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Abstract

Background

Common cold viruses create significant health and financial burdens, and understanding

key loci of transmission would help focus control strategies. This study (1) examines factors

that influence when individuals transition from a negative to positive test (acquisition) or a

positive to negative test (loss) of rhinovirus (HRV) and other respiratory tract viruses in 26

households followed weekly for one year, (2) investigates evidence for intrahousehold and

interhousehold transmission and the characteristics of individuals implicated in transmis-

sion, and (3) builds data-based simulation models to identify factors that most strongly affect

patterns of prevalence.

Methods

We detected HRV, coronavirus, paramyxovirus, influenza and bocavirus with the FilmArray

polymerase chain reaction (PCR) platform (BioFire Diagnostics, LLC). We used logistic

regression to find covariates affecting acquisition or loss of HRV including demographic

characteristics of individuals, their household, their current infection status, and prevalence

within their household and across the population. We apply generalized linear mixed models

to test robustness of results.

Results

Acquisition of HRV was less probable in older individuals and those infected with a coronavi-

rus, and higher with a higher proportion of other household members infected. Loss of HRV

is reduced with a higher proportion of other household members infected. Within house-

holds, only children and symptomatic individuals show evidence for transmission, while

between households only a higher number of infected older children (ages 5-19) increases

the probability of acquisition. Coronaviruses, paramyxoviruses and bocavirus also show evi-

dence of intrahousehold transmission. Simulations show that age-dependent susceptibility

and transmission have the largest effects on mean HRV prevalence.
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Conclusions

Children are most likely to acquire and most likely to transmit HRV both within and between

households, with infectiousness concentrated in symptomatic children. Simulations predict

that the spread of HRV and other respiratory tract viruses can be reduced but not eliminated

by practices within the home.

Introduction

The spread, prevalence and persistence of infectious diseases depends on the heterogeneity in

the host population. This heterogeneity manifests as differences in host susceptibility, infec-

tiousness, contact patterns, and duration of infection. Underlying causes of this epidemiologi-

cal heterogeneity include basic host properties such as age, size and sex, dynamic properties

such as health, immunity, and infection with other organisms, and social properties like house-

hold size or position within the contact network.

This study uses longitudinal data on a set of Utah households to detect host heterogeneity

in susceptibility, transmission potential, and duration of rhinovirus and other respiratory tract

infections. These infections are probably the most common symptomatic infections experi-

enced by people in developed nations [1, 2], with human rhinovirus (HRV) generally the most

common cause both in North America [1, 3, 4] and in the tropics and the southern hemisphere

[5]. In this study, HRV is ubiquitous, infecting 93% of participants and 100% of households

[1].

HRV and other viral respiratory infections cause significant economic and health burdens,

and understanding their transmission pathways could help guide valuable control strategies

[2, 6–8]. Many conditions are associated with HRV [8], including lower respiratory tract infec-

tions [7], asthma [9–12], chronic obstructive pulmonary disease (COPD) [11], exacerbations

in cystic fibrosis [13–15], and morbidity in the elderly [8, 16]. Some studies have found HRV

to be more deadly than influenza [17] in the elderly, and comparable to respiratory syncytial

virus (RSV) in causing hospitalizations and wheezing in the very young [12, 18].

HRV does not infect the respiratory tract in isolation, and many studies have shown fre-

quent coinfections with other viruses, with estimates ranging from 23.5% [19] to 66% over the

course of illness [20], centered around 33% [5, 21]. How these viruses interact has been more

difficult to establish, with one study finding a negative association of HRV with numerous

other viruses, including bocavirus, coronaviruses, influenza A, and paramyxoviruses [19]. RSV

may reduce the probability of HRV infection by 50%, although patients who are coinfected dis-

play symptoms of both viruses [22].

Numerous studies have documented patterns of HRV shedding. HRV tends to peak in the

fall and spring [7], but is the dominant infection in summer [23]. Children have been impli-

cated in numerous ways through higher prevalence in younger children [1, 4, 5, 24–26], in

households with children [1, 26] and in parents [4]. The effects of sex have been less consistent,

with studies showing higher prevalence in boys [24] or in women [26].

HRV can be detected and cause symptoms 10-11 hours after infection [27]. Asymptomatic

infections are common, with as many as half of viral detections not associated with symptoms

in the data presented in [1] and further analyzed here, with slightly lower figures in other stud-

ies [28, 29].

HRV shedding largely coincides with symptoms and transmission [30]. Asymptomatic

infections generally have lower viral loads [28]. Mean shedding of HRV 10-11 days with the
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duration of symptoms correlated with the duration of shedding, and never exceeding 28 days

[31]. Reinfection also plays an important role in HRV. Volunteer studies have shown that

shedding ceases within 11-21 days, implying that longer infections are likely due to reinfection

[32, 33]. Longitudinal studies of infants and children with HRV show frequent serotype

changes in infections with long durations [34, 35].

There are two critical questions about HRV transmission: how it is transmitted, and by

whom. Despite some inconsistent studies, the emerging consensus is that HRV transmission

occurs both through contact and through aerosols [36, 37]. To quantify patterns of transmis-

sion among individuals, the majority of studies take place in households, quantifying both the

extent of transmission, and the differences in susceptibility and infectiousness among house-

hold members. The simplest method tracks how many household members are infected after

an identified index case [38–40] with studies generally finding higher transmission with chil-

dren present [38, 40–42]. In the Seattle virus watch study, secondary transmission was higher

when younger children introduced HRV into larger families [43]. Index case studies do have

weaknesses, including being unable to effectively separate community from household trans-

mission and in likely being biased toward more severe cases [44].

In the absence of an identified index case, other studies have looked for clusters of infection

within families, finding increased antibodies to serotypes observed in other family members

[45] or an infection in at least one other family member in nearly 70% of families [46].

Other statistical methods can overcome some of the weaknesses of these approaches. Maxi-

mum likelihood methods can be sensitive to assumptions about incubation period, and have

low power to detect associations with age or sex when transmission rates are low [47]. To esti-

mate the proportion of infections that occur within a household, models can enumerate all

possible infection states to identify infections that from within the household [48]. An exten-

sion of this method used Markov Chain Monte Carlo to address the fact that chains of trans-

mission are unobserved, and could separate the effects of antibody titer on susceptibility and

of age on both susceptibility and infectiousness in influenza [44].

This study uses longitudinal data on 26 households tracked weekly over the course of one

year to measure host heterogeneity in susceptibility, transmission potential, and duration of

HRV infection. We begin with four main hypotheses based on earlier studies and the work of

Peltola et. al. in particular [41].

1. Younger children will be both more likely to acquire and more likely to transmit HRV

infections within and between households, We refer to increased likelihood of acquisition

as higher susceptibility, although this cannot be distinguished from higher exposure with

these data.

2. Larger households and households with younger children will have a higher prevalence of

HRV,

3. Transmission will be lower from asymptomatic individuals,

4. HRV may have an antagonistic relationship with other respiratory tract viruses.

Our data analysis quantifies the role of heterogeneity in susceptibility and transmission,

and provides estimates of the parameters needed for a simulation of HRV spread within and

among households. We use this simulation to test the effects of inclusion or exclusion of differ-

ent factors on patterns of prevalence. We focus on the extent to which removal or simplifica-

tion of age-dependent susceptibility and transmission would be predicted to change the

prevalence and distribution of HRV in simulated populations with different average household

sizes.
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Methods

Data

Data come from the Better Identification of Germs-Longitudinal Viral Epidemiology

(BIG-LoVE) Study [1]. Briefly, this 52-week prospective investigation tracked 26 Utah house-

holds between August 2009 and August 2010. One household member collected weekly nasal

samples and filled out an online symptom diary for each household member. Viral testing

with the FilmArray RP multiplex respiratory virus panel (BioFire Diagnostics, Salt Lake City,

Utah) was used to detect 17 respiratory tract infections, which we split into the five most com-

mon pathogen types:

• human rhinovirus (HRV)

• human bocavirus,

• coronaviruses (HKU1, NL63, OC43, and 229E),

• influenza A and B, and

• paramyxoviruses (human metapneumovirus, parainfluenza viruses 1-4, and respiratory syn-

cytial virus).

We broke individuals into four age groups, determined at enrollment: 0-4, 5-17, 18-39, and

40-59 years. These represent preschool and school-aged children, and early and mid-

adulthood.

For individuals with consecutive weekly nasal samples, we recorded acquisition of HRV for

a given week if the test changed from negative in that week to positive in the next, and

recorded NA (missing) for individuals who tested positive in the given week. We recorded loss

of HRV if the test changed from positive in that week to negative in the next, and recorded NA

for individuals who tested negative in the given week.

To characterize households, we found the youngest other household member (excluding

the focal individual, but set to the age of that individual in households of size 1) and the house-

hold size. We computed the number of other household members testing positive for HRV,

and found their frequency by dividing by the household size minus 1 (dividing by zero does

not occur because there cannot be other infected individuals in households of size 1). To

resolve transmission rates within households, we broke infected individuals up by age, sex,

presence of symptoms, or combinations thereof. We term these the specific infection classes.

For example, to define the intrahousehold specific infection class of people in the first age

group, we found the number of infected individuals with age 0-4 in the household, excluding

the focal individual.

We used our sample of 26 households to estimate interhousehold transmission. The house-

holds were not spatially clustered or otherwise connected, and we assume that the observed

frequency and pattern of infection provide a representative sample of the entire community.

When we find evidence of interhousehold transmission, we define specific age classes. For

example, to define the interhousehold specific infection class of people in the second age

group, we found the number of infected individuals with ages 5-17 outside the focal

household.

Regressions

We analyzed HRV acquisition and loss using logistic regression (the glm function with the

binomial family in R [49]), which defaults to exclude missing data. Our initial set of covariates

is given in Table 1. We include week2 to capture some nonlinear effects of season, and both
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age and age group, treated as an unordered factor, as candidate covariates to compare whether

age in years adds predictive power over the coarser grouping. We applied univariate analysis

to each covariate, and included all terms with p< 0.2 in a multivariate analysis. We used back-

ward regression to remove all terms with p> 0.05 to arrive at a preliminary model and tested

the resulting model in four ways: (1) forward regression by adding each other covariate one by

one, (2) the Hosmer-Lemeshow test [50] for each covariate, (3) mixed effects models

(glmmML function in R [51]) using household number as a random effect, (4) generalized

additive models (gam function in R [52]) with a general function of week rather than a

parametric form to test whether this absorbed any apparent signal of intrahousehold or inter-

household transmission.

When we found evidence of intrahousehold or interhousehold transmission or reinfection,

we tested whether breaking up the number or fraction infected into specific infection classes

based on age, presence of symptoms or sex improved the model fit. Models were compared

with the AIC, and tested with mixed effect and generalized additive models as above. We did

not correct for multiple comparisons because all models tested were submodels of a single

multiple regression.

Simulations

To examine the effects of age-dependent susceptibility, the structure of intrahousehold and

interhousehold transmission, and of household size, we built a simulation model based on a

simplified version of the final logistic regression model. This simplified model does not incor-

porate the effects of symptoms or interaction with other viruses which would require including

their dynamics.

Table 1. Initial set of covariates for logistic regression.

covariate range

Week 1-52

Week2 12 − 522

Day length 9.68 − 14.56

Age (in years) 0—57

Age group 1—4

Sex

Household size 1—8

Youngest 0—52

Health care worker 0 or 1

Day care 0 or 1

Full time student 0 or 1

Flu vaccine 0 or 1

Bocavirus positive 0 or 1

Coronavirus positive 0 or 1

Influenza positive 0 or 1

Parainfluenza positive 0 or 1

Number HRV positive in household 0—6

HRV frequency household 0.0—1.0

Number HRV positive outside household 2—40

Weeks of consecutive positive tests 0—7

Weeks of consecutive negative tests 0—48

https://doi.org/10.1371/journal.pone.0199388.t001
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In the simplified model, the probability of acquisition of virus depends on four factors:

week, age group, infections from within the household, and infections from outside the house-

hold. The probability of loss depends only on reinfections from within the household. We use

logistic regression to find the logit for infection acquisition or loss, and convert to a probability

with the inverse logit function.

We manipulate the simulation model in three ways to quantify their effects on patterns of

HRV prevalence: 1) exclude specific components of observed susceptibility and transmission

when building models to effectively absorb their effects into the intercept, 2) set coefficients of

specific terms to zero after building the model, and 3) vary aspects of the population, such as

household size.

• Age group: We either include or exclude the effects of age group on susceptibility when

building the model of acquisition (termed age-dependent susceptibility or averaged

susceptibility).

• Intrahousehold transmission: Models of intrahousehold transmission can include the over-

all fraction of infected household members (frequency-dependent intrahousehold transmis-

sion), that fraction broken into specific infection classes by age (age-dependent

intrahousehold transmission), exclude intrahousehold transmission when building the mod-

els (averaged intrahousehold transmission), or set its coefficient to zero (zeroed-out intra-

household transmission).

• Interhousehold transmission: Models of interhousehold transmission similarly break into

frequency-dependent interhousehold transmission, age-dependent interhousehold trans-

mission, averaged interhousehold transmission, and zeroed-out interhousehold

transmission.

• Loss of HRV: We either include or exclude the effect of the number of infected household

members when building the model of loss (termed density-dependent loss or averaged loss).

The full model with age-dependent susceptibility, specific infection classes for intrahouse-

hold and interhousehold transmission, and reinfection within the household serves as a base-

line. We vary these model components individually to create 64 models.

We ran simulations with two different household structures. First, we use the observed

households in the BIG-LoVE study. Second, we create zero-truncated Poisson distributed

household sizes [53] with different means, assuming at least one adult, a second individual

with age group chosen at random based on census data, and any remaining individuals

assumed to be children with age group chosen from census data (age groups 1-4 with probabil-

ities 0.081452, 0.260122, 0.346232, 0.312194 respectively based on http://www.censusscope.

org/us/chart_age.html).

Initial conditions are based on the probability of detection of HRV in the age groups in the

first week of the study. The simulation computes the probability of acquisition or loss from the

current state of each individual and the number of infections within or outside the household

in that week. Simulations were run for 20 years, and replicated 3 times for each model. With

Poisson-distributed household sizes, we choose 26 households with the Poisson parameter var-

ied from 3 to 7, removing any households of size 0 and truncating to 10 any households with

size greater than 10.

We use linear models (lm in R) to test the effects of model components and the population

mean household size on overall mean prevalence and the slope of the relationship between

household size and prevalence. For the latter, we find the slope by regressing mean prevalence

within each household against household size.

Rhinovirus transmission in BIG-LoVE families
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Results

Of the 5288 combinations of week and individual which could include data on HRV in both

that and the next, the study includes data on 4107 transitions (77.7%). The number of transi-

tions per individual ranges from 8-51, with a median of 42. Of the 733 positive HRV tests in

the first 51 weeks of the study, we observed loss of HRV in 321 (43.8%), maintenance of HRV

in 371 (50.6%), and no data in 41 (5.6%). Of the 3700 negative HRV tests during these weeks,

we observe acquisition of HRV in 358 (9.7%), no acquisition in 3057 (82.6%), and no data in

285 (7.7%). In weeks with data to characterize HRV acquisition or loss, we observe 144 positive

tests for coronavirus, 66 for paramyxovirus, 47 for influenza, and 188 for bocavirus.

After model selection, five covariates were significant in predicting acquisition of HRV:

week, age, youngest household member, infection with coronavirus, and frequency of HRV

infection in other household members. The association with youngest household member is

only marginally significant with a generalized linear mixed model (glmmML in R), but is

included here because exclusion has little effect on the coefficients of the other covariates.

Only a single covariate, number of HRV infections in other household members, predicts a

reduced probability of loss of HRV (Table 2, Fig 1). We found no association with the number

of consecutive weeks of positive tests on the probability of a transmission to a negative test, or

of the number of consecutive weeks of negative tests on the probability of a transmission to a

positive test.

For HRV acquisition, including specific infection classes by age and presence of symptoms

within the household significantly improves the model fit, as does breaking individuals outside

the household into specific infection classes by age (Fig 2). Sex has no association in any

model, and no model found evidence for transmission by adults. Models with individuals

aggregated by age (AIC 2086.7), presence of symptoms (AIC 2080.9), or age crossed by pres-

ence of symptoms (AIC 2077.4) improve the fit compared with the basic model (AIC 2094.6)

(Table 3). For HRV loss, breaking into specific infection classes does not improve the model.

Regression results for other viruses

Although we observed fewer transitions to detect detailed patterns of transmission with viruses

other than HRV, we found evidence for intrahousehold transmission for coronaviruses, para-

myxoviruses, influenza, and bocavirus, and reduced susceptibility with older age in paramyxo-

viruses, influenza, and bocavirus. We detect a reduced rate of loss of coronaviruses in hosts

Table 2. Logistic regression models for HRV acquisition and loss, with covariates defined in Table 1.

HRV acquisition

Covariate Odds Ratio Confidence limits p-value

Intercept 0.401 0.298-0.538 <0.001

Week 0.985 0.977-0.992 0.00014

Age 0.955 0.947-0.963 <0.0001

Youngest 0.976 0.958-0.993 0.0082

Coronavirus positive 0.333 0.128-0.712 0.011

HRV frequency in household 4.054 2.463-6.615 <0.0001

HRV loss

Intercept 1.462 1.171-1.830 <0.0001

HRV positive in household 0.841 0.744-0.949 0.0052

https://doi.org/10.1371/journal.pone.0199388.t002
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Fig 1. Univariate effects of covariates in the final generalized linear models. Probability of acquisition (a-e) or loss (f) of HRV as a function of a) week,

b) age, c) age of youngest household member, d) concurrent positive test for coronavirus, e) fraction of other household members testing positive (pooled

into six categories to smooth results), and f) number of other household members testing positive. Red lines showed a smoothed fit (supsmu function in

R).

https://doi.org/10.1371/journal.pone.0199388.g001
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Fig 2. Univariate effects of significant specific infection classes. Average probability of infection as a function of specific infection classes. Number of

data points indicated by numbers in a-c and by dot size in (d), ranging from the smallest value of 23 with 13 individuals infected to a largest value of 662

with 3 individuals infected. Error bars are one standard error.

https://doi.org/10.1371/journal.pone.0199388.g002
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infected with HRV and of bocavirus in male hosts, small households, and in households with a

high frequency of concurrent infections (Table 4).

Simulation results

Simulations of HRV infection are based on regressions simplified in four ways: (1) we do not

include the association with symptoms, which depend on infection status in a complex way,

(2) we do not include the interaction with coronavirus which have their own dynamics, (3) we

do not include the relatively small association with the youngest household member, and (4)

we break age into age groups to provide easier comparison with census data.

Using the ages and household sizes in the BIG-LoVE cohort, the simulation accurately

reproduces HRV prevalence over time (Fig 3a), higher prevalence in larger households

(Fig 3b), and lower prevalence with older hosts (Fig 3c). However, if we fit the number of indi-

viduals infected in each household with the beta-binomial distribution (package bbmle in R

[54]), the values of the parameter θ in the simulation are consistently larger than those from

the data. Larger values of θ produce a distribution closer to a binomial distribution where

Table 3. Logistic regression models for HRV acquisition with specific infection classes. Within the household, all

frequencies are the number of other individuals testing positive in the given class divided by household size minus 1.

The population number is the number testing positive in the given class outside the household.

With specific infection classes based on age

Covariate Odds Ratio Confidence limits p-value

Intercept 0.265 0.171-0.408 <0.0001

Week 0.990 0.981-0.998 0.022

Age 0.953 0.945-0.961 <0.0001

Coronavirus positive 0.349 0.134-0.746 0.014

Youngest 0.980 0.962-0.997 0.032

Household HRV frequency in age group 1 8.761 3.686-20.26 <0.0001

Household HRV frequency in age group 2 4.426 1.853-10.28 0.00066

Population HRV number in age group 2 1.049 1.010-1.089 0.012

With specific infection classes based on presence of symptoms

Intercept 0.285 0.179-0.454 <0.0001

Week 0.991 0.981-1.000 0.060

Age 0.954 0.946-0.962 <0.0001

Coronavirus positive 0.320 0.123-0.686 0.0082

Youngest 0.975 0.957-0.992 0.0054

Household HRV frequency with symptoms 8.978 4.567-17.38 <0.0001

Population HRV frequency with symptoms 1.042 1.004-1.082 0.030

With specific infection classes based on presence of symptoms and age

Intercept 0.261 0.168-0.402 <0.0001

Week 0.991 0.982-0.9995 0.039

Age 0.952 0.944-0.960 <0.0001

Coronavirus positive 0.344 0.132-0.738 0.013

Youngest 0.978 0.959-0.995 0.016

Household HRV frequency in age group 2 without symptoms 3.325 1.024-10.08 0.039

Household HRV frequency in age group 1 with symptoms 21.86 7.889-58.54 <0.0001

Household HRV frequency in age group 2 with symptoms 9.963 2.861-32.13 0.00019

Population HRV number in age group 2 1.055 1.016-1.096 0.0056

https://doi.org/10.1371/journal.pone.0199388.t003
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individuals have equal and independent probabilities of testing positive, indicating that the fac-

tors included in the simulation do not capture the full range of heterogeneity (Fig 3d).

We use the model to quantify sensitivity to four model components: age-dependent suscep-

tibility, intrahousehold transmission, interhousehold transmission, and intrahousehold rein-

fection. Linear regressions quantified the effects of model components on overall mean

prevalence and the slope of prevalence as a function of household size (Table 5).

Excluding the age-dependent susceptibility reduces population prevalence by 3.6% and set-

ting intrahousehold transmission to zero reduces population prevalence by 4.0%. Simplifying

age-dependent interhousehold transmission reduces population prevalence substantially

(about 5% when the age-dependence is not included or when intrahousehold transmission is

absorbed into the intercept), and setting the coefficient to zero reduces population prevalence

Table 4. Significant effects on acquisition and loss of other infections pooled into categories defined in the intro-

duction. Results are from logistic regression (glm with the binomial family in R) after removing covariates that were

not significant with a generalized linear mixed model using household number as a random effect. In each case, Fre-

quency refers to the frequency of positive tests of the focal virus within the household. Models include quadratic terms

to capture the non-linear effect of week, particularly for viruses with a stronger winter peak. The covariates chosen

after model selection are the same when analyzed with generalized additive models (gam in R). No covariates signifi-

cantly predict loss of paramyxovirus or influenza.

Covariate Odds Ratio Confidence limits p-value

Coronavirus acquisition

Intercept 0.00242 0.00077-0.0064 <0.0001

Week 1.322 1.202-1.475 <0.0001

Week2 0.993 0.991-0.996 <0.0001

Frequency 23.95 8.909-61.82 <0.0001

Coronavirus loss

Intercept 2.237 1.538-3.314 <0.0001

HRV positive 0.224 0.0791-0.582 0.0029

Paramyxovirus acquisition

Intercept 0.00257 0.000327- 0.0137 <0.0001

Age group 0.519 0.357-0.734 0.00034

Week 1.333 1.166-1.572 0.00014

Week2 0.994 0.991-0.997 0.00012

Frequency 32.82 3.431-208.03 0.00066

Influenza acquisition

Intercept 0.00225 0.000240-0.0131 <0.0001

Week 3.669 2.126-7.285 <0.0001

Week2 0.906 0.861-0.943 <0.0001

Age 0.966 0.942-0.987 0.0027

Bocavirus acquisition

Intercept 0.0982 0.0617-0.154 <0.0001

Age group 0.539 0.436-0.662 <0.0001

Frequency 73.66 32.79-164.48 <0.0001

Bocavirus loss

Intercept 0.887 0.115-6.698 0.9068

Male sex 0.336 0.135-0.781 0.0139

Household size 1.870 1.285-2.840 0.0019

Frequency 0.0653 0.0207-0.187 <0.0001

https://doi.org/10.1371/journal.pone.0199388.t004
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Fig 3. Results of simulations. We compare data (in black) with simulation (in red) for a) the trajectory for full year of data and first five years of the

simulation, b) mean prevalence as a function of household size, c) mean prevalence as a function of age group, d) the index of dispersion θ for each

household, with smaller values indicating a greater deviation from the binomial distribution (arrows connecting data to simulation added for clarity).

The model includes age-dependent susceptibility, specific infection classes for age both within and between households and intrahousehold reinfection.

Households match those at the beginning of the BIG-LoVE study. Coefficients of the logistic regression model are Intercept = -0.632, Week = -0.00943,

Age group = -0.798, Household HRV frequency in age group 1 = 2.482, Household HRV frequency in age group 2 = 1.573, Population HRV number in

age group 2 = 0.0495.

https://doi.org/10.1371/journal.pone.0199388.g003
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by 7.4%. Increasing the average household size by one individual predicts an increase in popu-

lation prevalence of nearly 1%.

In a given simulation, prevalence in a household increases by 2% for each additional house-

hold member (slope of line in Fig 3b). This slope is reduced by 1.25% by neglecting age-depen-

dent susceptibility, and by lesser amounts by simplifying intrahousehold transmission, zeroing

out intrahousehold or interhousehold transmission, or by excluding reinfection (Fig 4b).

Discussion

We used weekly samples and symptom diaries from 26 households in the Salt Lake City area

to identify the factors that predict spread of HRV and other respiratory tract viruses within

and between households. Our 733 HRV positive samples provide sufficient power to analyze

how rates of acquisition and loss of viruses depend on the number and type of other infections

in the household, and to fully parameterize a simulation model of this community.

Our main results replicate and quantify several previously identified and novel patterns of

susceptibility, transmission, reinfection and virus interaction and cast new light on the four

hypotheses we began with. 1. Children are indeed significantly more susceptible than adults,

and more likely to transmit within households, and evidence for transmission between house-

holds emerges only in school-aged children. We find no evidence for transmission by adults.

2. Larger households and households with younger children thus have a higher prevalence of

HRV, as predicted. 3. Transmission by individuals with symptoms is higher within house-

holds. 4. We find that testing positive for coronavirus reduces the probability of acquiring

HRV but that loss of coronavirus is slower in individuals testing positive for HRV. In addition

to these predictions, we found that loss of HRV is reduced when others in the household are

infected, presumably due to reinfection, Finally, although we lack the power to definitively dis-

tinguish frequency-dependent from density-dependent transmission [55], intrahousehold

transmission is better predicted by the frequency of infected individuals than by their number.

Although other viruses are more rare than HRV, providing substantially less power to

detect mechanisms, we found evidence of intrahousehold transmission for coronaviruses,

paramyxoviruses, influenza, and bocavirus, and reduced susceptibility with older age in

Table 5. Simulated effects of model components on overall mean prevalence and on the slope of prevalence within households as a function of household size. The

shorthand “intra” and “inter” refer to intrahousehold transmission and interhousehold transmission respectively.

Mean HRV prevalence in the population

Experiment Coefficient Standard error p-value

Averaged susceptibility -0.0362 0.00538 <0.0001

Zeroed-out intra -0.0408 0.00764 <0.0001

Frequency-dependent inter -0.0470 0.00692 <0.0001

Averaged inter -0.0525 0.00692 <0.0001

Zeroed-out inter -0.0743 0.00692 <0.0001

Average household size 0.00941 0.00196 <0.0001

Slope of HRV prevalence with household size

Averaged susceptibility -0.0125 0.000609 <0.0001

Averaged intra -0.00420 0.00128 0.00112

Zeroed-out intra -0.00493 0.00128 0.00014

Zeroed-out inter -0.00287 0.00131 0.029

Averaged loss -0.00330 0.000910 0.00033

Average household size -0.000954 0.000324 0.0035

https://doi.org/10.1371/journal.pone.0199388.t005
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Fig 4. Effects of population mean household size and model structure on a) mean HRV prevalence in the entire population and b) the slope of

HRV prevalence against household size within a population. The population mean household sizes follow the Poisson distribution with the given

mean.

https://doi.org/10.1371/journal.pone.0199388.g004
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paramyxoviruses, influenza, and bocavirus. We detect a reduced rate of loss of coronaviruses

in hosts infected with HRV.

Simulation of HRV based on these data matches the broad structure of the data, both at the

level of the population and as a function of age and household structure, although without cap-

turing all forms of heterogeneity.

This study has numerous limitations. Weekly sampling is too coarse to capture the detailed

transmission dynamics of a virus that is typically spread for only 10-11 days [31]. We cannot

distinguish susceptibility from exposure with these methods. The study was small, and

involved only 26 families over a single year and in a single region, making it difficult to gener-

alize results or to correct for idiosyncratic differences among households. Our estimate of

interhousehold transmission is based on treating the 26 households as a representative sample

of the full population. Because the study is uncontrolled, so we cannot fully remove the effects

of unmeasured covariates even with random effect models. Although compliance was gener-

ally high, there was sufficient missing data to further reduce power and potentially introduce

reporting bias. Finally, the FilmArray has not been fully validated for HRV and the sensitivity

and specificity could be lower than the ideal assumed here.

Because we did not distinguish serotypes, we can only infer that the reduced apparent loss

rate of HRV infection is due to reinfection, and cannot directly trace pathways of transmission

within the household. We have low power to detect adult transmission or transmission from

any group with small numbers.

HRV is the most common cause of the common cold [1, 4] and is generally both mild and

self-limiting [7]. However, HRV creates a substantial medical and economic burden [8]. It is

comparable to RSV as a cause of hospitalization in infants [56] and comparable with influenza

in causing morbidity in the elderly [17]. Severe early HRV increase risks of later asthma and

can trigger asthma exacerbations [9]. Patients with COPD [11] or cystic fibrosis [14] face

increased risks of exacerbations. There is some evidence that HRV has positive associations

with Streptococcus pneumoniae and Haemophilus influenzae that cause bacterial pneumonia.

The understanding of transmission provided here could help to protect key groups who are at

high risk from those who are highly infectious.

These results open up several new lines of inquiry. Although HRV and coronaviruses have

been discussed in parallel [2], the interactions detected here point towards an immunologically

mediated mechanism that could reveal key aspects of susceptibility. The importance of symp-

toms in transmission motivates development of models that include a symptoms dynamics

module, as in recent models of influenza [57], which could better target different infection

stages for control.

Further studies are needed to validate these results. As those results become available, they

can be embedded into a larger scale long-term model that includes aging, births, and other

changes in household structure to investigate how predicted changes in demography could

shape HRV transmission [58], and ideally include multiple viruses such as coronavirus. Studies

that combine long-term tracking of individuals with detailed information on viral serotypes

and immune status will enable us to parameterize a much more comprehensive set of models.
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