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Stability of human gait is the ability to maintain upright posture during walking

against external perturbations. It is a complex process determined by a number

of cross-related factors, including gait trajectory, joint impedance and neural

control strategies. Here, we consider a control strategy that can achieve stable

steady-state periodic gait while maintaining joint flexibility with the lowest

possible joint impedance. To this end, we carried out a simulation study

of a heel-toe footed biped model with hip, knee and ankle joints and a heavy

head-arms-trunk element, working in the sagittal plane. For simplicity, the

model assumes a periodic desired joint angle trajectory and joint torques gener-

ated by a set of feed-forward and proportional-derivative feedback controllers,

whereby the joint impedance is parametrized by the feedback gains. We could

show that a desired steady-state gait accompanied by the desired joint angle tra-

jectory can be established as a stable limit cycle (LC) for the feedback controller

with an appropriate set of large feedback gains. Moreover, as the feedback gains

are decreased for lowering the joint stiffness, stability of the LC is lost only in a

few dimensions, while leaving the remaining large number of dimensions quite

stable: this means that the LC becomes saddle-type, with a low-dimensional

unstable manifold and a high-dimensional stable manifold. Remarkably,

the unstable manifold remains of low dimensionality even when the feedback

gains are decreased far below the instability point. We then developed an inter-

mittent neural feedback controller that is activated only for short periods of time

at an optimal phase of each gait stride. We characterized the robustness of this

design by showing that it can better stabilize the unstable LC with small feed-

back gains, leading to a flexible gait, and in particular we demonstrated that

such an intermittent controller performs better if it drives the state point to

the stable manifold, rather than directly to the LC. The proposed intermittent

control strategy might have a high affinity for the inverted pendulum analogy

of biped gait, providing a dynamic view of how the step-to-step transition

from one pendular stance to the next can be achieved stably in a robust

manner by a well-timed neural intervention that exploits the stable modes

embedded in the unstable dynamics.
1. Introduction
Bipedal stability can be defined as the capacity to restore and maintain upright

posture against external perturbations. It is of critical importance to human

motor control during standing and walking in daily life [1]. Bruijn et al. [2]

emphasized the importance of three requirements for achieving stability in

the human gait system: (i) it should recover from small perturbations, such as

tiny bumps on level ground and arm swing [3], which occur during every

stride; (ii) it should be able to reorganize walking patterns in the case of

large perturbations, for example, during stumbling [4], which requires changes

in the gait trajectory; (iii) the largest perturbation recoverable by the system
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should be larger than the typical perturbations encountered

in daily life. In this way, gait stability should always be

measured by evaluating in which manner stable gait patterns

are recovered in response to external perturbations. Here, we

focus on the first requirement, namely on gait stability during

steady-state periodic walking. This is the simplest require-

ment, on which the analysis of the two more general

requirements can be built. However, in spite of the apparent

simplicity, the fundamental mechanisms that allow this

requirement to be fulfilled during human gait are still scar-

cely understood. This is primarily due to hierarchically

distributed complexity of the neural centre of locomotion

[5], and also due to the fact that elaborating neuro-muscular

actuation patterns alone is not enough to predict whether or

not they can realize stable mechanical gait motions of the

body. Similarly, elaborating steady-state kinematics of a

given gait alone is not enough to determine its degree of stab-

ility [6], because apparently identical gait kinematics can be

accompanied with different degrees of stability.

Several measures to assess gait stability during steady-

state walking have been proposed, including the maximum

Floquet multiplier (FM) [7], the maximum Lyapunov exponent

[8], the fractal exponents [9] and a set of nonlinear measures

including approximate entropy for evaluating optimal motor

variability [10], among others. These measures, which can be

beneficial for evaluating the risk of falling in aged individuals

and patients with motor dysfunctions, have been applied to

the analysis of healthy and pathological gait. Despite this

fact, however, there is no fully accepted quantitative way to

judge the dynamic stability of human locomotion [11]. This

is partially due to the fact that gait stability is determined by

a number of cross-related factors, including gait trajectory,

joint impedance and neural control strategies, and stability

measures may vary a great deal depending on the underlying

stabilization mechanisms. For example, gait variability does

not necessarily imply low stability but it can be caused by

enhanced internal noise [12]. Although it is generally agreed

that the more rigidly a posture is stabilized, the smaller the

postural variability, it is also clear that the typical rigidity

(inflexibility) and related small postural sway in patients

with Parkinson’s disease is indeed the main cause of their pos-

tural instability [13]. Since the usual stability measures are

obtained by non-parametric time-series analysis of experimen-

tal gait data, regardless of relevant underlying stabilization

mechanisms, they are not suitable for understanding the

causal relationship between values of a stability measure and

underlying mechanisms that affect stability.

In this study, we take a model-based approach to consider

stabilization mechanisms that can achieve steady-state periodic

human gait, as in a number of previous related studies

[6,14–16], but with more simple and analytical mind. Although

some studies have been conducted with a similar approach,

most of them analysed oversimplified models such as foot-

less legged robots with or without active controllers [17–19],

and thus the analytical results cannot be compared directly

with human gait. We also consider a simplified model, but it

is more anatomically plausible. We are particularly interested

in the joint impedance that is characterized by stiffness and vis-

cosity coefficients defined, respectively, by the first partial

derivatives of torque with respect to joint angle and angular vel-

ocity [20]. A joint with a large impedance is said to be rigid, and

that with a small impedance is flexible. It has been a common

view that the brain stabilizes unstable body dynamics using
impedance control, which resists destabilizing motion by

increasing joint impedance [20,21]. We examine the contri-

bution of the mechanical impedance of the leg joints to gait

stability, in the assumption that joint impedance during physio-

logical human gait is low. Indeed, Shamaei et al. have reported

considerably small values of the quasi-stiffness (dynamic

stiffness) of ankle (200–500 Nm rad21 [22]), knee (200–

350 Nm rad21 [23]) and hip (200–600 Nm rad21 [24]) joints

during steady-state human gait with walking speed of about

1.4 m s21. We demonstrate, later on, that any combination

of joint stiffness in the range of values quoted above is far

below the critical joint stiffness required for intrinsic gait

stability, implying that physiological stabilization mechanism

cannot simply be determined by conventional impedance

control. Hence, we need to consider a control strategy that can

achieve stable steady-state periodic gait while maintaining

joint flexibility with the lowest possible joint impedance.

There is a number of possible candidates of motor strategies

for stabilizing unstable dynamics, alternative to impedance

control, for example, phase resetting control during biped gait

[25,26], acceleration feedback control to compensate delay-

induced postural instability [27] and intermittent feedback

control that has been proposed for postural balancing during

human quiet standing [28–33]. Although the phase resetting

strategy is a powerful mechanism for improving gait stability

[16,25], it is accompanied by modifications of the gait trajectory

(phase-shift) with elevating and lowering patterns in response

to external perturbations [4]. Thus, we characterize phase reset-

ting as part of the above-mentioned requirement (ii), according

to the classification proposed by Bruijn et al. [2]. In order to focus

entirely on the stabilization mechanisms that do not determine

any change in the trajectory, we exclude the phase resetting

control from the current study. Moreover, effects of signal trans-

mission delay in the neural feedback control, which can be

critical for motor instability [27], are not considered in this

study for simplicity. Nevertheless, later in this article, we will

discuss complementary roles played by phase resetting to

other strategies as well as effects of delay-induced instability

on the neural control of bipedal gait.

The intermittent control paradigm has been considered

for dynamics in the vicinity of steady-state behaviour of per-

sistent actions such as human quiet standing [28,30,33] or

tracking a target [34–36]. It exhibits on-periods and off-periods
of time in activations of the feedback control torque. One of

the related theories [28,30,33] claims that intermittent control

is effective if a mechanical plant in the absence of active

control exhibits saddle-type instability, as in the case of the

inverted pendulum model of the standing human body. It

is known indeed that during postural sway movements the

body can transiently approach the upright position along a

stable manifold of the unstable saddle-type equilibrium

during each off-period. This means that transient converging

saddle-type dynamics during the off-periods is primarily

responsible for stabilizing the pendulum, supplemented by

the active feedback control during short on-periods.

In this study, we extend the intermittent control paradigm,

developed for quiet standing to steady-state human gait.

In §2, we construct a heel-toe footed biped model with hip,

knee and ankle joints and a heavy head-arms-trunk (HAT)

element in the sagittal plane. The model uses a motion-

captured periodic profile of joint angles from a healthy

young adult as a desired or reference trajectory to be tracked

by a proportional-derivative (PD) feedback controller,
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Figure 1. A model of biped gait, which operates in the sagittal plane and
includes seven links (HAT, left and right feet, shanks and thighs) with six
joints (hip, knee and ankle joints of both legs). A posture of the model is
specified by the general coordinate q ¼ (q1, . . . , q9)T. u ¼ q1 and
(x, y) ¼ (q2, q3) represent the tilt angle and the position of HAT-CoM,
respectively. Ankle, knee and hip joint angles are represented by (q4, q5,
q6) for the left leg and (q7, q8, q9) for the right leg. They are also denoted
by ul,r

a , ul,r
k and ul,r

h . Masses of foot m1, shank m2, thigh m3 and HAT m0 are
0.682, 3.162, 6.882 and 40.548 kg, respectively. L1 ¼ 0.122 m, L2 ¼

0.379 m, L3 ¼ 0.420 m, and L0 ¼ 0.536 m. See table 1 for the complete
set of parameter values. Vertical and horizontal GRFs are modelled by non-
linear spring-damper systems. See the electronic supplementary material A
for the equations of motion and the model of GRFs.
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whereby the joint impedance is parametrized by the PD-gains.

A preliminary work is performed, prior to carrying out the for-

ward dynamic simulations of the model, in order to identify a

desired steady-state gait, i.e. a HAT motion that cannot be

specified by the desired joint angle trajectory, and its associ-

ated ground reaction force (GRF) profile, that are consistent

with the equation of motion. This preliminary task allows us

to construct a feed-forward controller for the desired gait

and to isolate only the joint impedance-related stability issue

from the cross-related factors. More specifically, the motion-

trajectory-dependency of joint impedance is limited and

fixed by considering the kinematically identical walking

according to the desired gait, regardless its degree of stability

for any given values of the PD-gains.

After introducing methodological definitions in §3, we

show in §4 that the desired gait can be established as a

stable limit cycle (LC) for an appropriate set of impedance

controllers with large PD-gains. Since the feedback and

feed-forward torques are time periodic, and thus the equation

of motion of the model can be formulated as a non-auton-

omous periodically forced nonlinear dynamical system,

stability change of the LC as a function of the PD-gains are

analysed using Floquet theory. This analysis can be per-

formed easily because the solution for LC has already been

specified as the desired gait for any values of the PD-gains.

We then show that, as the PD-gains decrease for lowering

the joint stiffness, stability of the LC is lost only in a few

dimensions, while leaving the remaining large number of

dimensions quite stable, by which the LC can be classified

as a saddle-type instability, with a low-dimensional unstable

manifold and a high-dimensional stable manifold.

Finally, in §5, we propose an intermittent neural feedback

controller that is activated only for a short period of time at

an optimal phase of each gait stride. We show that intermit-

tent control paradigms can stabilize the unstable LC in a

more robust way, with very small values of the PD-gains,

in a consistently biomimetic manner. We discuss physiologi-

cal plausibility of the intermittent control and relations to

other control strategies in §6.
2. A model of biped gait
A heel-toe footed biped gait model constructed by Yamasaki

et al. [25] is used in this study (figure 1). It operates in the sagittal

plane and includes seven links (HAT, left and right feet, shanks

and thighs) and six joints (hip, knee and ankle joints of both

legs). A posture of the model can be specified uniquely by

q ¼ (q1, q2, q3, . . . , q9)T

; (u, x, y, ul
a, ul

k, ul
h, ur

a, ur
k, ur

h)T, (2:1)

where the elements of the vector, from the first to the ninth, are

the HAT tilt angle, horizontal and vertical positions of the HAT

centre of mass (CoM), ankle, knee, hip joint angles of the left limb

and those of the right limb. Yamasaki et al. performed forward

dynamic simulations with constraining all of the six joint

angles by an experimentally motion-captured kinematic data

using a method developed by Van Den Bogert et al. [37].

Specifically, the joint angles are constrained as

ul
a ¼ �u

l
a (t), ul

k ¼ �u
l
k (t), ul

h ¼ �u
l
h (t)

and ur
a ¼ �u

r
a (t), ur

k ¼ �u
r
k (t), ur

h ¼ �u
r
h (t),

9=; (2:2)
where {�u
l,r
a,k,h (t)} is a set of motion-captured periodic joint angles

with period T¼ 1.135 s, from a healthy young subject during

steady-state walking. Each of those angles was fitted by the

eighth order of Fourier series, and all coefficients are available

in [25]. In this way, the dimension of the model’s state vector

is reduced from 18 to six, namely the HAT variables (q1 ¼ u,

q2 ¼ x, q3 ¼ y) and the corresponding time derivatives. This

means that walking of the model is driven only by the GRFs

that are produced by nonlinear interactions between the

ground and the wallowing multi-link model. See figure 1 and

the electronic supplementary material A for the equations of

motion and the model of GRFs. The crucial feature of this

model, referred to here as the constraint model, is that it exhibits

a stable periodic gait without any feed-forward and feedback

controllers, if initial conditions are set appropriately within a

certain area of the state space, as shown by Yamasaki et al. [25].

It is important to note that this fact is solely responsible for

the following stability analysis of the non-constraint model

without the joint constraint. In other words, an optimal set

of joint angle kinematics has been selected specifically for

the model, and other joint angle trajectories largely different

from the one used in this study may not achieve stable walking

of the constraint model. This means that gait trajectory ( joint

angle trajectory in this context) is also a very important

determinant of gait stability (see Discussion.) Here, we



Table 1. Values of the body parameters used in the biped model.

symbol description

(x, y) x – y positions of HAT-CoM (q2 and q3 in the general coordinate)

ul
a, ur

a ankle joint angle (q4 and q7 in the general coordinate)

ul
k, ur

k knee joint angle (q5 and q8 in the general coordinate)

ul
h, ur

h hip joint angle (q6 and q9 in the general coordinate)

u posture of HAT (q1 in the general coordinate)

g gravitational acceleration 9.8 (m s22)

m1 mass of foot 0.682 (kg)

m2 mass of shank 3.162 (kg)

m3 mass of thigh 6.882 (kg)

m0 mass of HAT 40.548 (kg)

L1 length from ankle joint to toe 0.122 (m)

L2 length of shank 0.379 (m)

L3 length of thigh 0.420 (m)

L0 length of HAT 0.536 (m)

l1 distance from ankle joint to CoM of foot 0.050 (m)

l2 distance from ankle joint to CoM of shank 0.154 (m)

l3 distance from ankle joint to CoM of thigh 0.200 (m)

l0 distance from ankle joint to CoM of HAT 0.332 (m)

I1 inertia moment of foot 0.00014 (kg m2)

I2 inertia moment of shank 0.03001 (kg m2)

I3 inertia moment of thigh 0.09485 (kg m2)

I0 inertia moment of HAT 1.09933 (kg m2)
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denote the steady-state periodic motion achieved by the

constraint model, in terms of q, as

�q(t) ¼ (�q1(t), �q2(t), �q3(t), . . . , �q9(t))T, (2:3)

where �q1 (t), �q2 (t) and �q3 (t) are the steady-state periodic sol-

ution of the constraint model, and the remaining

�q4 , . . . , �q9 (t) are just the periodic kinematic data defined in

equation (2.2). Thus, �q(t) is a periodic function of time with

gait period T, i.e. �q(tþ T) ¼ �q(t).
In this study, we release the constraint on the joint angles,

which brings the degree of freedom and the dimension of

the model’s state space back to nine and 18, respectively.

Because no kinematic constraint is posed on the joint

angles, we need to introduce joint torque actuations to realize

a periodic steady-state gait of the non-constraint model,

whose equations of motion can then be represented as

J(q)€qþH(q, _q) ¼ Uff(�q(t), _�q(t), €�q(t))þUfb(q, _q; �q(t), _�q(t)), (2:4)

where

H(q, _q) ; B(q, _q)þ K(q)þ G(q, _q): (2:5)

J is the 9 � 9 inertia matrix, and B, K and G are nine-

dimensional vectors of centrifugal and Coriolis torque,

gravitational torque and GRF, respectively. See table 1 for

body parameters and the electronic supplementary material

A for details of J ¼ ( ji,k), B ¼ (bi), K ¼ (ki) and G ¼ (gi) for

i, k ¼ 1, 2, . . . , 9. Uff and Ufb are the feed-forward and feed-

back control torques, respectively. In this way, equation

(2.4) describes the motion of the rigid-link model during
tracking the periodic desired joint angle trajectory. We

assume that the feed-forward controller uses a precise inverse

dynamics model defined as

Uff(�q(t), _�q(t), €�q(t)) ; J(�q(t)) €�q(t)þH(�q(t), _�q(t)), (2:6)

and the feedback controller is simply based on a PD feedback

mechanism defined by

Ufb(q, _q; �q(t), _�q(t)) ; P(�q(t)� q)þD( _�q(t)� _q) (2:7)

with P and D being the following proportional and derivative

gain matrices

P ¼ diag(0, 0, 0, Pa, Pk, Ph, Pa, Pk, Ph)

and D ¼ diag(0, 0, 0, Da, Dk, Dh, Da, Dk, Dh),

where Pa–Da, Pk–Dk and Ph–Dh are the gains of PD control-

lers acting on the ankle, knee and hip joints, respectively.

Note that, since the first three elements of P and D gain

matrices are zero, the feedback control torque Ufb is deter-

mined only by the joint angles (q4, q5, q6, q7, q8, q9)

and ( �q4 , �q5 , �q6 , �q7 , �q8 , �q9 ), i.e. independent of (q1, q2, q3),

although equation (2.7) in its appearance is written as the

function of the whole q and �q(t). Note also that the choice

of the diagonal matrices for P and D gains are just for math-

ematical simplicity, and they can include non-diagonal

elements in reality.

It is important to note that �q(t) defined by equation (2.3) is

always a solution of equation (2.4), because the following

equality holds, regardless of the PD-gain values:

J(�q) €�qþH(�q, _�q) ¼ Uff(�q(t), _�q(t), €�q(t))þUfb(�q, _�q; �q(t), _�q(t)): (2:8)
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The reason is threefold: (i) �q(t) is the steady-state solution of

the constraint model, (ii) Uff is a precise inverse dynamics sol-

ution of the constraint model, and (iii) Ufb(�q, _�q; �q(t), _�q(t)) ¼ 0

in the right-hand side of equation (2.8), although stability of

the solution �q(t) depends on the PD-gains. This means that,

when we analyse stability of the model for a given set of

PD-gains, we do not need to search a periodic solution of

equation (2.4), which is usually a quite time-consuming

task, but we can just analyse stability of the solution �q(t).
A state space representation of equation (2.4) is as follows:

d

dt
q
v

� �
¼ v

J�1(q){�H(q, v)þUff(t)þUfb(q, v, t)}

� �
, (2:9)

where v ; _q,

Uff(t) ; Uff(�q(t), _�q(t), €�q(t))

and

Ufb(q, v, t) ; Ufb(q, v; �q(t), _�q(t)):

Moreover, by defining x ; (qT, vT)T [ R18, equation (2.9) can

be written as

dx
dt
¼ f(x, t): (2:10)

As Uff(tþ T) ¼ Uff(t) and Ufb(x, t þ T ) ¼ Ufb(x, t), we have

f(x, tþ T) ¼ f(x, t), (2:11)

meaning that equation (2.9) (equation (2.10)) is a periodically

forced mechanical system, which is also a non-autonomous

dynamical system with a T-periodic vector field.

Once again, since the feed-forward controller Uff(t) out-

puts the precise inverse dynamic solution of the rigid-link

model, equation (2.10) always possesses a periodic solution

that corresponds to �q(t). We denote it by

xr(t; f0) ¼ (�qT (tþ Tf0), _�qT
(tþ Tf0))

T
, (2:12)

for which xr(tþ T; f0) ¼ xr(t; f0), where f0 represents the

initial phase of the periodic function defined by equation

(2.3). The explicit representation of f0-dependency is useful

for a later purpose. The closed trajectory of xr(t;f0) forms

an LC attractor in the phase space of R18. We are interested

in the stability of LC.

An initial condition at t ¼ 0 for solving the initial

value problem of equation (2.10) should be formulated

with a special care on the initial phase of the desired
trajectory, f0. That is, for a given initial state x(0), there is a

freedom of choice for f0. In other words, a solution of

equation (2.10) starting from x(0) with an initial phase

of the desired trajectory f0 of xr(0; f0) and that with

another initial phase of the desired trajectory xr(0;f00) are

not the same. The difference between those two solutions

are not necessarily only the phase of the steady-state oscil-

lation (f0 versus f00), but it can also happen that one

solution asymptotes to the desired trajectory and the other

solution does not. This is associated with a basin of attraction

of LC [25].
3. Stability and joint impedance
This section summarizes briefly how we evaluate stability of

the LC for the biped model. We also provide a formal defi-

nition of joint impedance for the biped model and a
mathematical formulation of how stability of the LC can be

associated with joint impedance.

3.1. Floquet stability
Consider a state point of the system x(t) ¼ xr(t; f0)þ ~x(t) with

~x(t) being a small perturbation (error state) vector from the

LC. In Floquet theory, stability of the LC is determined by

the time evolution of ~x(t), which is described by

d~x
dt
¼ Df0

(t)~x, (3:1)

where the Jacobian matrix Df0
(t) is T-periodic function of t

Df0
(t) ;

@f(x, t)
@x

���xr(t;f0) ¼ Df0
(tþ T): (3:2)

Since equation (3.1) possesses n(¼18) linearly independent

solutions for a set of n linearly independent initial conditions

~x(0), we consider

d

dt
eX(t) ¼ Df0

(t)eX(t), (3:3)

where eX(t) is composed of the n linearly independent column

vectors. ~X(t) can be obtained by integrating equation (3.3)

from t ¼ 0 with an initial phase f0 of the periodic desired tra-

jectory xr(t; f0). The n � n identity matrix I is usually chosen

as an initial error state matrix ~X(0). The solution integrated

over the cycle, eX(T), is referred to as the monodromy

matrix Ff0
. Note that the monodromy matrix is represented

differently depending on the initial phase f0.

FMs, denoted by li (i ¼ 1, . . . , n), are defined as the eigen-

values of Ff0
. If jlij , 1 for i ¼ 1, . . . , n, the perturbation ~x(t)

decays to zero, meaning that the LC is asymptotically stable,

and unstable otherwise. Stroboscopic observations of the

error state ~x(t) at discrete instants of time t ¼ 0, T, 2T, 3T,

etc., represent the cycle stability of the LC.

We obtained the Jacobian Df0
(t) by numerically differ-

entiating f (x, t) of equation (2.10), and then evaluating it

along xr(t; f0) through the gait cycle t [ [0, T]. We then

examined how stability of the LC changes depending on

the values of P-gains. See the electronic supplementary

material B for validation of the numerical evaluation of

the Jacobian.

3.2. Joint impedance as a stability determinant
Joint impedance is characterized by stiffness matrix Kd and

viscosity matrix Bd, which are usually defined, respectively,

by the derivatives of the total joint torque with respect to

the position and the velocity. They are equal to P and D in

our biped model as follows:

Kd ;� @U
@q
¼ P

and Bd ;� @U
@v
¼ D,

9>>=>>; (3:4)

where U ; Uff(t)þUfb(x, t). Thus, we considered simply the

PD-gains of the feedback controller as the joint impedance

in this study. This means that the smaller the values

of PD-gains (impedance), the more flexible are the

corresponding joints.

It is also worthwhile to consider a different type of joint

impedance, which is more directly related to Floquet stability

of the LC, xr(t) ¼ (�q, _�q). Considering a perturbed solution of

equation (2.10) as q ¼ �qþ ~q, v ¼ _�qþ ~v, €q ¼ €�qþ€~q, we have



1 m

(b)

(a)

Figure 2. Stick pictures of a stable gait ((a) for large P-gains; Pa¼ Pk ¼ Ph ¼ 1500 Nm rad21) and an unstable gait ((b) for small P-gains; Pa¼ Pk ¼ Ph ¼

700 Nm rad21) of the model obtained by numerical simulations of equation (2.10). For both cases, initial perturbations were set as ~q1 (0) ¼ 0:001 rad, ~qi (0) ¼ 0
for i ¼ 2, 3, . . . , 9 and ~vi (0) ¼ 0 for i ¼ 1, 2, . . . , 9, i.e. only the HAT tilt angle component ~u(0) was perturbed from the LC.
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the following linearized equation, which describes dynamic

evolution of the perturbation:

J(q)€~qþ Btotal ~vþ Ktotal~q ¼ 0, (3:5)

where

Ktotal ; Pþ @B
@q

(�q, _�q)þ @K
@q

(�q)þ @G
@q

(�q, _�q)þ @J
@q

€�q (3:6)

and

Btotal ; Dþ @B
@v

(�q, _�q)þ @G
@v

(�q, _�q): (3:7)

Note that, in equation (3.6), we use the following notation:

@J
@q

€�q ;
@J
@q1

(�q) €�q
@J
@q2

(�q) €�q
@J
@q3

(�q) €�q � � � @J
@q9

(�q ) €�q
� �

:

Furthermore, Ktotal and Btotal can be conveniently related

to the Jacobian matrix Df0
around the LC as follows:

Df0
(t) ¼ 0 I

�J�1Ktotal �J�1Btotal

� �
: (3:8)

In this way, the total joint impedance, which is characterized

by Ktotal and Btotal, determines values of FMs. See the electronic

supplementary material C for the derivation of equations

(3.6)–(3.8). The fact that Ktotal and Btotal are the functions of

not only P and D but also �q and _�q implies that joint kinematics

(i.e. gait kinematics) is also an important determinant of joint

impedance, thus joint flexibility and gait stability, although it

is given and fixed as �q(t) in this study.
4. Simulations and numerical analysis
We performed numerical simulations of the model by integrat-

ing equation (3.6) and/or equation (3.3) simply using the

forward Euler method with a time step of Dt ¼ 1025 s,

where the use of this Dt was validated by confirming that

simulations with 10 times larger and 10 times smaller values

of Dt did not alter dynamics of the model. For each simulation,

an initial condition x(0), i.e. an initial state of the body, and an

initial phase f0 were specified, in which x(0) was set close to

the LC such that jx(0)� xr(0; f0)j , e ¼ 0:001 was satisfied

for a given f0. This means that the model was already in the

middle of walking at the beginning of every simulation, and

our model cannot deal with a gait initiation from quiet
standing. In this article, for simplicity, simulation results

with the following single initial state are shown;

~q1 (0) ¼ 0:001 rad, ~qi (0) ¼ 0 for i ¼ 2, 3, . . . , 9 and ~vi (0) ¼ 0

for i ¼ 1, 2, . . . , 9. However, we confirmed that changes in

the initial state did not alter the results shown below as far

as jx(0)� xr(0;f0)j , 0:001 was satisfied.

Since stability of the LC depends on the values of PD-

gains, each of Pa, Pk and Ph were varied between 0 and

1500 Nm rad21. Da, Dk and Dh were fixed at a quite small

value (10 Nms rad21) throughout the study.

Figure 2 exemplifies stable and unstable gait patterns

obtained for large and small P-gains, respectively. (Pa ¼ Pk ¼

Ph ¼ 1500 Nm rad21 for the stable case, and Pa ¼ Pk ¼ Ph ¼

700 Nm rad21 for the unstable case.) We verified that dynamics

of the model during stable gait was almost exactly the same as

that of the constraint model for various examined sets of large

values of P-gains, confirming that steady-state walking of the

constraint model, �q(t) in equation (2.3), always forms the LC of

the unconstraint model, i.e. equation (2.10). This should also

be true for small P-gains, although numerical confirmation

(using shooting method, for example) is not easy because the

LC is unstable for such cases.

Figure 3 displays the stability regions and distribution of

the maximum FM(s) within the stability regions in the

Pa2Pk2Ph parameter space: in particular, it clearly shows

that the main stability region is associated with large values

of P-gains. Roughly speaking, for stability of the LC in the

main stability region, Ph should always be larger than

750 Nm rad21, implying the importance of high stiffness of

the hip joints for stability, whereas either Pa or Pk can have

smaller values. For example, if we consider cases with

small Pa values of about 200–300 Nm rad21, Pk should be

larger than 1000 Nm rad21: this means that a flexible ankle

joint should accompany a stiff knee joint. On the other

hand, the minimum value of Pk is about 450 Nm rad21,

which should be accompanied by Pa and Ph larger than 500

and 1000 Nm rad21, respectively. Thus, the qualitative

picture for achieving gait stability can be summarized as

follows: the hip joint should be rather stiff, but the ankle

joint can be flexible; the knee joint should be very stiff with

flexible ankles, but can have medium values otherwise.

Figure 3 also shows that there is a smaller stability region

for small values of Ph � 100 Nm rad21. This is an opposite

situation to the main stability region, suggesting that the

hip joint must not be necessarily stiff for gait stability. For
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Figure 3. Asymptotic stability regions (stability boundary) in the Pa2Pk2Ph parameter space (left panel) and distribution of the maximum FM within the stable
regions ( panels on the right). These panels (indexed as eaf, ebf, c, eof ) are the Pa2Ph cross-sections of the Pa2Pk2Ph parameter space for different values of Pk.
In such cross-sections, the modulus of the maximum FM of the monodromy matrix Ff0

is colour-coded as indicated by the vertical colour-code bar in the right-
most of the figure: white means instability with maximum FM larger than 1, red means close to instability with maximum FM near 1 and blue means good stability
with the maximum FM far below 1 (near 0.5). Measurement unit of Pa2Pk2Ph parameter: Nm rad21.
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this thin region, typical combinations of Pa and Pk that can

stabilize the LC are located at (Pa, Pk, Ph) � (1200, 550, 100)

for the most flexible knee joint case with very stiff ankle

joints, (Pa, Pk, Ph) � (500, 700, 100) and (Pa, Pk, Ph) � (30,

1500, 100) for the most flexible ankle joint case with very

stiff knee joints.

Quantitative examination of the distribution of the maxi-

mum FM(s) within the stability regions reveals that the

optimal combination of P-gains for the highest stability

within the examined range is located at (Pa, Pk, Ph) � (300,

1400, 1300). This means that the largest stiffness case examined

in this study, i.e. Pa ¼ Pk ¼ Ph ¼ 1500 Nm rad21 does not pro-

vide the highest stability of the LC, and gait stability does not

increase simply as the joint impedance (stiffness) increases.

Figure 4 shows the root loci (loci of FMs) when the P-gains

decrease according to the following law (Pa, Pk, Ph) ¼ (1500,

1500, 1500) 2 p.(1, 1, 1), with the scalar parameter p changing

smoothly from 0 to 1500. We can observe that all FMs, except

one FM of unity at (1, 0) on the unit circle, are located within

the unit circle on the complex plane for large values of

P-gains. For example, see the FMs indicated by open circles

for (Pa, Pk, Ph) ¼ (1500, 1500, 1500) in figure 4. This means

that the LC is stable for large P-gains, because one unity FM
reflects the fact that the variable q2(¼x) representing the hori-

zontal position of the HAT-CoM grows linearly (with a

constant ratio) for the cyclic observations as the model con-

tinues walking in the direction of q2(¼x) on the ground.

Thus, we do not always take into account this unity FM for

determining gait stability and the maximum FM. (This is

also the case for obtaining figure 3.) As the parameter p
increases, thus reducing the (Pa, Pk, Ph) values, one pair of

complex conjugate FMs crosses the unit circle at Pa ¼ Pk ¼

Ph � 890 Nm rad21, where stability of the LC is lost (gait

instability). This type of instability is known as the Hopf

(Neimark–Sacker) bifurcation [38], which may lead to quasi-

periodic dynamics. However, we could verify that at this

bifurcation not only the local stability but also the global stab-

ility of LC is lost, leading to a fall of the model. Thus, we never

observe quasi-periodic dynamics in our model. Note that, as

we mentioned earlier, the LC defined by equation (2.12)

exists persistently as an unstable LC for small values of the

P-gains even after the instability.

As the P-gains decrease further, the loci for the pair of com-

plex conjugate FMs, which are the dominant mode of the

dynamics, collide with each other, and then becomes two dis-

tinct real FMs at Pa ¼ Pk ¼ Ph � 645 Nm rad21; with a further

decrease, one of the real FM moves left and the other goes

right in the complex plane, namely the former FM returns

back into the unit cycle for Pa ¼ Pk ¼ Ph � 639 Nm rad21,

after which only one real FM remains as the unstable mode.

The degree of instability of this mode increases as the P-gain

decreases, whereas the remaining modes remain quite stable.
4.1. Stable and unstable manifolds of the limit cycle
Although the FMs are independent of the initial phase f0

because of the periodic nature of the LC, the eigen-

vectors are f0-dependent as is Ff0
. The matrix Ff0

can be

diagonalized as

Ff0
¼ Vf0

LV�1
f0

, (4:1)

where L ¼ diag(l1, l2, . . . , ln) with n ¼ 18, which is f0-

independent, and

Vf0
¼ (v1(f0), v2(f0), . . . , vn(f0)), (4:2)
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Figure 5. Initial phase f0-dependency of eigenvectors of the three dominant FMs of Ff0
. In this example, Pa ¼ Pk ¼ Ph ¼ 700 Nm rad21, for which the LC is

unstable, and the dominant FMs, except the single unity FM, are a pair of complex conjugates l1 and l2 ¼ �l1 with jl1j ¼ jl2j . 1 and one real l3 , 1, for
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coded as indicated by the vertical colour-code bar in the right-most of each panel. The phase origin corresponds to the left heel-contact throughout the paper.
Dotted squares in each panel indicate the double support phases. One can observe that each eigenvector changes in a continuous manner basically as the function of
f0, but it exhibits abrupt changes at the heel-contact and toe-off events.
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with vi(f0) being the f0-dependent eigenvector of Ff0
for li.

For the diagonalization of Ff0
, we prefer to use the Jordan

normal form. Thus, for a pair of complex conjugate FMs li

and �li, we employ two real basis vectors Im[vi(f0)] and

Re[vi(f0)], instead of vi(f0) and �vi(f0). Then the corresponding

diagonal 2 � 2 block of the matrix Lf0
becomes

ai(f0) �bi(f0)
bi(f0) ai(f0)

� �
, (4:3)

where ai(f0) ¼ Re[li(f0)] and bi(f0) ¼ Im[li(f0)].

Figure 5 exemplifies how the eigenvectors of the three

dominant FMs (except one unity FM) change as functions

of the initial phase f0 from which equation (3.3) was

integrated to obtain the monodromy matrix Ff0
. In this

example, Pa ¼ Pk ¼ Ph ¼ 700 Nm rad21, for which the LC is

unstable, and the dominant FMs, except the one unity FM,

are a pair of complex conjugates l1 and l2 ¼ �l1 with

jl1j . 1 and one real FM with jl3j , 1. Note that, in this

case, the remaining 14 FMs are all located within the unit

cycle, and their moduli are much smaller than jl3j. One can

observe that each eigenvector of the monodromy matrix

Ff0
changes in a continuous manner basically as the function

of f0, but it exhibits abrupt changes at the heel-contact and

toe-off events. This means that the direction of local conver-

gent flow towards the LC and that of local divergent flow

away from the LC change as the function of f0 along the LC.

We are interested in how an initial error state ~x(0)

evolves in the cycle-to-cycle basis. The matrix Ff0
descri-

bes such an error state evolution based on the sequence of

T-periodic stroboscopic observations of ~x when the phase
of desired trajectory becomes f0 periodically, which is

described as

~x(kT) ¼Fk
f0

~x(0)

¼Vf0
LkV�1

f0
~x(0):

(4:4)

with k counting the cycle number of gait.

This is a linear discrete dynamical system defined by the

map Ff0
. Let us consider dynamics of equation (4.4) more in

detail using the case shown in figure 5. We consider only the

three dominant FMs (l1, �l1 and l3), for simplicity. Denoting

a(f0) ¼ Re[l1(f0)] and b(f0) ¼ Im[l1(f0)], we have an analyti-

cal solution of equation (4.4) with respect to the eigenvector

basis as follows:

~x(kT) � c1(k)v1(f0)þ c2(k)v2(f0)þ c3(k)v3(f0), (4:5)

where Im[v1(f0)] and Re[v1(f0)] of the complex eigenvector

v1(f0) for l1 are rewritten as v1(f0) and v2(f0), respectively,

and v3(f0) is the real eigenvector for l3. The coefficients c1, c2

and c3 are given by

c1(k)
c2(k)

� �
¼ jl1jk

cos kw � sin kw
sin kw cos kw

� �
c1(0)
c2(0)

� �
(4:6)

and

c3(k) ¼ lk
3c3(0), (4:7)

where w ¼ tan �1[b(f0)=a(f0)]. Note that the coefficients c1(k)

and c2(k) represent the error state dynamics projected on the

two-dimensional subspace spanned by v1(f0) and v2(f0)

associated with the unstable FMs (l1 and l2 ¼ �l1), and c3(k)

represents those on the one-dimensional subspace spanned
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Figure 6. Stable and unstable gait dynamics with large ((a); Pa ¼ Pk ¼ Ph ¼ 1500 Nm rad21) and small ((b); Pa ¼ Pk ¼ Ph ¼ 700 Nm rad21) feedback gains.
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Figure 7. Schematic of stable and unstable manifolds of the LC. Twisted geo-
metry of the manifolds corresponds to the f0-dependent eigenvectors of
Ff0

. The stable manifold W s(xr (f0)) and the unstable manifold
Wu(xr (f0)) are, respectively, tangential to the subspace spanned by the
eigenvectors for the stable FMs of Ff0

and that spanned by the set of
eigenvectors for the unstable FMs of Ff0

. W s(LC) and Wu(LC) are the
stable and unstable manifolds of the LC, respectively, and they are defined
as the unions of W s(xr (f0)) and Wu(xr (f0)) through the one gait cycle.
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by v3(f0) associated with the stable FM (l3). Thus, c1(k) and

c2(k) diverge according to equation (4.6), but c3(k) converges

to zero, as far as ~x(t) is small and the linear approximation is

valid, according to equation (4.7).

Figure 6 represents the stable and unstable gait dynamics

shown in figure 2 in terms of the error state ~x. (Figure 5

shows the dominant eigenvectors as the function of f0 for

this unstable case.) One can confirm that all of three coefficients

(c1, c2 and c3) that are observed stroboscopically at every T
seconds asymptote to zero for the stable case, whereas c1 and

c2 representing the two-dimensional unstable oscillatory

dynamics associated with the two unstable FMs (l1 and �l1)

grow away from zero as described by equation (4.6) for the

unstable case. Note that c3, which describes dynamics of the

stable mode of the unstable dynamics, also diverges but

slowly. That is, c3 evolves initially according to the converging

dynamics of equation (4.7) when ~x is small and the state point is

close to the LC. However, as the state point becomes away from

the LC due to the unstable dynamics of c1 and c2, the linear

approximation of dynamics of the model becomes invalid,

and thus c3 starts to move also away from the LC.

We shall make an association between the linear subspace

spanned by eigenvectors of stable FMs and a stable manifold

of the LC, and also between the linear subspace spanned by

eigenvectors of unstable FMs and an unstable manifold of the

LC. The stable manifold for any point xr(f0) ; xr(0; f0) on

the LC can be defined by the set of state points as

Ws(xr(f0)) ¼ {x [ Rn; lim
k!1
jjC(x, kT)�C(xr(f0), kT)jj ¼ 0},

where k is integer representing the gait cycle, and C(x, t) is

the flow of the system, representing the evolution of the

state point x for a time-span of t. Similarly, the unstable mani-

fold for any point xr(f0) on the LC is defined by the set of

state points as

Wu(xr(f0)) ¼ {x [ Rn; lim
k!�1

jjC(x, kT)�C(xr(f0), kT)jj ¼ 0}:
See figure 7 for a schematic of the stable and unstable mani-

folds of the LC.

The set Ws(xr(f0)) < Wu(xr(f0)) forms a Poincaré section

of the LC passing through xr(f0), across which any trajectory

transverses periodically every T seconds. A Poincaré map for

this section is defined for x [ Ws(xr(f0)) < Wu(xr(f0)) as

Pf0
(x) ¼ C(x, T) [ Ws(xr(f0)) < Wu(xr(f0)):

Moreover, since C(xr(f0), T) ¼ xr(f0),

Pf0
(xr(f0)) ¼ xr(f0),



0 5 10
time (s)

G
R

F
c 3

c 2
c 1

q~.
q~

2015

on

off

500

0

1000
–0.2

0

0.2

3

–3

0

3

–3

0

(×10–3)
2

0

–2
0.02

–0.02

0

Figure 8. Successful stabilization of the unstable gait by the intermittent
controller that uses the stable manifold of the unstable LC (SMC), i.e. the
intermittent controller drives the state point toward the nominal desired state
point on the stable manifold of the LC for a short period of time (w seconds) in
every half cycle of gait. (Pa, Pk, Ph) ¼ (700, 700, 700) as in figure 6b,
(Pþa , Pþk , Pþh ) ¼ (500, 500, 500) and (Dþa , Dþk , Dþh ) ¼ (10, 10, 10). The
onset phase was fon¼ 0.003, which is right after the heel-contact event,
and the duration w was 0.10 s. Note that the sequence of on-periods at the
bottom trace coincides with the vertical grey bands that represent the double
support phases. ~u and _~u: the error states of the tilt angle (rad) and angular velocity
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meaning that xr(f0) is a fixed point of Pf0. If x [ Ws(xr(f0)),

lim
k!1

Pk
f0

(x) ¼ lim
k!1

C(x, kT) ¼ xr(f0),

where iterative operations of Pf0
generate a convergent

sequence of points on Ws(xr(f0)) towards the fixed point

xr(f0) on the LC. Similarly, if x [ Wu(xr(f0)),

lim
k!�1

Pk
f0

(x) ¼ lim
k!1

C(x, kT) ¼ xr(f0),

meaning that iterative operations of Pf0
generate a divergent

sequence of points on Wu(xr(f0)) away from the fixed point

xr(f0) on the LC.

If the LC is stable, Wu(xr(f0)) is an empty set, and there

exists a non-empty set B such that any state point in B

asymptotes to the LC. B is called the basin of attraction of

the LC defined as

B ¼
[

f0[S1

Ws(xr(f0)):

If the LC is unstable, it is typically accompanied by both

Ws(xr(f0)) and Wu(xr(f0)), meaning that the fixed point

xr(f0) is a saddle point.
Since the matrix Ff0

is a linearization of Pf0
around the

fixed point xr(f0), Ws(xr(f0)) and Wu(xr(f0)) are, respectively,

locally diffeomorphic with the subspace spanned by the set of

eigenvectors for the stable FMs of Ff0
and that spanned by

the set of eigenvectors for the unstable FMs of Ff0
. In other

words, in the vicinity of the LC, Ws(xr(f0)) is identical with

the linear subspace spanned by eigenvectors of stable FMs for

Ff0
, and also Wu(xr(f0)) is identical with the linear subspace

spanned by eigenvectors of unstable FMs for Ff0
. In the

example shown in figure 6 for the unstable LC, the two-dimen-

sional subspace spanned by v1(f0) and v2(f0) is locally identical

with Wu(xr(f0)), and the remaining 15-dimensional subspace,

except the one-dimensional neutrally stable subspace, is locally

identical with Ws(xr(f0)).

In summary, we explored how stability of the model with

the PD-feedback controller changes as the function of

PD-gains that determine gait flexibility. Moreover, we charac-

terized dynamics of the perturbed state point (error state

point) in the vicinity of the LC using the stable and unstable

manifolds of the LC. In particular, phase-dependent geometry

of the stable and unstable manifolds was described by the

eigenvectors of the monodromy matrix, by which we can

understand that a perturbed state point at a given phase con-

verges to the LC transiently along the stable manifold and

diverges from the LC along the unstable manifold.
5. Stabilization of unstable gait using
intermittent control

We have shown so far that the time-continuous PD-feedback

controller can achieve stable gait if the PD-gains are large

enough, which means that gait dynamics established by impe-

dance control are not flexible but rigid. In this section, we

propose a time-discontinuous, intermittent control strategy

that can stabilize unstable dynamics of the biped gait model

with small values of PD-gains, as an alternative to impedance

control. More specifically, we show that the unstable dynamics

of the biped model with small PD-gains can be stabilized by

introducing an additional feedback controller, referred to as

the intermittent controller that acts impulsively only at a specific
optimal phase of every stride for a short period of time, referred

to as the on-period. This means that the intermittent controller is

inactivated for most of time, referred to as the off-period, during

which the joints of the model are actuated only by the continu-

ous PD-feedback controller with small gains, leading to a

flexible gait with the overall low joint impedance.
5.1. Intermittent control using the stable manifold
The proposed intermittent controller is implemented also by a

PD feedback controller. However, it is characterized differen-

tly by the fact that a desired state point at time t for this

feedback controller is not the desired state xr(t;f0) on the LC,

but a nominal desired state point on the stable manifold

Ws(xr(fon)), and the controller is activated at a specific phase

fon, referred to as the onset phase for a short duration w. It

exploits the fact that a state point exactly on the stable manifold

Ws(xr(fon)) approaches the LC (the origin in terms of the error

state ~x) through repeated cycles even for the unstable gait.

More specifically, ~x(t) on Ws(xr(fon)) will be mapped to

~x(tþ T) ¼ Ffon
(~x(t)) on Ws(xr(fon)) after one gait cycle, by

which ~x(tþ T) becomes closer to the origin than ~x(t). Therefore,

if the state point can be forced to be close to the stable manifold

by the intermittent controller in each on-period, it is expected

that, after the following off-period of the intermittent controller,

the state point at the next onset of the on-period may tend to

approach the LC, at least for several repeated gait cycles,

even if the state point is not exactly on the stable manifold.

There is a freedom of choice for the nominal desired state

point, referred to as xs, on the stable manifold Ws(xr(fon)).

One can consider an optimal criterion to determine the
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nominal desired state point. However, in this study, we simply

define it as the projection of the current state point x(t) onto the

stable manifold as xs. Let us consider the intermittent control-

ler that is activated at time t with an onset phase fon. Since we

assume a short duration w of the on-period (impulsive acti-

vation), we approximate the error state point ~x(t) for the

short time interval [t, t þ w] in terms of the time-independent

basis vectors at the onset phase fon, which is expressed as

~x(t) �
Xn

i¼1

ci(t)vi(fon), (5:1)

where n ¼ 18, {vi(fon)} is the time-independent set of n-

normalized eigenvectors of Ffon
, and ci(t) is the time-dependent

coefficient for the ith time-independent basis vector vi(fon).

Let us consider the case with two unstable FMs associated

with v1(fon) and v2(fon) and the remaining stable FMs,

except one unity FM, as in figures 5 and 6, right. In this

case, the stable manifold Ws(xr(fon)) is locally spanned by

the (n 2 3) eigenvectors {v3(fon), . . . , vn�1(fon)}, where the
last nth eigenvector is reserved for the unity eigenvalue that

is associated with the linear increasing in the position x of

HAT-CoM. Thus, the projection of the current error state

point on the stable manifold, i.e. the nominal desired state

point ~xs (t) can be obtained as

~xs (t) ¼
Xn

i¼3

ci(t)vi(fon), (5:2)

by putting the coefficients of the unstable modes to zeros, i.e.

c1(t) ¼ c2(t) ¼ 0. Thus, the nominal state point in terms of the

original coordinate is expressed as

xs(t) ¼ xr(t; f0)þ ~xs (t): (5:3)

We then define qs(t), the nominal desired posture in terms of

the generalized coordinate, as

qs(t) ¼ (xs,1(t), . . . , xs,9(t)): (5:4)

The intermittent controller is then implemented as

follows:
095
8
Uint(q, _q, qs(t), _qs(t)) ¼ Pþ(qs(t)� q)þDþ( _qs(t)� _q), if fon � mod(tþ Tf0, T) , fon þ
w
T

and Uint(q, _q, qs(t), _qs(t)) ¼ 0, otherwise,

)
(5:5)
with P þ and Dþ being the proportional and derivative gain

matrices defined as

Pþ ¼ diag(0, 0, 0, Pþa , Pþk , Pþh , Pþa , Pþk , Pþh )

and Dþ ¼ diag(0, 0, 0, Dþa , Dþk , Dþh , Dþa , Dþk , Dþh ),

)

where Pþa �Dþa , Pþk �Dþk and Pþh �Dþh are the gains of inter-

mittent PD feedback control acting on the ankles, knees and

hips of the left and right limbs, respectively. We apply Uint to

the right-hand-side of equation (2.4) intermittently at a cer-

tain onset phase fon only for w seconds. By taking into

account the periodic nature and the left–right symmetry of

the gait, we apply the intermittent control every half cycle,

i.e. once for each step. In other words, each on-period of

Uint begins when the phase of the desired trajectory �q(t) is

at fon, and then suspended to zero when the phase of the

desired trajectory �q(t) is at fon þ w/T where the off-period

begins. The subsequent on-period starts at fon þ 0.5, and

then suspended to zero at fon þ w=T þ 0:5. (Note that the

small duration w is a parameter that determines the width

of each on-period, which can be optimized for better stability

as we show later in this section.) This means that the

sequence of short-time torques (Uint) is completely periodic,

regardless of the state of the biped model. However, since

we consider no-modifications of the desired trajectory, this

condition for every onset of Uint based only on the phase

can be considered as a simplification of a state-dependent

activation of the intermittent controller. On the other hand,

the condition for every offset is rather automatic. Therefore,

although Uint drives the state point towards the nominal

desired state point xs on the stable manifold Ws(xr(fon)),

the state point at each offset of Uint (i.e. at the beginning of

each off-period) is not necessarily close enough to the stable

manifold Ws(xr(fon)).

Figure 8 exemplifies dynamics of the model with the

intermittent controller Uint, in which instability of the

model due to small values of P-gains can be successfully
compensated by the intermittent controller. In this case, the

intermittent control torque is periodically activated at every

double support phase at which the stance leg exchanges.

One can compare figure 8 with figure 6, right, both of

which are simulated for the identical initial condition and

the small PD-gains. However, the model without the inter-

mittent controller starts to fall rapidly in a few steps from

the beginning of the simulation.

5.2. Intermittent control driving directly to the
limit cycle

A question arises if the intermittent controller Uint is better to

drive the state point to the stable manifold of the unstable LC.

What will happen if the state point is not driven to the nom-

inal desired state point on the stable manifold as examined

above, but to the desired state point on the unstable LC

directly as in the original PD-feedback controller Ufb? It is

natural to ask whether it is more convenient to use the

stable manifold or ignore it. In order to answer this question,

we consider another intermittent controller whose desired

state point is xr(t;f0) on the unstable LC.

If we use the state point xr(t; f0) on the unstable LC as the

desired state point for the intermittent controller, instead of

the nominal desired state point on the stable manifold, the

total feedback control torque during each on-period can be

expressed as follows:

Ufb þUint ¼ (Pþ Pþ)(�q(tþ Tf0)� q)

þ (DþDþ)( _�q(tþ Tf0)� _q): (5:6)

This is equivalent to putting ~xs (t) ¼ 0 in equation (5.3) and

replacing qs(t) and _qs (t) in equation (2.4) by �q(tþ Tf0)

and _�q(tþ Tf0).

Figure 9 exemplifies the dynamics of the model with the

intermittent controller that drives the state point to the desired

state point on the unstable LC directly, where the onset phase

fon, the activation duration w and the gains of the intermittent
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controller are the same as those used in figure 8. Despite this,

however, instability due to small values of P-gains cannot

be compensated by the intermittent controller that drives the

state point directly back to the LC. This result suggests a

superiority of the use the stable manifold of the unstable LC.

5.3. Comparison between two types of intermittent
controllers

We examined the performance of two types of intermittent

controllers in detail to determine which controller can better

stabilize the unstable gait dynamics in a robust way. For con-

venience, we name the intermittent controller that drives the

state point to the stable manifold as SMC (Stable Manifold

Controller), and the other one that drives the state point

directly to the unstable LC as LCC (Limit Cycle Controller).

Since dynamics of the model with the intermittent control

may depend on the onset phase fon and the activation dur-

ation w, we explored the optimal onset phase and the

minimum duration for each type of the intermittent controller

(figure 10). Note that the shorter the activation duration, the

lower is the overall joint impedance. A set of numerical simu-

lations showed that, for the stabilization of the unstable LC,

fon should be located within the double support phase for

both SMC and LCC, and the minimum duration w of each

single activation is about 3.5% of the gait cycle for SMC,

and about 7% for LCC. Since the duration of one of two

double support phases in one gait cycle during steady-state

walking in our model is about 10%, the duration w for

SMC and LCC can be shorter than the double support phase.

We also explored the performance of SMC and LCC

(figure 11) for various sets of PD-gains for which the gait

was determined as unstable as in figure 3 in the Pa2Pk2Ph

parameter space, by examining whether SMC and LCC can

successfully stabilize the unstable gait. It is apparent that

SMC stabilizes the unstable gait for a wider range of the

Pa2Pk2Ph parameter space than LCC. More specifically,

LCC stabilizes the unstable gait only for the parameter

regions in the neighbourhood of the original stability regions
of the model without the intermittent control. Contrastingly,

SMC stabilizes unstable gait even for parameter sets that are

located far away from the original stability regions, implying

robust stabilization capability of SMC.

In order to get more insights of how the unstable LC was

stabilized by SMC and LCC, we examined the stabilized tra-

jectories of the model in the state space, and evaluated how

they were close to the LC. For both SMC and LCC, the stabil-

ized trajectories were close to the LC when the set of

Pa2Pk2Ph parameters were close to the original stability

regions. However, the stabilized trajectories in SMC for the

set of Pa2Pk2Ph parameters that are distant from the orig-

inal stability regions were distorted from the LC. This is

natural because the degree of instability becomes larger as

the P-gains are far away from the instability point, and thus

the impulsive feedback torque supplied by the SMC cannot

drive the state point close enough to the stable manifold.

However, driving the state point to the stable manifold is

much easier than driving the state point directly to the LC,

leading to the robust stabilization capability of SMC.
6. Discussion
In this paper, we addressed issues about gait stability during

steady-state periodic walking with an anatomically plausible

heel-toe footed biped model and investigated to which extent

the human locomotion control system can achieve two appar-

ently contrasting goals at the same time, namely dynamic

stability and flexibility of gait. For example, one tolerates

motor variability and the other does not [10]. In the field of

neurophysiology, it has been a common view that the

brain stabilizes unstable body dynamics using impedance

control, which resists destabilizing motion by regulating co-

activation levels and thus co-contraction levels of antagonist

muscles [20,21]. Burdet et al. [39] have shown that the central

nervous system stabilizes unstable dynamics by learning

optimal impedance, in which only selected pairs of antagon-

ist muscles associated with the instability are co-activated

in a preprogrammed manner. However, a high impedance

strategy, implemented by continuous co-contractions of

antagonist muscles, is energetically expensive since it requires

high metabolic costs, and sometimes it makes the body

dynamics too rigid, leading to a loss of flexibility in patho-

logical movements [13]. For a persistent, basic action such

as human upright standing and walking, control strategies

that disregard energy costs are not appropriate and/or

physiologically plausible. This study focuses on the stab-

ility/flexibility issue and shows that intermittent feedback

control is a promising alternative strategy that might resolve

the trade-off between flexibility and stability, as well as

between stability and energetic cost, although evaluation of

the energetic issue, per se, is beyond the scope of this paper.

6.1. Summary
We showed that the desired steady-state gait, which we pre-

pared carefully using a preliminary computational task,

could be established as a stable LC of the model for large

PD-feedback gains. Stability of the LC was explored system-

atically in the wide range of Pa2Pk2Ph parameter space

using FMs. It was natural that the main stability region was

located at large values of P-gains. More specifically, the hip

joint should be stiff (Ph . 750 Nm rad21), but the ankle
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joint can be quite flexible (Pa � 250 Nm rad21), and the knee

joint should be very stiff with the flexible ankle joint, but it

can be medium otherwise. In comparison with the recent

reports by Shamaei et al. [22] on the quasi-stiffness during

steady human gait, Pa-values obtained in this study for the

gait stability are roughly in the reported range (200–

500 Nm rad21). However, both Pk-values and Ph-values for

the stability are far above the reported ranges (200–

350 Nm rad21 for knee [23] and 200–600 Nm rad21 for hip

[24]). Another thin horizontal stability region with Ph �
100 Nm rad21 for the hip joints could also provide stable gait

as shown in figure 3, and this small value of Ph was close to

the minimum value reported in [24]. However, the model pre-

dicted much larger stiffness for the knee and ankle joints in this

thin stability region than the reported values. Thus, in any case,

the model with the continuous PD-feedback controller could

not achieve dynamic stability and flexibility simultaneously.

After we clarified the stable and unstable manifolds of the

destabilized LC, we showed that the intermittent controller
could better stabilize the unstable LC with small PD-gains,

while leaving the overall joint impedance small by driving

the state to the stable manifold of the unstable LC (SMC),

not directly to the unstable LC itself (LCC). The comparison

between SMC and LCC revealed a beneficial aspect of the

use of the stable manifold of the saddle-type unstable LC

dynamics. That is, SMC could stabilize the unstable LC for

much wider region of the P-gains, suggesting a robustness

of SMC. Examinations of our model showed an importance

of the timing of active intervention during human gait. For

the proposed intermittent control, we showed that the impul-

sive active control should be applied during the double

support phase of the gait. This result is consistent with a

well-known fact that the bipedal gait is close to uncontrolla-

ble during single support phase, but becomes controllable

only during double support phase. Indeed, if there is no

active ankle feedback torques, we can easily show that the

body dynamics in terms of its angular momentum becomes

completely uncontrollable.
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6.2. Inverted pendulum analogy
The intermittent feedback torques, which are impulsively acti-

vated during the double support phase both in SMC and

in LCC, might play roles to correct the joint torques for

pushing forward (accelerating) and for pulling backward

(decelerating) the inverted-pendulum-like body, resulting in,

respectively, an enough initial velocity for the inverted pendu-

lum to cross over the upright position during one single

support phase and a termination of forward-falling of the

inverted pendulum to prepare an appropriate initial velocity

for the next single support phase. In this way, the proposed

intermittent controller might have a high affinity for the

inverted pendulum analogy of biped gait [40]. It is interesting

to note that SMC and LCC might share the same functional

roles in terms of the inverted pendulum analogy, but in differ-

ent ways, and SMC could better achieve successive step-to-step

transitions from one pendular stance to the next in a stable and

robust manner than LCC, by using a well-timed neural inter-

vention that exploits the stable modes (i.e. dynamics on the

stable manifold) embedded in the unstable dynamics.

A future project of ours is to examine whether temporal

patterns of the intermittent feedback torques (either with

SMC or LCC) are consistent with the fly-ball analogy pro-

posed by Kuo [40] as a dynamic version of the inverted

pendulum analogy. Moreover, this examination should be

performed together with the energetic comparison among

different stabilization strategies, i.e. conventional impedance

control, LCC and SMC.

6.3. Intermittent control as a hybrid dynamical system
Our gait model with the intermittent controller, both SMC

and LCC, can be viewed as a hybrid dynamical system that

switches discontinuously between two subsystems with and

without the intermittent controller. SMC and LCC were

used when the subsystem without the intermittent controller

was unstable, that is, when the P-gains of the subsystem

are outside the stability regions shown in figure 3. Here, we

discuss stability of the LC for the subsystem with the inter-

mittent controller if the intermittent controller is activated

persistently, i.e. if Ufb þ Uint defined by either equation (5.5)

or equation (5.6) is used continuously.

In the case of LCC, the total P-gains of the feedback control-

ler is P þ Pþ. Thus, the LC of the subsystem with the continuous

LCC is stable if the P-gains of the subsystem without LCC is

located slightly below the main stability region of figure 3

and P þ Pþ is located inside the stability region. Indeed, the

unstable LC was successfully stabilized mostly when the

P-gains were distributed slightly below the main stability

region of the subsystem without LCC. In this case, the hybrid

dynamical system switches between the unstable subsystem

without LCC and the stable subsystem with LCC, implying

that dynamics of the stable subsystem with LCC during the

on-period are responsible for the successful stabilization.

In the case of SMC, however, values of P þ Pþ are not

necessarily located inside the stability region of the model

without SMC, because the P-gains of the subsystem without

SMC are not necessarily located in the neighbourhood of the

main stability region shown in figure 3. This means that the

hybrid dynamical system switches between the unstable sub-

system without SMC and also the unstable subsystem with

SMC. That is, the system alternates between two unstable

dynamics, which makes overall dynamics stable. This is
exactly the same situation in the intermittent postural control

model during quiet standing [28,30,33].

6.4. Desired gait trajectory as a stability determinant
As we showed in equation (3.8), Floquet stability of the model

with the continuous PD-feedback controller depends on the

desired gait trajectory that was prescribed using a motion-

captured joint angle trajectory and the constraint model.

One may argue whether or not the optimally prescribed

desired gait trajectory (�q(t) or xr(t) ¼ (�q(t), _�q(t))), rather than

the joint impedance and the feedback control strategies, is a

key for gait stability, because we know intuitively that an

apparently inappropriate desired gait trajectory can never

be realized and stabilized by the model. Indeed, any desired

gait trajectory xr(t) should be consistent at least with the zero

moment point (ZMP) criterion [41], if we decide to use it for

the model and wish to realize an actual gait motion of the

model according to the desired gait trajectory. The ZMP cri-

terion examines whether or not the prescribed desired gait

trajectory xr(t) can be a solution of the equation of motion

of the model (equation (2.4)), which is performed by substi-

tuting xr(t) into the equation of motion to calculate an

acting point (ZMP) of unknown GRFs, and then examining

whether the obtained ZMP is located inside the support

area of feet: if not, otherwise, xr(t) cannot be physically realiz-

able, and such xr(t) cannot be a solution of the equation of

motion, regardless of control torques (U ) applied to the

joints. If a gait trajectory that does not satisfy the ZMP criterion

is used as a desired gait trajectory to be tracked by the model,

the model would fall inevitably. Thus, we can say that gait

stability is most sensitive for a selection of the desired gait tra-

jectory. However, the ZMP criterion is merely a necessary

condition for gait stability. Even if the ZMP criterion is satisfied

by xr(t) and if xr(t) is a solution of the equation of motion, xr(t)
can be either stable or unstable. Indeed any gait dynamics of

our model that is actuated only by the feed-forward torque

Uff could not be stable even if the Uff is prepared for an opti-

mally selected desired gait trajectory, implying the necessity

of the feedback controller for gait stability.

One can also argue whether or not there exists a desired tra-

jectory for performing human gait, including involvement of a

central pattern generator (CPG) that might contribute to neural

generation of the desired trajectory [42], emergence of gait

patterns by means of purely mechanical mechanisms like in

the passive gait [18] without using CPG or through bidirectional

interactions between mechanical and neural dynamics of CPG

[14,15]. Although, in reality, it is natural to assume that a basic

gait pattern associated with a desired trajectory and joint

impedance might be determined or optimized simultaneously

somehow by the central nervous system, we have purposely

avoided issues related to CPG and emergent property of a com-

plex dynamical system, by which we could simply concentrate

on the roles played by joint impedance and related neural control

strategies. The results obtained by this study, however, might be

applicable to a more complicated biped model that assumes a

generation of the desired joint angle trajectory or the desired

gait trajectory using a model of CPG.

6.5. Effects of feedback delay
Stability of the model with the continuous PD-feedback con-

troller would alter if we consider a signal transmission delay

of neural feedback control. Indeed, this has been one of the
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major concerns in the recent debate on how the human upright

posture is stabilized in the presence of relatively large delay

time that induces instability [27–30,32,33,43,44]. The stability

regions obtained in this study for the biped model with the

continuous PD-feedback controller (figure 3) might diminish

largely if we consider feedback delay, in particular, for the

large gain regime. This means that establishing gait stability by

the conventional impedance control becomes much more diffi-

cult, if the continuous PD-feedback controller is implemented

with delay.

Delay-induced instability in feedback control systems can

be compensated by various control strategies. These include

(i) acceleration feedback controller in addition to the PD-

feedback controller [27], (ii) (intermittent) state predictor

[44], (iii) (multiplicative) stochastic state feedback controller

[45], as well as (iv) intermittent activation of the delayed-

feedback controller [28,30,33], among others. Although the

current study considered only the intermittent activation of

the PD-feedback controller without feedback delay, even if

a feedback delay is taken into account, we speculate that

the intermittent feedback controller might still be able to

show a good performance for compensating delay-induced

instability and stabilizing unstable dynamics of the model

with PD-gains far below the critical values, as in the case of

quiet standing [28,30,33].

This speculation is supported by the following discussion.

We first remind that the SMC was implemented by the inter-

mittent PD-feedback controller that drives the state to the

nominal desired state point on the stable manifold. We intro-

duced the nominal desired state point and associated

feedback controller for the sake of simplicity, as a matter of

fact. The role played by this PD-controller Uint was to make

the state point closer to the stable manifold during on-periods

of its activation. Uint of LCC with feedback delay might be

able to play a similar role more simply than SMC, without

considering the nominal desired state point. In other words,

if a neural feedback delay is taken into account for Uint of

LCC, delay-induced unstable dynamics might be able to

replace the role played by the current Uint of SMC that uses

the nominal desired state point. This might be is achieved

by the delay-induced unstable oscillatory dynamics around

the destabilized fixed point in the system with LCC, which

makes the state point get across the stable manifold without

using the nominal desired state point, as in the intermittent

postural controller [28,30,33].

6.6. Relation to phase resetting control
It is interesting to discuss complementary roles played by the

phase resetting control [25,26] and the proposed intermittent

controller. It has been shown that the phase resetting is effec-

tively used by human subjects for maintaining gait when

external perturbations are applied during swing phase,

where typical motor responses depend on the phase of the
perturbations [4]: perturbations applied at early or middle

swing phase result in elevating strategy that is accompanied

by phase delay of the gait cycle, whereas perturbations

applied at late swing phase lead to lowering strategy that is

accompanied by phase advance. However, it has been clari-

fied that perturbations applied during double support

phase do not elicit significant amount of phase resetting

[26]. Contrastingly, the intermittent controller proposed in

this study is effective during the double support phase. As

Yamasaki et al. [25] has discussed, the phase resetting also

contributes to reducing the joint impedance while main-

taining gait stability. Together with the fact the proposed

intermittent controller does not include any mechanisms for

phase resetting, we can conclude that these two stabilization

mechanisms are complementary, and effective to achieve gait

stability with the lowest possible joint impedance.

6.7. Conclusion and future issues
In this study, we successfully extended the intermittent con-

trol paradigm, developed for quiet standing with the

upright equilibrium state as a saddle-type fixed point, to

steady-state human gait. This generalization was not trivial

at all, since the gait trajectory is not a fixed point but rather

a periodic motion modelled as an LC, while the concept of

a saddle-like dynamics around the LC is still maintained.

For stabilizing the unstable LC gait dynamics, we developed

an intermittent neural feedback controller that is activated

only for a short period of time at an optimal phase of each

gait step. We characterized the robustness of this design by

showing that it can better stabilize unstable gait with small

continuous feedback gains, leading to a flexible gait. In par-

ticular, we demonstrated that such intermittent controller

performs better if it drives the state point to the stable

manifold of the unstable LC, rather than directly to the LC.

As our future issues, we are planning to analyse effects of

noise and feedback delay with the gait model that involves

both the intermittent controller and the phase resetting con-

troller as the major stabilization mechanisms. Such study

will allow us to examine motor variability in the model

using the methodologies that have been developed for

human gait data [3,8–10]. Since it has been shown that several

types of intermittent control model during quiet standing

could reproduce major characteristics of postural sway such

as the power-law fluctuation [46], we expect that noisy

dynamics of the intermittent gait control model might be

able to provide possible mechanisms of how the physiological

gait variability is generated.
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