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Background: Leukodystrophies constitute a heterogeneous group of inherited disorders
primarily affecting the white matter of the central nervous system. Aminoacyl-tRNA
synthetases (ARSs) catalyze the attachment of an amino acids to their cognate
transfer RNAs (tRNAs). Pathogenic variants in both cytosolic and mitochondrial ARSs
have been linked to a broad range of neurological disorders, including hypomyelinating
leukodystrophies and pontocerebellar hypoplasias (PCH). Aminoacyl tRNA synthetase-
interacting multifunctional protein 2 (AIMP2), one of the three non-catalytic components of
multi ARS complex, harbors anti-proliferative activity and functions as a proapoptotic
factor thus promoting cell death. We report a case of a 7-month-old infant with a complex
clinical presentation, including weight loss, severe anemia, skeletal abnormalities,
microcephaly and MR imaging features of leukodystrophy with a novel mutation in AIMP2.

Methods: Whole-exome sequencing (WES) was performed on the proband. Parental
samples were analyzed by PCR amplification and Sanger sequencing.

Results: Whole-exome sequencing revealed a novel variant c.A463T in the homozygous
state in exon 3 (NM_001,326,607) of AIMP2 [p.(K155X)] in the proband. Parental carrier
status was confirmed by target sequencing.

Conclusion: Here, we present an Iranian case with leukodystrophy with a novel AIMP2
mutation. This finding broadens the mutational and phenotypic spectra of AIMP2-related
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leukodystrophy and offers guidance for proper genetic counselling for pre- and post-natal
screenings as well as for disease management.

Keywords: leukodystrophies, WES, AIMP2/P38, neurodevelopmental disorders, multi-tRNA synthetase complex

INTRODUCTION

Leukodystrophies are heritable heterogeneous multisystem
conditions that primarily affect the white matter of the central
nervous system with or without peripheral nervous system
involvement (Van Der Knaap et al., 1999). The main
neuropathological sites in leukodystrophies are represented by
the myelin sheath and myelin-generating cells; however, in some
disorders, damage is suspected to originate at the axonal level
(Ashrafi and Tavasoli, 2017). The Global Leukodystrophy
Initiative (GLIA) Consortium has distinguished on the basis of
magnetic resonance imaging (MRI) characteristics two types of
classic leukodystrophy: hypomyelinating leukodystrophies, with
mild hyperintensity of cerebral white matter found in the T2W
sequence of MRI, and demyelinating leukodystrophies,
characterized by hyperintensity in T2W and relevant
hypointensity in T1W sequences (Parikh et al., 2015; Ashrafi
et al., 2020). Moreover, categorization of leukodystrophies based
on cellular pathology and metabolic and molecular approaches
were proposed in recent years (Van Der Knaap et al., 1999).
Currently, the incidence of heritable white matter disorders in
pediatric subjects is estimated to be between 1.2/100,000 and 1/
6–7,700 live births (Bonkowsky et al., 2010; Numata et al., 2014).
Previous studies on leukodystrophies have observed that this
condition is often progressive, with nonspecific manifestations
and a similar clinical scenario found in most individuals
(Vanderver, 2016). Each type of leukodystrophy affects a
different part of the myelin sheath and is associated with
several different neurological problems. The most common
clinical manifestation is the progressive deterioration or
regression of the neurological function, with motor deficit due
to myelin destruction as most common neurological sign
(Vanderver et al., 2015). Typically, hypotonia is more
common in the early stages of the disease, especially in
hypomyelinating leukodystrophies, whereas a combination of
truncal hypotonia and appendicular spasticity is more frequent
in the later stages. Signs of involvement of the corticospinal tract
(central hypotonia, spasticity), basal ganglia (various types of
movement disorders), peripheral nerves (sensory ataxia,
abnormal gait), and cerebellar signs (ataxia, nystagmus) are
additional important neurological features found in affected
individuals (Van Der Knaap et al., 1999). In addition to the
neurologic findings, a variety of extra-neural features can be
helpful in orientating toward a specific diagnosis. Endocrine
disturbances, ophthalmologic, cutaneous, skeletal radiographic
abnormalities, dysmorphic facial features, and gastrointestinal
symptoms may be detected in patients with leukodystrophy
(Parikh et al., 2015).

Although assessment of cerebral white matter involvement by
standard brain magnetic resonance imaging (MRI) is the
diagnostic tool of choice for leukodystrophy (Van Der Knaap

et al., 1999), genetic testing has also taken on a key role in the
diagnostic processes of heritable childhood white matter
disorders in recent years. Whole-exome sequencing (WES)
and whole-genome sequencing (WGS) have been widely used
for a better understanding of cases of unknown etiology in several
fields of pediatric neurology, with important advantages in terms
of predicting possible complications and/or symptoms that may
arise during the clinical course of a disease, to identify unexpected
clinical presentations associated with genes whose alterations are
already known to be pathogenic, to broaden the clinical
presentation of already known disorders, to determine
prognosis, and finally to identify new genes whose mutations
cause disease. (Srivastava et al., 2014).

Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of
an amino acid to its corresponding tRNA, ensuring the translation of
genetic information into functional proteins. Pathogenic variants in
both cytosolic and mitochondrial ARSs are associated with a wide
range of neurological disorders, including hypomyelinating
leukodystrophies and pontocerebellar hypoplasia (PCH) (Ashrafi
and Tavasoli, 2017). The multifunctional aminoacyl tRNA
synthetase-interacting protein 2 (AIMP2, also known as p38), is
one of three noncatalytic components (AIMP1, 2, and 3) that form
the mammalian multi-tRNA synthetase complex in combination
with nine aminoacyl tRNA synthetases. AIMP2 is also involved in
other activities besides the multi-tRNA synthetase complex andmay
determine cell fate through anti-proliferative and pro-apoptotic
activities. Specifically, AIMP2 can promote cell death through
several modalities. For example, in response to DNA damage it
may exert pro-apoptotic activity by modulating p53 activity (Park
et al., 2010). In addition, AIMP2may induce cell death by mediating
apoptotic TNF signaling through ubiquitin-mediated destruction of
TRAF2 (Choi et al., 2009). An homozygous nonsense variant
(c.105C > A; p. Tyr35Ter) of AIMP2 has recently been
associated with severe neurodevelopmental alterations (Shukla
et al., 2018) like those resulting from other ARS mutations. We
herein update the literature and describe a novel AIMP2 variant
from one Iranian infant with progressive neurological disorder
characterized by lack of development, microcephaly, and skeletal
abnormalities. Whole-exome sequencing (WES) revealed a variant
c.A463T in the homozygous state in exon 3 (NM_001,326,607) of
AIMP2 [p.(K155X)]. MRI of the brain showed global cerebral
atrophy and extensive white matter involvement.

MATERIALS AND METHODS

Patients
The proband was referred to Dr. Mazaheri’s lab, Yazd Medical
University, Yazd, Iran to confirm the clinical diagnosis. Before
being referred for theWES analysis, the proband was reviewed by
a metabolic specialist and referred to the lab for the genetic
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etiology. After written informed consent was obtained from the
proband’s parents, a blood sample was collected to perform a
WES test. At the time of referral, clinical details and MRI results
were provided by the patient’s family. All genomic DNA was
isolated from the peripheral leukocytes using a QIAamp DNA
Blood Midi kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The DNA samples were stored at
−20°C until use. DNA integrity was evaluated by performing 1%
agarose gel electrophoresis. Written informed consent was
obtained from the patient’s proband for publication of this
case report and any accompanying images.

Clinical Presentation
A female infant was born by normal vaginal delivery at 34 weeks
gestation to consanguineous healthy parents (Figure 1A).
Proband’s family did not refers any health problems. The
second trimester prenatal ultrasonic screening for fetal
malformation didn’t reveal any abnormality. The birth weight
was 1,060 g, and her head circumference was 24.5 cm. She was in
the neonatal intensive care unit for approximately 25 days after
birth due to respiratory failure, hypotension, and clinical features

of oligohydramnios. She had delayed cry at birth, microcephaly,
and shortened extremities. At 3 months of age, the proband was
referred to the medical Centre for a weight reduction of 110 gr.
During hospitalization, she received Folic acid tablets, vitamin B6
tablets, pantoprazole tablets and Lanoxin syrup and after 1 week
with good health conditions, she was discharged from the
hospital. Additionally, karyotype revealed normal female
constitution (46, XX). At 7 months of age, because of weight
loss, severe anemia, microcephaly, and tilted ankle the proband
was referred to our Specialist Centre for further evaluation,
including a WES analysis (Figure 1B).

Radiological Findings
Brain MRI in axial T1WI, T2WI and FLAIR images and sagittal
and coronal T2WI were performed. MRI of the brain on a
postnatal day 5 showed minor microcephaly, brain atrophy
with increased sub arachnoid space, but no changes in the
white/gray matter intensity in both hemispheres. A follow-up
MRI was performed at 2 months of age and revealed a mildly
delayed myelination of brain parenchyma and mild cortical
atrophy. At 7 months of age the MRI showed microcephaly,

FIGURE 1 | (A) Pedigrees of the family (B)Clinical manifestations of the proband (C) An Integrative Genomic Viewer (IGV) of homozygous nonsense variant AIMP2″
NM001326607 c.A463T, K155X (D) Position in the homozygous state in exon 3 of the variant c.A463T (NM_001,326,607) of AIMP2 [p.(K155X)]. (E) Sanger sequencing
of genomic DNA confirmed the presence of a homozygous mutation in the proband and heterozygous mutation in the parents. (F) This alignment shows this position
(variant) highly conserved between vertebrates.
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extreme cerebral atrophy, and white matter loss associated with
dilatation of lateral ventricle and third vertical. Periventricular
white matter hyperintensity in T2/FLAIR in both central
hemispheres is seen that could be related to gliosis.

Whole-Exome Sequencing
Whole-exome sequencing was performed on peripheral leukocyte
DNA of the proband. After DNA extraction, exome capture was
done using Agilent SureSelect Human All Exon platform following
the manufacturer’s protocol (Chen et al., 2015). The quality of
FASTQ files was inspected making use of FastQC. Then reads
were mapped to GRCh38 utilizing Burrows-Wheeler Aligner
(BWA) and duplicates were marked using Picard, complied with
by base recalibration, variant calling, and genotyping making use of
Genome Analysis Toolkit (GATK). Variations (SNP and INDEL)
were filtered based on GATK advised criteria. Ultimately, variants
were filtered to maintain those of medical significance. Only
variations of exonic or splice site, with less than 1% frequency in
the 1,000 Genomes and ExAC databases that were not identified as
benign in the clinical data sources passed the filters. These shortlisted
annotated variations were further studied for analysis of pathogenic
variants. The interpretation of the pathogenicity of the sequence
variants is based on themost recent criteria released by the American
College ofMedical Genetics andGenomics (ACMG) (Richards et al.,
2015). Sanger sequencing and PCR using specific primers F-5′-
CACCCTTTCCCATGTCATCAG-3′ and R-5′- CCTTCAGTT
TAGCGTCATTCCA-3 ′ primers for AIMP2 were used to
validate the variant in both parents.

RESULTS

Genetic Analysis Identified AIMP2 as
Candidate Gene
For confirmation of the genetic diagnosis of leukodystrophy, the
proband’s DNA was submitted to WES. The number of
annotated, potentially pathogenic variants was reduced to 510
complying with bioinformatics filtering, which allows to identify
exonic/splicing variants, excluding synonymous and benign
sequence variants, and reported homozygous variants with
minor allele frequency (MAF) < 0.001. BAM files were
converted into variant call format (VCF), and VCF files were
used as input for PLINK, a whole genome association analysis
toolset, to elucidate the degree of homozygosity from the WES
data. This previously unreported mutation most likely influences
the AIMP2 [p(K155X)] at exon 3 (Figures 1C,D). This variant
was confirmed as homozygous in the proband by bidirectional
Sanger sequencing. Sequencing of the parental samples
confirmed their carrier status of the novel mutation thus
ruling out other causes of apparent homozygosity, such as
uniparental isodisomy, allele dropout or copy number
variations. (Figure 1E). The Combined Annotation Dependent
Depletion (CADD) score, which allows to score the
deleteriousness of single nucleotide variants as well as
insertion/deletions variants in the human genome, was 42 for
this variant (https://cadd.gs.washington.edu/snv), and the allele
frequency of this variant in 1,000 genomes of different populaces

in heterozygous and homozygous states was 0. (https://gnomad.
broadinstitute.org/). This mutation is located in a region that is
highly conserved among vertebrates (Figure 1F).

DISCUSSION

Here we report one case with a phenotype of a severe
neurodevelopmental disorder with microcephaly and skeletal
radiographic abnormalities with a nonsense variant in AIMP2.

ARSs are essential enzymes that bind specific amino acids to
tRNAs prior to protein synthesis. Three non-enzymatic proteins-the
ARS-interacting multifunctional proteins (AIMPs)-associate nine
different ARSs into a multisynthetic macromolecular complex in
higher eukaryotes. Many of these complex-forming ARSs are
involved in a wide variety of regulatory processes such as
transcription, translation, splicing, inflammation, angiogenesis, and
apoptosis. Similar to ARS, AIMPs have functions unrelated to their
supporting role in protein synthesis, acting as a cytokine in the
control of angiogenesis, immune response, and wound repair, and
have crucial regulatory actions in cell proliferation and DNA repair
processes (Park et al., 2005). Previous studies have observed
associations between several mutations in ARSs and
encephalopathies, peripheral neuropathies, and other neurological
disorders. In particular, mutations affecting 10 cytosolic ARSs appear
to be related to Charcot-Marie-Tooth disease and related
neuropathies, whereas mutations affecting 14 mitochondrial ARSs
appear to be associated with severe leukoencephalopathies
(Ognjenović and Simonović, 2018).

Among auxiliary proteins, p43/AIMP1 has been associated
with hypomyelinating leukodystrophy-3 characterized by
progressive neurodegeneration, microcephaly, generalized
brain atrophy, progressive contractures, and spasticity (Elia
et al., 2012; Accogli et al., 2019). AIMP2/p38 is a non-
synthetase part of the multi-ARS structure. The p38 protein
contains a lysyl tRNA synthetase binding domain, a
presumptive leucine-zipper theme, and a C-terminal
glutathione S-transferase-like domain, as well as having
sequence patterns, which are the binding sites for protein-
protein communications (http://www.ebi.ac.uk/InterPro/
protein/Q131 55). In addition to its key action in
assembling the multi-ARS complex, AIMP2/p38 also is able
to suppress cell proliferation by down-regulating c-Myc (Kim
et al., 2013). In addition, AIMP2 would also appear to be
involved in the pathogenesis of Parkinson’s disease by
inducing neural cell death (Ochiai et al., 2021). AIMP2
enhances the ubiquitin-mediated degradation of TNF
receptor-associated factor 2, an essential regulator of the
tumor necrosis factor-a (TNF-a) signaling pathway, by
enhancing the apoptotic response of cells to TNF-a (Choi
et al., 2009). In addition, through downregulation of c-MYC
it regulates the anti-proliferative activity of transforming
growth factor (TGF)-b (Kim et al., 2019). Here we
identified a novel pathogenic variant (c.A463T) in AIMP2
[p(K155X)]. To date, only in a single study a nonsense
variant in AIMP2 has been described in two unrelated
consanguineous families with three affected children each
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with microcephaly, intellectual disability, seizures refractory to
therapy, and spastic quadriparesis (Shukla et al., 2018). MRI
showed cerebral, cerebellar, and spinal cord atrophy, with
symmetrical T2 hypo-intensities in the bilateral basal
ganglia and thinning of the corpus callosum. Whole-exome
sequencing of three affected individuals showed c.105C > A (p.
Tyr35Ter) variant in AIMP2. In agreement with the previous
study, our results suggest that deleterious variants in AIMP2,,
might be associated with neurodevelopmental disturbances in
humans.

The study has some limitation. First, no functional studies are
performed to corroborate the effect of the A463T mutation, such as
histochemical staining, RNA extraction and RT-qPCR or Western
blot experiments, so it was not possible to evaluate mRNA AIMP2
levels, and possible correlation between mRNA levels and
phenotypical presentation. Moreover, the analysis is limited to
only one patient.

Despite the limitation, this case confirms the importance of a
genetic diagnosis, which provides additional information in the
diagnosis of the proband and parents as well as appropriate
genetic counselling for the family, including prenatal diagnosis.

CONCLUSION

In conclusion, we present a novel AIMP2 mutation in an Iranian
infant with clinical and radiological signs of leukodystrophy. The
crucial factor in the diagnosis of leukodystrophy is the high
importance of medical signs, genetic testing, and MRI findings.
Due to the relatively high cost of straight sequencing of genes,
these findings could serve for an earlier and definitive diagnosis,
which represents a majormilestone in the patient’s journey to inform
for disease-specific therapies, research eligibility and for
symptomatic care.
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