkers). A patient was 
categorized into the LF cohort when they have one tumour with an overall (d), 6-month (e), and 12-month (f) 
LF predicted outcome at the first follow up.
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features for the 6-month and 12-month local outcomes. All the selected features demonstrated a statistically 
significant, highly significant, or extremely significant difference between the lesions that had an outcome of LC 
versus LF.

The optimal biomarkers mainly consisted of features that characterize the heterogeneity within the edema, 
tumour-margin, and lesion-margin. Specifically, 11 out of the 13 distinct features in the three optimal biomarkers 
quantify changes in the heterogeneity in the region surrounding the tumour. These marginal regions are likely 
to contain malignant cells, but the number of these cells is not enough to result in an evident image contrast on 
standard MRI. The heterogeneity in these regions may characterize the frequency and distribution of cancerous 
cells and, therefore, could be linked to the LC/LF outcome of the treatment. This is in agreement with the findings 
of other studies in which the heterogeneity in the micro-structure of the tumour margin showed a good correla-
tion to tumour response to therapy54,55.

Previous studies have demonstrated the prognostic power of the radiomics features extracted from ultra-
sound56–60, CT61,62, MR63,64, and pathology65 images. Such features have been reported to be predictive of different 
therapy outcomes (e.g. pathological response66, distant metastasis51,61, LC50, and OS45), and for various cancer 
sites including the lung45,61 brain67, breast48,68, and head and neck51 cancer. Whereas most previous studies have 
focused on the tumour itself, the results obtained from this study encourage conducting a comprehensive assess-
ment of a larger region encompassing the entire lesion as well as its margin. Specifically, the qMRI biomarkers 
extracted from the edema and tumour/lesion margins demonstrated more prognostic power compared to fea-
tures extracted from the tumour itself.

The results of the feature selection demonstrated a good potential of multi-wavelet filtered images for char-
acterizing outcome-related attributes of metastatic lesions. In particular, four out of five, two out of four, and 
three out of four features selected in the optimal biomarkers of the overall, 6-month and 12-month LC/LF out-
comes, respectively, were derived from the multi-wavelet filtered T1w or T2-FLAIR images. The multi-wavelet 
filtered images are obtained by filtering the original image in x, y, and z directions using the wavelet transform 
(Supplementary Figure 5). Such images contain the decomposed textural information of the original image in dif-
ferent bandwidths of spatial frequency for all directions. The results obtained in this study are in agreement with 
the findings of previous work that demonstrate the diagnostic and prognostic value of texture features extracted 
from wavelet images for tumour characterization and therapy outcome evaluation45,61,65. In this study, the fea-
tures extracted from T2-FLAIR images demonstrated high prognostic power for prediction of LC/LF, where 
the top selected feature in all three optimal qMRI biomarkers (nine out of 13 selected features) were extracted 
from T2-FLAIR images. This observation further highlights the links between the characteristics of the edema 
micro-structure and LC in brain metastasis as T2-FLAIR images provide a better contrast for the edema region, 
compared to T1w images. Tumour size, SRT dose and number of fractions may impact LC/LF in brain metasta-
sis. The average size of the tumours investigated in this study was 2.1 ± 1.1 cm, with a relatively small standard 
deviation. The majority of the tumours received a total dose of 30 Gy in 5 fractions. The total dose was adjusted 
to 25, 27.5, 32.5 or 35 Gy (in 5 fractions) for a few tumours based on their size. The LC/LF for each tumour was 
determined independent of the size, total dose and the number of fractions.

The optimal qMRI biomarkers were also applied to predict LF using an SVM classifier with the bootstrap 
0.632 + and LOPO cross-validation methods. The optimal biomarkers could predict the overall, 6-month, and 
12-month local outcomes with an . +AUC 632  of 0.79, 0.80, and 0.80 respectively. The cross-validated accuracy of 
the predictive model was found to be 80% for overall and 6-month LC/LF, and 82% for the 12-month LC/LF. The 
performance of the qMRI optimal biomarkers was further evaluated through long-term risk assessments using 
the KM analysis. A statistically significant difference was observed between the clinical local control curves, and 
survival curves obtained for the patients with a predicted LC versus LF outcome using the optimal qMRI bio-
markers. The proposed model can potentially be used for clinical risk assessment, and treatment planning of 
brain metastasis patients. The results of the outcome prediction and risk assessment obtained in this study for 100 
patients are promising. However, investigations on larger cohorts of patients (including an independent valida-
tion cohort) are required to assess further the efficacy and robustness of the technique in the clinic.

In conclusion, this study demonstrated a good potential of qMRI biomarkers derived from conventional T1w 
and T2-FLAIR images to predict the local outcome in metastatic brain tumours early after the treatment with SRT. 
The qMRI features identified in this study were (extremely/highly) significantly different between the tumours 
with a LF versus LC outcome. The proposed biomarkers were also found to have a good cross-validated sensitivity 
and specificity to distinguish the tumours with an outcome of LF within three months following the treatment. 
The promising results presented in this study imply that the qMRI biomarkers, as potential early surrogates of LC/
LF in brain metastasis patients, can possibly facilitate effective changes in treatment on an individual patient basis 
that may improve patient outcomes. Patients predicted to have LF can potentially be treated with salvage surgical 
or radiation treatments earlier to prevent downstream morbidity of progressive metastatic disease in the brain.

Methods
Study protocol and data acquisition.  This study was conducted in accordance with institutional research 
ethics approval from Sunnybrook Health Sciences Centre (SHSC), Toronto Canada (REB PIN: 294–2013). 
Imaging and clinical data were collected from 100 patients diagnosed with metastatic brain tumours and treated 
with SRT. The study only used retrospective data and the research ethics board granted a permission to do it with-
out informed consent. Out of the 100 patients, 20 patients had 2, and 7 patients had 3 tumours, respectively. As 
such, the dataset included a total of 133 malignant lesions. The patients were scanned on a Philips 1.5 T Ingenia 
system (Best, Netherlands). Gadolinium-contrast-enhanced-T1-weighted (T1w) and T2-FLAIR images were 
acquired before (baseline) and at every follow up on a 2–3 month schedule after the SRT (for up to five years) as 
part of the institutional standard of care for these patients. The lesions were monitored longitudinally and the 
LC/LF outcome for each lesion was determined by a radiation oncologist and neuroradiologist using the follow 
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up imaging data. The RANO-BM criteria was used to determine an outcome of LC (complete response, partial 
response, or stable disease) or LF (progressive disease) for each lesion69. Local progression was differentiated 
from radiation necrosis or adverse radiation effect (ARE) based on the report by Sneed et al.70. All cases of radi-
ation necrosis were diagnosed based on serial imaging (including the use of perfusion MRI), and/or histological 
confirmation71. The overall LC/LF was defined as the local outcome identified in the last patient follow up within 
five years after the SRT. The 6-month and 12-month LC/LF were defined as the local outcome identified in the 
last follow up before 6 and 12 months after the radiation treatment, respectively. For the 6-month and 12-month 
LC/LF outcome analysis, the patients with a LC outcome who deceased before the end of follow-up window 
were excluded from the analysis. The median follow up and median OS for all patients were 8.3 and 11.3 months, 
respectively. Patient characteristics are summarised in Table 3.

The radiomics framework in this study applied the images acquired at the baseline and the first follow up. 
The baseline images for each patient were acquired right before the radiation treatment planning, whereas the 
first follow-up images were acquired within three months after the treatment. The in-plane image resolution was 
0.5 mm for both T1w and T2-FLAIR images. The slice thickness was 1.5 mm and 5 mm for T1w and T2-FLAIR 
images, respectively.

Pre-processing and generation of sub-lesion masks.  A linear interpolation was applied in the axial 
direction of T1w and T2-FLAIR images to make the voxel size isotropic (0.5 × 0.5 × 0.5 mm3). The interpolated 
images were used for image registration and in the generation of sub-lesion masks (described below). Each lesion 
was divided into four sub-regions: (1) the enhancing disease region in T1w images referred to hereafter as tumour, 
(2) edema, (3) a volume generated by an isotropic expansion around the tumour and edema referred to hereafter 
as lesion-margin, (4) a volume generated by an isotropic expansion around just the tumour referred to hereafter as 
tumour-margin (Fig. 1a). A treatment planning gross tumour volume (GTV) was contoured by expert radiation 
oncologists on baseline T1w images and used as a guide to generate GTVs on follow-up T1w images. Follow-up 
imaging GTVs were reviewed by an expert radiation oncologist (H.S.). A semi-automatic framework was devel-
oped to generate the sub-lesion binary masks for the T1w and T2-FLAIR images (Supplementary Figure 3). The 
T2-FLAIR images were initially registered to the corresponding T1w images using an affine registration method 
with mutual information (MI) as the similarity metric72. The tumour masks for T1w images were generated using 
the GTV contours at the baseline and the first follow up. To generate the edema masks for the T1w images, the 
edema region was segmented on the registered T2-FLAIR image using the region growing segmentation mod-
ule in 3D slicer73. The automatic segmentations were further refined manually under supervision of the expert 
radiation oncologist. The inverse of the registration transformation matrix was used to warp the edema and 
tumour masks generated for the T1w images on the original T2-FLAIR images. Finally, the lesion-margin and 
tumour-margin masks were created using morphological image analysis. Four different margin sizes, including 
1, 3, 5, and 10 mm, were investigated. A margin size of 3 mm for both the tumour- and lesion-margin was found 
to be associated with the best results that were reported here. Further details on the pre-processing and mask 
generation have been provided in the supplementary methods.

Feature extraction.  The quantitative features investigated in this study included two groups of geometrical 
and textural features. The geometrical features were calculated from the binary masks. The texture features were 
extracted from the T1w and T2-FLAIR images within the four sub-lesion masks. A total of 3072 geometrical 
and textural features were derived as described in detail in the supplementary information. The textural features 
included the first order histogram features derived from the MR images and the corresponding local binary pat-
tern (LBP) parametric images, as well as the second order grey-level co-occurrence matrix (GLCM) features74,75. 
These features were extracted from both the original images and the multi-wavelet filtered images as described in 
the supplementary information76. The interpolated MR images with an isotropic voxel size were used to extract 
3D features (GLCM and multi-wavelet features). The other 2D features were derived from the original images. All 

Characteristic Mean /Number [Range]/(Percentage)

Age 63 [21–92] years

Sex
Female: 63 (63%)

Male: 37 (37%)

Initial Maximum Diameter of 
Tumour 2.1 [0.4–7] cm

Histology

Non-Small-Cell Lung Cancer: 65 (48.9%)

Breast Cancer: 31 (23.3%)

Melanoma: 12 (9.0%)

Renal Cell Cancer: 9 (6.8%)

Colorectal Cancer: 8 (6.0%)

Other: 8 (6.0%)

Local Outcome

Overall LC: 80 (60.2%) | Overall LF: 53 (39.8%)

6-month LC: 76 (76%) | 6-month LF: 24 (24%)

12-month LC: 40 (47%) | 12-month LF: 45 (53%)

Table 3.  Summary of the patient characteristics.
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features were extracted from both the baseline and first follow up images and relative changes from the baseline 
at the first follow up were calculated.

Feature reduction/selection.  The optimal qMRI biomarkers for LC/LF outcome prediction were con-
structed using a multi-step feature reduction/selection procedure. The features were first assessed using a Pearson 
correlation analysis to obtain the coefficient of determination (R2) for each feature pair (Fig. 2a). Clusters of 
highly correlated features were identified from the R-squared matrix using a threshold of R2 = 0.8. Next, in each 
cluster of correlated features, the one with the largest dynamic range was selected as the representative feature. 
Using this approach, the 3072 features were reduced to 927. Subsequently, a two-step feature selection procedure 
was utilized to construct the optimal qMRI biomarkers. First, the features were ranked using the p-values 
obtained from the Mann-Whitney U test in conjunction with a 50-fold sampling scheme. In each sampling step, 
the p-values were calculated over 49 folds of the patients and the 15 features with the smallest p-values were iden-
tified. The features were then ranked using their frequency of occurrence in the best 15 features over the 50 sam-
ples. In the second step of feature selection, the AUC 632



. + was used with a forward feature selection scheme to 
find the feature sets leading to the maximum performance. The . +

AUC 632  is the average of the . +AUC 632  values 
obtained for all bootstrap 0.632 + samples drawn from the data set. The . +AUC 632  is a weighted sum of the 
re-substitution and test AUCs computed for each bootstrap sample (supplementary information). In the forward 
feature selection, the AUC 632. + was calculated for each feature set using 250 bootstrap samples and an SVM clas-
sifier. The best feature set obtained from the forward selection was further reduced using an ANOVA test to find 
the smallest set of features (referred to as the optimal qMRI biomarker) leading to a statistically similar perfor-
mance. The details of feature reduction/selection are described in supplementary information. The proposed 
feature selection procedure was performed independently for each of the overall, 6-month, and 12-month LC/LF 
outcomes.

Outcome prediction and risk assessment.  The outcomes prediction was performed independently after 
the feature selection step using the optimal qMRI biomarkers. An SVM classifier was used in conjunction with 
bootstrap 0.632 + and LOPO cross-validation methods to predict the LC/LF outcomes. The . +AUC 632  was calcu-
lated using another 250 bootstrap samples. A Gaussian kernel was used in the SVM for predicting the overall and 
12-month outcomes. A linear SVM kernel was used for the 6-month outcome prediction. In order to compensate 
for the imbalance of the dataset, a random under-sampling was applied on the majority class (LC outcome) before 
each bootstrap sampling77. The under-sampling was applied on a patient level to have a balanced sample with an 
equal number of lesions with LC and LF outcomes.

The accuracy, sensitivity, and specificity of the model were calculated using a LOPO cross-validation. Each 
LOPO cross-validation step involved leaving one patient out, training the SVM classifier independently on 250 
bootstrap samples from the training set, and characterizing the test lesions (associated with the left-out patient) 
with a majority vote of the 250 trained classifiers. The classifier’s parameters were similar to those used for calcu-
lating the AUC 632



. +.
Long-term risk analyses were performed to generate Kaplan-Meier clinical local control and survival curves 

for the two cohorts with different predicted outcomes. The overall, 6-month, and 12-month predicted outcomes 
(LC/LF) for each lesion was determined using the LOPO cross validation scheme. A patient was categorized into 
the LF cohort in case they have one tumour with a cross-validated LF predicted outcome at the first follow up. The 
Kaplan-Meier curves were compared using a log-rank test to assess for statistically significant differences between 
the clinical local control (lesion level) and survival (patient level) curves.

Data availability
Data were collected and available at the Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, 
ON, Canada.
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