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ABSTRACT Two recent studies have reanalyzed previously published data and found that when data sets were analyzed indepen-
dently, there was limited support for the widely accepted hypothesis that changes in the microbiome are associated with obesity.
This hypothesis was reconsidered by increasing the number of data sets and pooling the results across the individual data sets.
The preferred reporting items for systematic reviews and meta-analyses guidelines were used to identify 10 studies for an up-
dated and more synthetic analysis. Alpha diversity metrics and the relative risk of obesity based on those metrics were used to
identify a limited number of significant associations with obesity; however, when the results of the studies were pooled by using
a random-effect model, significant associations were observed among Shannon diversity, the number of observed operational
taxonomic units, Shannon evenness, and obesity status. They were not observed for the ratio of Bacteroidetes and Firmicutes or
their individual relative abundances. Although these tests yielded small P values, the difference between the Shannon diversity
indices of nonobese and obese individuals was 2.07%. A power analysis demonstrated that only one of the studies had sufficient
power to detect a 5% difference in diversity. When random forest machine learning models were trained on one data set and
then tested by using the other nine data sets, the median accuracy varied between 33.01 and 64.77% (median, 56.68%). Although
there was support for a relationship between the microbial communities found in human feces and obesity status, this associa-
tion was relatively weak and its detection is confounded by large interpersonal variation and insufficient sample sizes.

IMPORTANCE As interest in the human microbiome grows, there is an increasing number of studies that can be used to test nu-
merous hypotheses across human populations. The hypothesis that variation in the gut microbiota can explain or be used to pre-
dict obesity status has received considerable attention and is frequently mentioned as an example of the role of the microbiome
in human health. Here we assessed this hypothesis by using 10 independent studies and found that although there is an associa-
tion, it is smaller than can be detected by most microbiome studies. Furthermore, we directly tested the ability to predict obesity
status on the basis of the composition of an individual’s microbiome and found that the median classification accuracy is be-
tween 33.01 and 64.77%. This type of analysis can be used to design future studies and expanded to explore other hypotheses.
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Obesity is a growing health concern, with approximately 20%
of the youth (aged 2 to 19) in the United States classified as

either overweight or obese (1). This value increases to approxi-
mately 35% in adults (aged 20 or older), and these statistics have
seen little change since 2003 (1). Traditionally, the body mass
index (BMI) has been used to classify individuals as nonobese or
obese (2). Recently, there has been increased interest in the role of
the microbiome in modulating obesity (3, 4). If the microbiome
does affect obesity status, then manipulating the microbiome
could have a significant role in the future treatment of obesity and
in helping to stem the current epidemic.

There have been several studies that reported observing a link
between the composition of the microbiome and obesity in ani-
mal models and in humans. The first such study used genetically
obese mice and observed that the ratio of the relative abundance of
Bacteroidetes to that of Firmicutes (B/F ratio) was lower in obese
mice than in lean mice (5). Translation of this result to humans by
the same researchers did not observe this effect but did find that
obese individuals had a lower alpha diversity than lean individuals

(6). They also showed that the relative abundances of Bacteroidetes
and Firmicutes increased and decreased, respectively, as obese in-
dividuals lost weight while on a fat- or carbohydrate-restricted
diet (7). Two reanalysis studies by Walters et al. (8) and Finucane
et al. (9) interrogated previously published microbiome and obe-
sity data and concluded that the previously reported differences in
community diversity and B/F ratio among nonobese and obese
individuals could not be generalized. Regardless of the results ob-
tained with human populations, studies using animal models
where the community was manipulated with antibiotics or estab-
lished by colonizing germfree animals with varied communities
appear to support the association, since these manipulations
yielded differences in animal weight (10–13). The purported as-
sociation between the differences in the microbiome and obesity
have been widely repeated, with little attention given to the lack of
a clear signal in human cohort studies.

The recent publication of additional studies that collected BMI
data for each subject, as well as other studies that were not in-
cluded in the earlier reanalysis studies, offered the opportunity to
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revisit the question relating the structure of the human micro-
biome to obesity. One criticism of the prior reanalysis studies is
that the authors did not aggregate the results across studies to
increase the effective sample size. It is possible that there were
small associations within each study that were not statistically sig-
nificant because the individual studies lacked sufficient power.
Alternatively, diversity metrics may mask the appropriate signal
and it is necessary to measure the association at the level of micro-
bial populations. The reanalysis study of Walters et al. demon-
strated that random forest machine learning models were capable
of predicting obesity status within a single cohort but did not
attempt to test the models on other cohorts. The purpose of this
study was to perform a meta-analysis of the association between
differences in the microbiome and obesity status by analyzing and
applying a more systematic and synthetic approach than was used
previously.

RESULTS
Literature review and study inclusion. To perform a robust
meta-analysis and limit inclusion bias, we followed the preferred
reporting items for systematic reviews and meta-analyses
(PRISMA) guidelines to identify the studies that we analyzed (14).
A detailed description of our selection process and the exact search
terms are provided in Materials and Methods and Fig. 1. Briefly,
we searched PubMed for original research studies that involved
studying obesity and the human microbiome. The initial search

yielded 187 studies. We identified 10 additional studies that were
not designed to explicitly test for an association between the mi-
crobiome and obesity. We then manually curated the 197 studies
to select those that included BMI and 16S rRNA gene sequence
data. This yielded 11 eligible studies. An additional study was re-
moved from our analysis because no individuals in the study had
a BMI of �30. Among the final 10 studies, 3 were identified by our
PubMed search (10, 15, 16), 5 were originally identified from the
10 studies that did not explicitly investigate obesity but included
BMI data (17–21), and two data sets were used (22, 23) because
these publications did not specifically look for any metabolic or
obesity conditions but had control populations and enabled us to
help mitigate against publication biases associated with the bacte-
rial microbiome and obesity. The 10 studies are summarized in
Table 1. For comparison, two of these studies were included in the
reanalysis study of Finucane et al. (10, 21) and four of these studies
were included in the reanalysis study of Walters et al. (10, 15, 20,
21). The 16S rRNA gene sequence data from each study were
reanalyzed by a similar approach based on previously described
methods for reducing the number of chimeric sequences and se-
quencing errors for 454 and Illumina MiSeq data (24, 25). The
sequences were clustered into operational taxonomic units
(OTUs) by the average-neighbor approach (26) and into taxo-
nomic groupings based on their classification by a naive Bayesian
classifier (27).

FIG 1 PRISMA flow diagram of all of the records searched (39).
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Alpha diversity analysis. We calculated the Shannon diversity
index, observed richness, and Shannon evenness, the relative
abundances of Bacteroidetes and Firmicutes, and the ratio of their
relative abundances (B/F ratio) for each sample. Once we trans-
formed all six alpha diversity metrics to make them normally dis-
tributed, we used a t test to identify significant associations be-
tween the alpha diversity metric and whether an individual was
obese for each of the 10 studies. The B/F ratio and the relative
abundance of Firmicutes were not significantly associated with
obesity in any study. We identified seven P values that were �0.05;
three studies indicated that obese individuals had a lower richness,
two studies indicated a significantly lower diversity, one study
indicated a significantly lower evenness, and one study indicated a
significantly higher relative abundance of Bacteroidetes (Fig. 2; see
Fig. S1 in the supplemental material). These results largely match
those of the reanalysis studies of Walters et al. and Finucane et al.
Interestingly, although only 2 of the 10 studies observed the pre-
viously reported association between lower diversity and obesity,
the other studies appeared to have the same trend, albeit the dif-
ferences were not statistically significant. We used a random-
effects linear model to combine the studies by using the study as

the random effect and found statistical support for decreased rich-
ness, evenness, and diversity among obese individuals (all P �
0.011). Although there was a significant relationship between
these metrics and obesity status, the effect size was quite small. The
obese individuals averaged 7.47% lower richness, 0.88% lower
evenness, and 2.07% lower diversity. There were no significant
associations when we pooled the phylum-level metrics across
studies. These results indicate that obese individuals do have sta-
tistically significantly lower diversity than nonobese individuals;
however, it is questionable whether the difference is biologically
significant.

Relative risk. Building upon the alpha diversity analysis, we
calculated the relative risk (RR) of being obese based on an indi-
vidual’s alpha diversity metrics relative to the median metric for
that study. Inspection of funnel plots for each of the metrics sug-
gested that the studies included in our analysis were not biased
(see Fig. S2 in the supplemental material). The results obtained by
using RR largely matched those obtained by using the raw alpha
diversity data. Across the 10 studies and six metrics, the only sig-
nificant RR values were the richness, evenness, and diversity val-
ues from the study of Goodrich et al. (Fig. 3; see Fig. S3 in the

TABLE 1 Summary of obesity, demographic, sequencing, and beta diversity analysis data for the studies used in the meta-analysis

Study
(reference)

No. of
subjects % Obese Avg BMI (range) % Female

Avg age in yr
(range)

% Nonhispanic
white

Sequencing
method

16S rRNA
gene region(s)

AMOVA
P value

Baxter (23) 172 27.3 27.0 (17.5–46.9) 64.5 54.3 (29.0–80.0) 87.8 MiSeq V4 0.078
Escobar (16) 30 33.3 27.4 (19.5–37.6) 46.7 38.1 (21.0–60.0) NAa 454 V2 0.047
Goodrich (19) 982 19.7 26.3 (16.2–52.4) 98.9 61.0 (23.0–86.0) NA MiSeq V4 �0.001
HMP (21) 287 10.8 24.3 (19.0–34.0) 49.1 26.3 (18.0–40.0) 81.5 454 V3–V5 0.322
Ross (18) 63 60.3 31.6 (22.1–47.9) 76.2 57.0 (33.0–81.0) 0.0 454 V1–V3 0.845
Schubert (22) 104 32.7 28.2 (18.5––62.5) 66.3 52.8 (19.0–88.0) 82.7 454 V3–V5 0.180
Turnbaugh (10) 146 67.8 NA NA NA 51.4 454 V2 0.040
Wu (20) 64 7.8 24.3 (14.0–41.3) 53.1 26.3 (2.16–50.0) NA 454 V1, V2 0.577
Zeevi (17) 731 21.6 26.4 (16.4–47.0) NA 43.4 (18.0–70.0) NA MiSeq V3, V4 0.135
Zupancic (15) 207 36.2 28.2 (18.2–127.0) 57.0 46.7 (20.0–79.0) 100.0 454 V3–V5 0.206
a NA indicates that those metadata were not available for that study.

FIG 2 Individual and combined comparisons of obese and nonobese groups for Shannon diversity (A) and B/F ratio (B). HMP, Human Microbiome
Project.
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supplemental material). Again, although the RR values were not
significant for other studies, the values tended to be �1. When we
pooled the data by using a random-effects model, the RR associ-
ated with having a richness, evenness, or diversity below the me-
dian for the population was significantly associated with obesity
(all P � 0.0044). The RRs associated with alpha diversity were
small. The RR of having low richness was 1.30 (95% confidence
interval [CI], 1.13 to 1.49), that of having low evenness was 1.20
(95% CI, 1.06 to 1.37), and that of having low diversity was 1.27
(95% CI, 1.09 to 1.48). There were no significant differences in the
phylum-level metrics. Again, the RR results indicate that although
individuals with a lower richness, evenness, or diversity are at
statistically significantly increased risk of being obese, it is ques-
tionable whether that risk is biologically or clinically relevant.

Beta diversity analysis. Following the approach used by the
reanalysis studies of Walters et al. and Finucane et al., for each data
set, we calculated a Bray-Curtis distance matrix to measure the
difference in the membership and structure of the individuals in
each study. We then used analysis of molecular variance
(AMOVA) to test for significant differences between the struc-
tures of nonobese and obese individuals (Table 1). The data sets of
Escobar et al., Goodrich et al., and Turnbaugh et al. indicated a
significant difference in community structure (all P � 0.05). Be-
cause it was not possible to ascertain the directionality of the dif-
ference in community structure because the samples are arrayed
in a nondimensional space or perform a pooled analysis using
studies that had nonoverlapping 16S rRNA gene sequence re-
gions, it is unclear whether these differences reflect a broader, but
perhaps small, shift in community structure between nonobese
and obese individuals.

Development of a microbiome-based classifier of obesity.
The reanalysis study of Walters et al. suggested that it was possible
to classify individuals as being nonobese or obese on the basis of
the composition of their microbiota. We repeated this analysis
with additional data sets using OTU and genus-level phylotype

data. For each study, we developed a random forest machine
learning model to classify individuals. Using 10-fold cross valida-
tion, the cross-validated area under the curve (AUC) values for the
OTU-based models varied between 0.52 and 0.69, indicating a
relatively poor ability to classify individuals (Fig. 4A). To test
models on other data sets, we trained models using genus-level
phylotype data for each data set. The cross-validated AUC values
for the models applied to the training data sets varied between 0.51
and 0.65, again indicating a relatively poor ability to classify indi-
viduals from the original data set (Fig. 4B). For each model, we
identified the probability where the sum of the sensitivity and
specificity was the highest. We then used this probability to define
a threshold for calculating the accuracy of the models when ap-
plied to the other nine data sets (Fig. 5). Although there was con-
siderable variation in the accuracy values for each model, the me-
dian accuracy of each model varied between 0.33 (Turnbaugh et
al.) and 0.65 (Human Microbiome Project) (median, 0.57). We
built similar models by using taxonomic representation based on
phylum, class, order, and family assignments and saw no im-
provement in the results (see Fig. S4 in the supplemental mate-
rial). We also attempted to predict individual BMI values as con-
tinuous variables based on the relative abundances of OTUs and
genera. The median percentage of the variance explained by the
resulting models was 12.9% for the OTU-based models and 8.2%
for the genus-based models. When we considered the number of
samples, balance of nonobese and obese individuals, and region
within the 16S rRNA gene for each study, it was not possible to
identify factors that predictably affected model performance. The
ability to predict obesity status using relative abundance data from
the communities was only marginally better than random. These
results suggest that given the large diversity of microbiome com-
positions, it is difficult to identify a taxonomic signal that can be
associated with obesity.

Power and sample size estimate simulations. The inability to
detect a difference between nonobese and obese individuals could

FIG 3 Meta-analysis of the RR of obesity based on Shannon diversity (A) or B/F ratio (B). HMP, Human Microbiome Project.
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be due to the lack of a true effect or because the study had insuf-
ficient statistical power to detect a difference because of insuffi-
cient sampling, large interpersonal variation, or unbalanced sam-
pling of nonobese and obese individuals. To assess these factors,
we calculated the power to detect differences of 1, 5, 10, and 15%
in each of the alpha diversity metrics by using the sample sizes
used in each of the studies (Fig. 6; see Fig. S5 to S10 in the supple-
mental material). Although there is no biological rationale for
these effect sizes, they represent a range that includes effect sizes
that would be generally considered biologically significant. Only
the study of Goodrich et al. had a power of �0.80 to detect a 5%
difference in the Shannon diversity, and six of the studies had
enough power to detect a 10% difference (Fig. 6A). None of the

studies had sufficient power to detect a 15% difference between
B/F ratios (see Fig. S5 in the supplemental material). In fact, the
maximum power among any of the studies to detect a 15% differ-
ence in B/F ratios was 0.25. Among the tests for RR, none of the
studies had sufficient power to detect a Cohen d value of 0.10 and
only two studies had sufficient power to detect a Cohen d value of
0.15. We next estimated how many individuals would need to be
sampled to have sufficient power to detect the four effect sizes
assuming the observed interpersonal variation from each study
and balanced sampling between the two groups (Fig. 6B). To de-
tect a 1, 5, 10, or 15% difference in Shannon diversity, the median
required sampling effort per group was approximately 3,400, 140,
35, or 16 individuals, respectively. To detect a 1, 5, 10, or 15%

FIG 4 ROC curves for all of the studies based on the classification of nonobese or obese groups by using OTUs (A) or genus-level classification (B). HMP,
Human Microbiome Project.

FIG 5 Overall accuracy with which each study predicted nonobese and obese individuals on the basis of that study’s random forest machine learning model
applied to each of the other studies. HMP, Human Microbiome Project.
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difference in B/F ratios, the median required sampling effort per
group was approximately 160,000, 6,300, 1,600, or 700 individu-
als, respectively. To detect a 1, 5, 10, or 15% difference in RR
values using Shannon diversity, the median required sampling
effort per group was approximately 39,000, 1,500, 380, or 170
individuals, respectively. These estimates indicate that most mi-
crobiome studies lack the power to detect modest effect sizes by
using either metric. In the case of obesity, the studies lack the
power to detect the 0.90 to 6% difference in diversity that was
observed across the studies.

DISCUSSION

Our meta-analysis helps to provide clarity to the ongoing debate
of whether or not there are specific microbiome-based markers
that can be associated with obesity. We performed an extensive
literature review of the existing studies on the microbiome and
obesity and performed a meta-analysis of the studies that re-
mained on the basis of our inclusion and exclusion criteria. By
statistically pooling the data from 10 studies, we observed signifi-
cant, but small, relationships between richness, evenness, and di-
versity and obesity status, as well as the RR of being obese based on
these metrics. We also generated random forest machine learning
models trained on each data set and tested on the remaining data
sets. This analysis demonstrated that the ability to reliably classify
individuals as obese solely on the basis of the composition of their
microbiome was limited. Finally, we assessed the ability of each
study to detect defined differences in alpha diversity and observed
that most studies lacked the power to detect modest effect sizes.

Considering that these data sets are among the largest published, it
appears that most human microbiome studies lack the power to
detect differences in alpha diversity.

Alpha diversity metrics are attractive because they distill a
complex data set to a single value. For example, Shannon diversity
is a measurement of the entropy in a community and integrates
richness and evenness information. Two communities with little
taxonomic similarity can have the same diversity. Among ecolo-
gists, the relevance of these metrics is questioned because it is
difficult to ascribe a mechanistic interpretation to their relation-
ship with stability or disease. Regardless, the concept of a biolog-
ically significant effect size needs to be developed among micro-
biome researchers. Alternative metrics could include the ability to
detect a defined difference in the relative abundance of an OTU
representing a defined relative abundance. What makes for a bio-
logically significant difference or relative abundance is an impor-
tant point that has yet to be discussed in the microbiome field. The
use of operationally defined effect sizes should be adequate until it
is possible to decide upon an accepted practice.

By selecting a range of possible effect sizes, we were able to
demonstrate that most studies lack the power to detect modest
differences in alpha diversity metrics and phylum-level relative
abundances. Several factors interact to limit the power of micro-
biome studies. There is wide interpersonal variation in the diver-
sity and structure of the human microbiome. Some factors, such
as the relationship between subjects, could potentially decrease
the amount variation (6), and other factors, such as whether one

FIG 6 Power (A) and sample size (B) simulations for Shannon diversity for differentiating between nonobese and obese for effect sizes of 1, 5, 10, and 15%.
Power calculations use the sampling distribution from the original studies, and the sample size estimations assume an equal amount of sampling from each
treatment group. HMP, Human Microbiome Project.
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lives in a rural environment, could increase the amount of varia-
tion (28). In addition, the most common experimental designs
limit their power. As we observed, most of the studies included in
our analysis were unbalanced for the variable that we were inter-
ested in. This was also true of those studies that originally sought
to identify associations with obesity. Even with a balanced design,
we showed that it was necessary to obtain approximately 140 and
6,300 samples per group to detect a 5% difference in Shannon
diversity or B/F ratio, respectively. It was interesting that these
sample sizes agreed across studies regardless of their sequencing
method, region within the 16S rRNA gene, or subject population
(Fig. 6). This suggests that, regardless of the treatment or category,
these sample sizes represent a good starting point for subject re-
cruitment when using stool samples. Unfortunately, few studies
with this level of subject recruitment have been published. This is
troubling, since the positive predictive rate of a significant finding
in an underpowered study is small, leading to results that cannot
be reproduced (29). Future microbiome studies should articulate
the basis for their experimental design.

Two previous reanalysis studies have stated that there was not
a consistent association between alpha diversity and obesity (8, 9);
however, neither of these studies made an attempt to pool the
existing data to try to harness the additional power that this would
give, and they did not assess whether the studies were sufficiently
powered to detect a difference. Additionally, our analysis used 16S
rRNA gene sequence data from 10 studies, whereas the study of
Finucane et al. used 16S rRNA gene sequence data from three
studies (7, 10, 21) and a metagenomic study (30) and the study of
Walters et al. used 16S rRNA gene sequence data from five studies
(10, 15, 20, 21, 28); two studies were included in both analyses (10,
21). Our analysis included four of these studies (10, 15, 20, 21) and
excluded three of the studies because they were too small (7), only
utilized metagenomic data (30), or used short, single-read Illu-
mina HiSeq data that have a high error rate, making them intrac-
table for de novo OTU clustering (28). The additional seven data
sets were published after the two reviews were performed and
include data sets with more samples than were found in the orig-
inal studies. Our collection of 10 studies allowed us to largely use
the same sequence analysis pipeline for all of the data sets and
relied heavily on the availability of public data and access to meta-
data that included variables beyond the needs of the original
study. To execute this analysis, we created an automated data anal-
ysis pipeline, which can be easily updated to add additional stud-
ies as they become available (https://github.com/SchlossLab/
Sze_Obesity_mBio_2016/). Similarly, it would be possible to
adapt this pipeline to other body sites and treatment or variables
(e.g., subject sex or age).

Similar to our study, the study of Walters et al. generated ran-
dom forest machine learning models to differentiate between
nonobese and obese individuals (8). They obtained AUC values
similar to those of our analysis; however, they did not attempt to
test these models on the other studies in their analysis. When we
performed cross validation of data sets, the median accuracy
across the data sets was only 56.68%, indicating that the models
did a poor job when applied to other data sets. This could be due to
differences in subject populations and methods. Furthermore,
others have reported improved classification at broader taxo-
nomic levels (31); we did not find this to be the case across the
studies in our analysis (see Fig. S4 in the supplemental material).
Considering that the median AUC for models trained and tested

on the same data with 10-fold cross validation only varied between
0.51 and 0.65 and that there was not a strong signal in the alpha
diversity data, we suspect that there is insufficient signal to reliably
classify individuals in a BMI category on the basis of their micro-
biota.

Although we failed to find an effect, this does not necessarily
mean that there is no role for the microbiome in obesity. There is
strong evidence in murine models of obesity that the microbiome
and level of adiposity can be manipulated via genetic manipula-
tion of the animal and manipulation of the community through
antibiotics or colonization of germfree mice with diverse fecal
material from human donors (5, 10–13). These studies appear to
conflict with the observations based on human subjects. Recalling
the large interpersonal variation in the structure of the micro-
biome, it is possible that each individual has his or her own signa-
tures of obesity. Alternatively, it could be that the involvement of
the microbiome in obesity is not apparent based on the taxonomic
information provided by 16S rRNA gene sequence data. Rather,
the differences could become more apparent at the level of a com-
mon set of gene transcripts or metabolites that can be produced
from different structures of the microbiome.

MATERIALS AND METHODS
In-depth overview of search strategy. The initial search strategy included
looking for all papers that initially fit under the following NCBI PubMed
advanced search criteria: “(((((((((Bacterial Microbiome) AND (Obesity
or bmi or body mass index or BMI or obesity) AND”last 10 years“[PDat]
AND Humans[Mesh])) NOT review[ptyp]) AND”last 10 years“[PDat]
AND Humans[Mesh])) AND”last 10 years“[PDat] AND Humans-
[Mesh])) AND”Last 10 years“[PDat] AND Humans[Mesh]).” The report
had to have the terms “Bacterial Microbiome” and “Obesity, BMI, bmi,
obesity” in its criteria, it could not have been published �10 years ago, it
could not be a review article, and it had to contain research on humans
only. This search yielded a total of 187 reports. From the reanalysis studies
of Finucane et al. and Walters et al. along with knowledge of other pub-
lished papers that included BMI information in their sequence metadata,
we obtained 10 additional studies. This brought our total number of re-
cords to 197. We browsed the abstracts of these studies and included
studies that mentioned stool or feces examination, did not involve chil-
dren, were not clinical trials for probiotics or other diet-related treat-
ments, did not have participants with inflammatory bowel disease, were in
English, and were based on the analysis of sequence data from the 454 or
MiSeq platform. This ultimately excluded all but a total of 11 studies.
Because we decided a priori to use the standard definition for BMI group
classification, one study was excluded because it did not have any individ-
uals who were obese.

Sequence analysis pipeline. All sequence data were publicly avail-
able and were downloaded from the NCBI Sequence Read Archive, the
European Nucleotide Archive, or the investigators’ personal website
(https://gordonlab.wustl.edu/NatureTwins_2008/TurnbaughNature_11
_30_08.html). Seven studies used 454 sequencing (6, 15, 16, 18, 20–22),
and three used Illumina sequencing (17, 19, 23). All of these studies used
amplification-based 16S rRNA gene sequencing. Among the studies that
sequenced the 16S rRNA gene, the researchers targeted the V1 to V2 (20),
V1 to V3 (15, 16, 18), V3 to V5 (21, 22), V4 (19, 23), and V3 to V4 (17)
variable regions. For those studies where multiple regions were
sequenced, we selected the region that corresponded to the largest
number of subjects (6, 21). We processed the 16S rRNA gene sequence
data by using a standardized mothur pipeline. Briefly, our pipelines
attempted to follow previously recommended approaches for 454 and
Illumina sequencing data (24, 25). All sequences were screened for
chimeras with UCHIME and assigned to OTUs by using the average
-neighbor algorithm with a 3% distance threshold (26, 32). All sequence
processing was performed with mothur (version 1.37.0) (33).
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Data analysis. We split the overall meta-analysis into three general
strategies by using R (3.3.0). First, we used the approach employed by
Finucane et al. (9) and Walters et al. (8), where each study was reanalyzed
separately to identify associations between BMI and the relative abun-
dances of Bacteroidetes and Firmicutes, the ratio of the relative abundances
of Bacteroidetes and Firmicutes (B/F ratio), Shannon diversity, observed
richness, and Shannon evenness (34). After each variable was transformed
to fit a normal distribution, a two-tailed t test was performed for compar-
ison of nonobese and obese individuals (i.e., those with a BMI of �35.0).
We performed a pooled analysis of these measured variables by using
linear random-effects models to correct for study effect to assess differ-
ences in the combined data set between nonobese and obese groups by
using the lme4 (version 1.1-12) R package (35). Next, we compared the
community structure from nonobese and obese individuals by using
AMOVA with Bray-Curtis distance matrices (36). This analysis was per-
formed with the vegan (version 2.3-5) R package. For both analyses, the
data sets were rarefied (n � 1,000) so that each study had the same number
of sequences. Second, for each study, we partitioned the subjects into a low
or high group, depending on whether their alpha diversity metrics were
below or above the median value for the study. The RR was then calculated
as the ratio of the number of obese individuals in the low group to the
number of obese individuals in the high group. We then performed a
Fisher exact test to investigate whether the RR was significantly different
from 1.0 within each study and across all of the studies by using the epiR
(version 0.9-77) and metafor (version 1.9-8) packages. Third, we used the
AUCRF (version 1.1) R package to generate random forest models (37).
For each study, we developed models using either OTUs or genus-level
phylotypes. The quality of each model was assessed by measuring the AUC
of the receiver operating characteristic (ROC) with 10-fold cross valida-
tion. Because the genus-level phylotype models were developed with a
common reference, it was possible to use one study’s model (i.e., the
training set) to classify the samples from the other studies (i.e., the testing
sets). The optimum threshold for the training set was set as the probability
threshold that had the highest combined sensitivity and specificity. This
threshold was then used to calculate the accuracy of the model applied to
the test studies. To generate ROC curves and calculate the accuracy of the
models, we used the pROC (version 1.8) R package (38). Finally, we per-
formed power and sample number simulations for different effect sizes for
each study using the pwr (version 1.1-3) R package and base R functions.
We also calculated the actual sample size needed on the basis of the effect
size of each individual study.

Reproducible methods. A detailed and reproducible description of
how the data were processed and analyzed can be found at https://github-
.com/SchlossLab/Sze_Obesity_mBio_2016/.
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