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Abstract

A salient feature of mammalian sleep is the alternation between rapid eye movement (REM)

and non-REM (NREM) sleep. However, how these two sleep stages influence each other

and thereby regulate the timing of REM sleep episodes is still largely unresolved. Here, we

developed a statistical model that specifies the relationship between REM and subsequent

NREM sleep to quantify how REM sleep affects the following NREM sleep duration and its

electrophysiological features in mice. We show that a lognormal mixture model well

describes how the preceding REM sleep duration influences the amount of NREM sleep till

the next REM sleep episode. The model supports the existence of two different types of

sleep cycles: Short cycles form closely interspaced sequences of REM sleep episodes,

whereas during long cycles, REM sleep is first followed by an interval of NREM sleep during

which transitions to REM sleep are extremely unlikely. This refractory period is character-

ized by low power in the theta and sigma range of the electroencephalogram (EEG), low

spindle rate and frequent microarousals, and its duration proportionally increases with the

preceding REM sleep duration. Using our model, we estimated the propensity for REM

sleep at the transition from NREM to REM sleep and found that entering REM sleep with

higher propensity resulted in longer REM sleep episodes with reduced EEG power. Com-

pared with the light phase, the buildup of REM sleep propensity was slower during the dark

phase. Our data-driven modeling approach uncovered basic principles underlying the timing

and duration of REM sleep episodes in mice and provides a flexible framework to describe

the ultradian regulation of REM sleep in health and disease.

Author summary

During sleep, the mammalian brain repeatedly alternates between two brain states: REM

and NREM sleep. This ultradian oscillation constitutes a fundamental brain rhythm, the

so-called sleep cycle, which is conserved across mammalian species. However, the mecha-

nisms that generate the sleep cycle are still largely unknown. A conserved statistical feature

of mammalian sleep is that the durations of REM sleep and subsequent NREM sleep are

positively correlated. This correlation suggests that REM sleep impacts the amount of the

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009316 August 25, 2021 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Park S-H, Baik J, Hong J, Antila H,

Kurland B, Chung S, et al. (2021) A probabilistic

model for the ultradian timing of REM sleep in

mice. PLoS Comput Biol 17(8): e1009316. https://

doi.org/10.1371/journal.pcbi.1009316

Editor: Paul Franken, University of Lausanne,

SWITZERLAND

Received: March 5, 2021

Accepted: July 29, 2021

Published: August 25, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1009316

Copyright: © 2021 Park et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files are

available for download at this URL: https://upenn.

box.com/s/3zcesr4a7l7hgb9andmq4di4t6zvaoql.

Funding: This work was supported by the National

Institutes of Health (R01HL149133 to FW,

https://orcid.org/0000-0003-3515-6470
https://orcid.org/0000-0003-4570-8603
https://orcid.org/0000-0001-8317-4564
https://orcid.org/0000-0001-6075-3862
https://orcid.org/0000-0002-4541-4907
https://doi.org/10.1371/journal.pcbi.1009316
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009316&domain=pdf&date_stamp=2021-09-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009316&domain=pdf&date_stamp=2021-09-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009316&domain=pdf&date_stamp=2021-09-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009316&domain=pdf&date_stamp=2021-09-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009316&domain=pdf&date_stamp=2021-09-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009316&domain=pdf&date_stamp=2021-09-07
https://doi.org/10.1371/journal.pcbi.1009316
https://doi.org/10.1371/journal.pcbi.1009316
https://doi.org/10.1371/journal.pcbi.1009316
http://creativecommons.org/licenses/by/4.0/
https://upenn.box.com/s/3zcesr4a7l7hgb9andmq4di4t6zvaoql
https://upenn.box.com/s/3zcesr4a7l7hgb9andmq4di4t6zvaoql


following NREM sleep and thereby influences its own timing. Here, we developed a statis-

tical model that accurately describes the relationship between the preceding REM and fol-

lowing NREM sleep duration during spontaneous sleep in mice. We applied this model to

investigate the relationship between REM sleep and the quality of future NREM sleep, and

to uncover factors that determine the timing and duration of REM sleep episodes. Using

our model-based approach, we identified three major factors shaping the ultradian regula-

tion of REM sleep: Two types of sleep cycles, a period of light NREM sleep during which

transitions to REM sleep are suppressed, and a propensity that influences the subsequent

REM sleep duration.

Introduction

During sleep, the mammalian brain alternates between two distinct states—rapid eye move-

ment (REM) sleep and non-REM (NREM) sleep. The cyclic occurrence of REM sleep consti-

tutes the REM-NREM or sleep cycle, an ultradian rhythm on a minute-to-hour time scale

shared by mammals [1], birds [2], and reptiles [3,4]. Although we know in great detail about

the neural mechanisms underlying oscillations on a millisecond-to-second timescale [5] or

about transcriptional/translational oscillators generating circadian rhythms [6], we lack

knowledge of how the brain generates ultradian rhythms.

Transitions from NREM to REM sleep are thought to be controlled by a network of inter-

connected REM sleep-promoting (REM-on) and REM sleep-suppressing (REM-off) neurons

[7–10]. Research in the last decade has identified key populations of REM-on and REM-off

neurons in the brainstem and hypothalamus that powerfully promote or suppress REM sleep

and has mapped their connectivity at unprecedented detail [11–18]. However, the mechanisms

that regulate when the brain state transitions from NREM to REM sleep and thereby deter-

mine the duration of the sleep cycle are still largely unknown.

A common statistical feature of mammalian sleep, observed in multiple species including

humans is that the duration of REM sleep is positively correlated with the time till the next

REM sleep period (inter-REM interval) [19–25]. This correlation is thought to be the manifes-

tation of a homeostatic process that operates on the ultradian time scale [19,20]: A propensity

for REM sleep builds up during the inter-REM interval and partially discharges during REM

sleep. Longer REM periods, therefore, lead to a stronger discharge of the REM propensity and

thus require longer intervals for accumulation to re-enter REM sleep. According to this model,

the sleep cycle is not generated by an oscillator circuit, as originally proposed [26], but rather

is the consequence of an hourglass-type ultradian process [19,20,27,28], the neural or molecu-

lar correlates of which are still largely unknown.

Recently, the hourglass process has been proposed to be the result of a refractory period fol-

lowing REM sleep, during which transitions to REM sleep are effectively suppressed [29–31].

The probability of NREM to REM sleep transitions is reduced particularly after long REM

sleep periods (>1 min) in rats [32], which may explain the positive correlation between the

duration of REM sleep and the inter-REM interval. However, although possibly being a crucial

subunit within the sleep cycle, there is still no quantitative definition of the refractory period,

nor is there an understanding of how the quality of NREM sleep and its microarchitecture

may be changed during and after the refractory period. Furthermore, as the duration of REM

sleep influences the duration of the following inter-REM interval, it is crucial for our under-

standing of the ultradian sleep cycle to identify factors that regulate the duration of REM sleep

episodes.
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The sleep pattern in mammals is further complicated by sequences of REM sleep episodes,

whose timing deviates from the statistics expected from an hourglass process. In rats, such

sequences comprise several temporally close (< 3 min) REM sleep periods [33–35] and their

presence results in a bimodal distribution of the inter-REM interval durations. In addition to

the rat, REM sleep sequences have been reported in multiple mammalian species including

humans [21,36,37], suggesting that they are a conserved phenomenon in mammalian sleep.

An increased frequency of REM sleep sequences underlies the homeostatic rebound following

a loss in REM sleep induced by exposure to cold temperatures [33,34] and is characteristic of

sleep in stressed animals [38,39]. However, the mechanisms underlying the induction of REM

sleep sequences and their defining electrophysiological properties are still largely unclear.

Here, we developed a conditional Gaussian mixture model (GMM) that specifies the rela-

tionship between the preceding REM sleep duration and the subsequent time spent in NREM

sleep. We applied this model to systematically separate short cycles, which form sequences of

REM sleep, from long cycles, which are characterized by the positive correlation between REM

and subsequent NREM sleep. For long cycles, we defined the duration of the refractory period

as a function of the preceding REM sleep duration. Next, we analyzed the EEG and other fea-

tures of NREM sleep to identify defining properties of NREM sleep during the refractory

period. We then used the cumulative distribution function (CDF) of the model as a measure

for REM sleep propensity and found that entering REM sleep at higher propensity resulted, on

average, in longer REM sleep episodes and reduced the EEG power. Finally, we employed the

model to uncover changes in the regulation of REM sleep between the light and dark phase.

Altogether, our model-based approach uncovered basic principles underlying the timing and

duration of REM sleep episodes.

Results

A probabilistic model relating NREM sleep to preceding REM sleep

Consistent with the terminology introduced in earlier studies, we refer to the time interval

between two successive REM periods as the inter-REM interval, while a sleep cycle (also called

REM-NREM cycle) comprises one REM episode and the following inter-REM interval (Fig

1A) [21,40]. We recorded spontaneous sleep in wildtype mice during the light phase and con-

firmed in our data set the positive correlation between the preceding REM sleep duration

(REMpre) and the subsequent inter-REM interval (Fig 1B left and S1 Table). For further anal-

ysis, we divided the inter-REM interval into its total duration of NREM sleep, |N|, and total

duration of wakefulness, |W| (Fig 1A). Consistent with previous studies [19,20,25], we found

that in mice, as in rats, REMpre was more strongly correlated with |N| than with either the total

inter-REM interval or |W| (Fig 1B and S1 Table).

To systematically describe the interaction between REM sleep and the duration and quality

of subsequent NREM sleep, we developed a probabilistic model that specifies the relationship

between REMpre and |N|. Applying the natural logarithm (ln) to |N| and plotting the distribu-

tion of ln(|N|) separately for increasing 30 s bins of REMpre, we found that for values of REMpre

in the range from 30 s to 150 s, ln(|N|) forms a bimodal distribution, reflecting the presence of

short and long sleep cycles in the hypnogram (Fig 2A and 2B). For REMpre� 150 s, the distri-

bution became unimodal. The distribution of ln(|N|) appeared to be a mixture of two bell-

shaped distributions, with the relative weights of each distribution depending on REMpre.

Based on this observation, we estimated for each 30 s bin of REMpre the distribution of ln(|N|)

using a two component GMM (Methods). More precisely, for each REMpre bin, we modeled

the distribution of ln(|N|) as the weighted sum of two Gaussians, kshort � N(μshort, σ2
short)

+ klong � N(μlong, σ2
long), where k, μ, and σ refer to the weighting factor, mean, and standard
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deviation of each Gaussian, respectively (Fig 2C). To test whether the GMM is a valid model

for the data, we performed the Lilliefors-corrected Kolmogorov-Smirnov test for each 30 s bin

and did not find sufficient evidence to reject the null hypothesis that the data are indeed

drawn from the estimated Gaussian mixture distributions (S2 Table and Methods). This was

true regardless of the specific threshold used to score microarousals (MAs) (S3 Table).

We found that the weight of the long Gaussian distribution, klong, steadily increased with

REMpre, indicating that the probability for long cycles was larger the longer the preceding

REM episode (Fig 2D). Second, the mean of the long Gaussian distribution, μlong, increased

with REMpre, while the standard deviation, σlong, decreased. The mean and standard deviation

of the short cycles, μshort and σshort, both decreased with larger REMpre values.

Fig 1. Correlation between REM sleep duration and inter-REM interval. (A) Example EEG power spectrogram, EMG amplitude, and hypnogram

with definitions of terms. REMpre, duration of the preceding REM sleep episode; inter-REM, duration of subsequent interval till next REM episode;

|W|, sum of the durations of all wake episodes during the inter-REM interval; MA, microarousal (wake bouts� 20 s); |N|, sum of the durations of all

NREM episodes (including MAs) during the inter-REM interval. (B) Scatter plots with REMpre on the x-axis and subsequent inter-REM duration (left),

|N| (middle), and |W| (right) on the y-axis. The results of linear regression fits are shown in red (P<0.00001 for all 3 slopes, n = 5098 sleep cycles from

72 mice recorded during the light phase).

https://doi.org/10.1371/journal.pcbi.1009316.g001
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Next, to describe the relationship between REMpre and each of the GMM parameters, we fit

either linear or logarithmic functions to the parameter estimates (Figs 2D and S1A and S4

Table). By finding a function that captures the relationship between REMpre and each Gauss-

ian mixture parameter, we were able to explain the amount of subsequent NREM sleep condi-

tional on REMpre using a single probability model (see Methods).

We visualized the complete probability model using a heatmap (Fig 2E). Each grid cell (x,y)

on the heatmap color-codes the probability to transition into REM sleep after |N| = y s of

NREM sleep since the last REM sleep period of duration REMpre = x s. As expected from the

distribution of ln(|N|) (Fig 2A and 2B), we observed two modes along |N|. The lower mode

comprises only short inter-REM intervals and exists only for REMpre < 150 s. The second

mode contains longer inter-REM intervals with larger |N| values. We refer to sleep cycles with

|N| in the lower mode as sequential, as they result in a sequence (or cluster) of closely inter-

spaced REM sleep periods. Sleep cycles that are part of the long distribution are termed single

cycles. One characteristic of single cycles is that the mean values of |N| continuously increase

with REMpre, i.e. longer REM sleep episodes are followed by larger amounts of NREM sleep

before re-entering REM sleep. As further analyzed below, another key characteristic of single

cycles is that the preceding REM period is followed by an interval of NREM sleep during

which it is extremely unlikely to transition to REM sleep; the duration of this refractory period

increases with REMpre.

Next, we computed the CDF of the conditional GMM for different values of REMpre (Fig

2F). Each CDF represents the probability that the animal transitions to REM sleep within |N| s

of NREM sleep. In general, the longer the preceding REM period, the more NREM sleep is

required to reach the same cumulative probability of re-entering REM sleep. But, irrespective

of REMpre, within 2000 s of NREM sleep, the animal will most likely (> 99.46%) transition to

the next REM period. For short REMpre values, the CDF immediately rises because of the com-

parably high probability for the occurrence of sequential cycles. In contrast, for long REM

sleep episodes (REMpre� 150 s), the CDF initially stays close to zero and only starts rising

once it leaves the refractory period. Altogether, our statistical model to describe the relation-

ship between REMpre and |N| suggests the existence of two different types of sleep cycles:

Sequential cycles form sequences of REM sleep episodes, whereas single cycles are character-

ized by the existence of a refractory period, the duration of which increases with the duration

of the preceding REM episode.

A previous study accounted for the presence of sequential sleep cycles and the resulting

bimodality of the inter-REM distribution by using a mixture of two Poisson distributions [35].

Consistent with our findings, the authors reported that the mean duration of the inter-REM

interval and the probability of observing a long inter-REM interval both increased with

REMpre. However, a key property of the Poisson distribution is that the variance increases with

the mean, which is not the case for our dataset for both the total inter-REM duration and |N|

Fig 2. Conditional GMM to describe the relationship between REMpre and subsequent NREM. (A) Scatter plot of REMpre vs. ln(|N|). Vertical

dashed lines indicate consecutive 30 s bins of REMpre. Solid black lines represent the mean and standard deviation of ln(|N|) for each 30 s bin. (B)

Histograms and probability density plots of ln(|N|) for consecutive REMpre bins as indicated on top. Probability densities were computed using a

GMM. The notation [a, b) refers to the bin a� REMpre < b. (C) Histogram of ln(|N|) for inter-REM intervals preceded by REM episodes in the

range 30 s� REMpre < 60 s. A GMM composed of two Gaussian distributions captures well the bimodal distribution of ln(|N|). The mean and

standard deviation of the Gaussian for long and short cycles are referred to as μlong, σlong, and μshort, σshort, respectively. (D) Estimates of GMM

parameters as a function of REMpre. The mixture parameter, klong, denotes the probability that a sleep cycle belongs to the long Gaussian

distribution. For each parameter, we fitted a linear or logarithmic function describing its dependence on REMpre. (E) Heatmap in which each grid

cell (x,y) represents the probability of transitioning from NREM to REM in between |N| - 25 s� y� |N| + 25 s following a REM episode of

duration REMpre = x s for x in [10, 15, . . ., 250]. Each column of the heatmap sums up to 1. (F) Cumulative distribution function (CDF) of the

GMM for 7 different values of REMpre. Each line represents, for the given REMpre value, the likelihood of entering the next REM period within

|N| s of NREM sleep since the preceding REM episode.

https://doi.org/10.1371/journal.pcbi.1009316.g002
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(S2 Fig). Our conditional GMM instead reproduces the reduction in the variance for increas-

ing values of REMpre.

Sequential vs single cycles

Using our model, we defined a data-driven criterion to separate single from sequential cycles

(Fig 3A left). For each 2.5 s increment of REMpre, we calculated the probability density func-

tions (PDFs) of both the short and long Gaussian distribution. The intersection point of the

two distributions optimally separates single from sequential cycles (Fig 3A right and Meth-

ods). In total, 19.3% of all cycles were sequential (Fig 3B). Since klong = 1 for REMpre� 150 s,

sequential cycles exist only for REMpre < 150 s. In contrast, single cycles exist for the entire

range of REMpre, and consequently, their REMpre values are on average larger than those of

sequential cycles (Fig 3C). The total duration of NREM sleep during sequential cycles reached

values up to 222.5 s with a mean of 84.96 s ± 40.92 s (mean ± s.d.) (Fig 3D). In more than 50%

of cases, REM sleep sequences comprised only two REM sleep episodes, forming one cycle; in

rare cases, they included up to 5 consecutive cycles (Fig 3E).

To test for further differences between sequential and single cycles, we examined the EEGs

for both types of cycles (Fig 3F). For both the parietal and prefrontal EEG, the general shape of

the spectral density during REM sleep was similar, although there were differences in the over-

all power, which were particularly pronounced for the prefrontal EEG. Further analysis, how-

ever, showed that these differences were the result of the differences in the REM episode

duration, REMpre, between single and sequential cycles (Fig 3C). We determined the spectral

densities for different REM sleep durations (S3A Fig) and used these to calculate weighted

averages based on the distribution of REMpre for single and sequential cycles, respectively (see

Methods). The weighted averages were very similar to the actual spectral densities, suggesting

that the power differences in the REM sleep EEG between single and sequential cycles are the

result of the differences in REMpre (S3B Fig).

In contrast to REM sleep, the spectral density for NREM sleep exhibited considerable differ-

ences between sequential and single cycles, particularly in the parietal EEG (Fig 3F). Com-

pared with NREM sleep during single cycles, the NREM δ power (0.5–4.5 Hz) during

sequential cycles was strongly reduced, while the θ power (5–9.5 Hz) was enhanced. We

observed very similar changes in the δ and θ power when varying the threshold used to score

MAs (S4B Fig). Thus, the EEG displayed two features resembling the EEG during REM sleep

(reduced δ and increased θ power), suggesting that NREM sleep during sequential cycles may

constitute an intermediate state between NREM and REM sleep [41].

Refractory vs. permissive periods during single cycles

During the inter-REM interval of single cycles, REM sleep is followed by a refractory period

during which the probability of NREM to REM transitions is close to zero (Fig 2). Using the

conditional GMM, we formulated a data-driven definition of the refractory period (Fig 4A

left). For each 2.5 s increment of REMpre, we calculated the 1st percentile of the long Gaussian

distribution and set it as the threshold separating the refractory period from the remaining

permissive period (Fig 4A right). Notably, the duration of the refractory period is approxi-

mately twice the duration of REMpre (Fig 4B).

Next, we tested whether the EEG and other properties of NREM sleep, such as sleep spin-

dles and microarousals (MAs), differ between the refractory period and the following permis-

sive period that ranges from the end of the refractory period till the onset of the next REM

episode. We computed the spectral density of the EEG during NREM sleep and found that the

δ, θ, and σ (10–15 Hz) power of both the prefrontal and parietal EEG were lower during the
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Fig 3. Sequential vs single cycles. (A) (Left) Scatter plot of REMpre vs. ln(|N|) with color-coded single and sequential cycles. The threshold optimally separating

sequential from single cycles is shown in black. (Right) Illustration of how the threshold was determined for REMpre = 30 s. The probability density functions

(PDFs) for the two distributions of the GMM (for REMpre = 30 s) are plotted along the y-axis. The red asterisk indicates the value of ln(|N|) at which the two

Gaussians intersect. Values of ln(|N|) below the intersection point are more likely to be drawn from the short distribution and are consequently labeled as

sequential cycles. Gray points correspond to cycles with REMpre < 7.5 s for which the conditional GMM is not defined (S1B Fig and Methods). (B) Pie chart

indicating the percentage of single and sequential cycles. (C) Box plot comparing REMpre for single and sequential cycles. For sequential cycles, REMpre was shorter

than for single cycles (Welch’s t-test, t = -35.13, p = 2.59e-228, nsequential = 947, nsingle = 3961). (D) Histogram of |N| for sequential cycles. The vertical dashed line

indicates the mean (85.46 s ± 40.92 s; mean ± s.d.). (E) Bar plot showing the percentage of the number of cycles within a REM sleep sequence. Over half of REM

sleep sequences contain only one cycle (i.e. comprise two REM periods). (F) Spectral density of parietal (nsequential = 947, nsingle, = 3961) and prefrontal (nsequential =

936, nsingle = 3919) EEG during REM and NREM sleep for both sequential and single cycles. Horizontal lines indicate frequencies at which the spectral density of

PLOS COMPUTATIONAL BIOLOGY Ultradian timing of REM sleep in mice

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009316 August 25, 2021 8 / 30

https://doi.org/10.1371/journal.pcbi.1009316


refractory period (Figs 4C and S5A). In addition to these differences in the EEG, the spindle

rate was reduced during the refractory period while MAs were more frequent (Fig 4D and

4E). Sleep spindles have recently been implicated in promoting REM sleep and their overall

increased rate during the permissive period may thus facilitate transitions to REM sleep [42].

We then analyzed the time course of the different prefrontal EEG power bands and the rate

of MAs and spindles throughout the sleep cycle by normalizing the durations of both the

refractory and permissive period and dividing them into quarters. The θ power, σ power, and

rate of sleep spindles were strongly reduced after REM sleep, increased with downward con-

cavity throughout the refractory period, reached a plateau near its end, and then continued

increasing with upward concavity throughout the permissive period (Fig 4F). The overall time

course of the θ and σ power did not depend on the exact value of the threshold used to score

MAs (S4C Fig). The increase of these values in the final quarter of the permissive period

reflects the transition stage between NREM and REM sleep, which is characterized by

increased spindle activity, increased θ and reduced δ power (S5C Fig) [41]. Importantly, the

normalized time course of the θ power, σ power, and spindle rate was consistent regardless of

REMpre (Fig 4F), suggesting that, as the duration of the refractory period increased with longer

REM periods, the rate at which the θ power, σ power, and frequency of spindles increased was

proportionally reduced. Plotting these quantities throughout the refractory period along a

non-normalized time axis, we indeed found a slower rise in their time courses following longer

REM periods (Figs 4G and S5D). The rate of MAs followed the opposite pattern. It was

strongly increased after REM sleep and decreased with upward concavity throughout the

refractory period before reaching a plateau, and then continued to decay with downward con-

cavity throughout the permissive period (Fig 4F). We found a similar pattern, irrespective of

the used MA threshold (S4C Fig). The time course at which the MA rate declined also

depended on REMpre: The longer REMpre, the less steep the decay (S5D Fig). The fact that the

inflection point of the time courses of the θ power, σ power, spindle and MA rate all occur at

the threshold suggests that our data-driven definition of the refractory and permissive period

reflects a natural separation within single sleep cycles.

In contrast, the time course of the δ power was not aligned with the threshold between the

refractory and permissive period (S5B Fig). Although its general time course, with an increase

at the beginning of the inter-REM interval followed by a decrease, was consistent for all ranges

of REMpre, the normalized time bin at which the δ power started decaying varied with REMpre

and was not systematically related with the threshold between the refractory and permissive

period. Thus, although the time course of the δ power and, in particular, its overall power was

strongly influenced by REMpre, consistent with a previous study [14], it did not reflect the

probability of NREM to REM sleep transitions.

Finally, to test whether the observed changes in the EEG power and sleep microarchitecture

during the refractory period were specifically due to REM sleep, we compared NREM sleep

after REM sleep with NREM sleep following wake periods of equal duration (Figs 4G and S5D

and S5E). In general, the power of all tested EEG bands was less strongly modulated after a

period of wakefulness. After REM sleep, the θ and σ power showed a stronger reduction and a

steeper increase (Fig 4G) compared to their time courses following wake periods of equal

duration (S5E Fig). The rate of MAs was also more strongly modulated following bouts of

REM sleep (S5D and S5E Fig). Of all tested variables, the θ power and rate of MAs were the

least affected by preceding wakefulness (S5E Fig). Thus, the observed changes in the NREM

sequential and single cycles are statistically different at various ɑ levels; (Welch’s t-test, � p<0.05; �� p<0.01; ��� p<0.001). One recording did not contain a

prefrontal EEG channel. Shadings, 99% confidence interval (CI).

https://doi.org/10.1371/journal.pcbi.1009316.g003
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EEG power and sleep microarchitecture, especially in the θ power and MA rate, were particu-

larly associated with preceding REM sleep. These findings suggest that REM sleep has different

consequences on the subsequent quality of NREM sleep than does wakefulness.

Relationship between wakefulness and NREM sleep

In addition to REMpre, |N| may also be modulated by wake periods in the inter-REM interval.

In our data set, only 12.9% of sequential cycles contained wake periods (Fig 5A). 43.0% of sin-

gle cycles were not interrupted by wakefulness (Fig 5B and 5C) and 42.7% contained only one

or two wake episodes (Fig 5C). In general, |N| was larger for single cycles with larger |W| (Fig

5B and 5D) and also for cycles with a larger number of wake episodes (Fig 5D). We observed

similar relationships, irrespective of the threshold used to score MAs (S6A and S6B Fig). By

comparing |N| for cycles with different |W| while keeping the number of wake episodes con-

stant, and also comparing |N| for cycles with different numbers of wake episodes while keeping

|W| constant, we confirmed that both |W| and the number of wake episodes within an inter-

REM interval contribute to longer |N| (S7 Fig).

To test how wake episodes affect the EEG power during NREM sleep, we computed the θ
and σ power before and after wake episodes during the inter-REM interval of single cycles.

The power in both frequency bands increased during the preceding NREM episode, dropped

to levels lower than those at wake onset, and then started rising again throughout the following

NREM episode (Fig 5E; see S6C Fig for different MA thresholds). We observed the same pat-

tern for the rate of spindles, whereas the rate of MAs was enhanced after wake and then

decayed throughout NREM sleep. The drop in the spindle rate and the increase in the MA rate

was larger the longer the intervening wake episode (Figs 5F and S6C). The drop in θ power,

on the other hand, first increased and then declined with the duration of the intervening wake

episodes. Thus, each wake episode leads to a reduction in quantities that reflect the probability

of NREM to REM transitions (Fig 4), possibly resulting in more NREM sleep, which could

explain the positive correlation of |N| with the total duration and number of wake episodes.

Correlation between model CDF and REM sleep duration

Next, we aimed to determine factors influencing the duration of REM sleep. First, we tested

whether the REM duration (REMpost) is influenced by the preceding REM duration (REMpre).

We found that REMpost is negatively correlated with REMpre (slope = -0.085, R2 = 0.0070,

p = 7.17e-09). The slope of the negative correlation was larger for sequential cycles (slope =

Fig 4. Refractory and permissive periods during single cycles. (A) (Left) Scatter plot of REMpre vs. ln(|N|) along with boundary (solid line) separating the

refractory from the permissive period within single cycles. (Right) Illustration of how the threshold separating the refractory from the permissive period

was determined for REMpre = 60 s. The CDF of the long Gaussian distribution is plotted along the y-axis. The value of |N| for which CDF(ln|N|) = 0.01

(indicated by the red asterisk) corresponds to the duration of the refractory period. (B) Scatter plot of REMpre vs. |N| along with the threshold separating

the refractory from the permissive period. Of note, the refractory period is only defined for single cycles (red dots). The black line represents the threshold

and the shading indicates the 99% confidence interval (CI) from 10,000 bootstrap iterations. (C) Spectral density of the prefrontal EEG for NREM sleep

during the refractory and permissive period. The densities for both periods are statistically different for frequencies in the range 0–15 Hz (Welch’s t-test,
��� p< 0.001, nrefractory = npermissive = 3892). Shadings, 99% CI. (D) Box plot comparing the rate of sleep spindles during the refractory and permissive

period (Welch’s t-test, t = -36.96, p = 0.0, nrefractory = npermissive = 3908). The rate was calculated as the number of spindles per 1 min of NREM sleep. (E)

Box plot comparing the rate of MAs during the refractory and permissive period (Welch’s t-test, t = 50.32, p = 0.0, nrefractory = npermissive = 3908). The rate

was calculated as the number of MAs per 1 min of NREM sleep. (F) Progression of θ power, σ power, spindle rate, and MA rate throughout the refractory

and permissive period for different values of REMpre. The refractory period is defined as outlined in A. The permissive period comprises the time from the

end of the refractory period to the onset of the next REM period. The durations of both the refractory and permissive period were normalized to unit

length and subdivided into quartiles of equal normalized duration. The average for all REMpre values is shown in black. Shadings, 99% CI. (G) Progression

of θ power (Row 1) and σ power (Row 2) on non-normalized time scale during the first 600 s of NREM sleep during the inter-REM interval for different

values of REMpre. The two vertical dashed lines indicate the lowest and highest threshold separating the refractory from the permissive period

corresponding to the low and high bound of REMpre. Shadings, 99% CI.

https://doi.org/10.1371/journal.pcbi.1009316.g004
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Fig 5. Relationship between wake episodes and NREM sleep during an inter-REM interval. (A) (Left) Pie chart indicating the percentage of sequential

cycles without (|W| = 0) and with wake episodes (|W|> 0). (Right) Box plot comparing |N| for sequential cycles with and without wake episodes (t-test, t =

-3.22, p = 0.0012, n|W|>0 = 122, n|W| = 0 = 825 cycles). (B) (Left) Pie chart indicating the percentage of single cycles without and with wake episodes. (Right)

Box plot comparing |N| for single cycles with and without wake episodes (Welch’s t-test, t = -28.64, p = 3.97e-163, n|W|>0 = 2259, n|W| = 0 = 1702). (C) Bar plot

showing the distribution of the number of wake episodes during the inter-REM interval of single cycles. Note that 99.63% of single cycles had 8 or fewer wake

episodes. (D) (Left) Box plot comparing total NREM duration, |N|, for single cycles with increasing values of total wake duration, |W| (Welch’s ANOVA, F

(5,1233.21) = 301.99, p = 3.78e-211). The x-tick q0 corresponds to cycles without wake. The remaining cycles with |W|> 0 were subdivided into quintiles,

labeled q1—q5, based on the distribution of |W| for single cycles. (Right) Box plot comparing |N| for single cycles based on the number of wake episodes

occurring during the inter-REM interval (Welch’s ANOVA, F(5,475.26) = 246.53, p = 1.65e-129). Note that 97.61% of single cycles contained 5 or fewer wake

episodes. (E) Progression of θ power, σ power, spindle rate, and MA rate during NREM sleep before and after a wake episode. Only sequences with at least 1

minute of NREM sleep both before and after wake during the inter-REM interval of single cycles were included. The duration of NREM episodes was

normalized. ‘Before’ refers to all NREM sleep in between either the previous REM or wake episode and the current wake episode. ‘After’ refers to all NREM
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-0.22, R2 = 0.010, p = 0.0020) than for single cycles (slope = -0.09, R2 = 0.0089, p = 5.07e-09)

(Fig 6A). As single cycles are interrupted by longer inter-REM intervals, the intervening peri-

ods of NREM sleep and wakefulness may themselves influence REMpost, thereby weakening

the correlation between the two variables. Furthermore, the negative correlation supports the

notion of a short-term hourglass process: As more REM propensity is discharged during a lon-

ger REM episode, the subsequent episode tends to be shorter.

Previous studies found that the duration of a REM episode also depends on the amount of

NREM sleep preceding REM sleep. But this correlation is typically only weak [19,21,43,44] or

was reported to be non-existent [20]. In our dataset, we found no significant correlation

between the preceding inter-REM interval duration of single cycles (S8A Fig; slope = 0.0012,

R2 = 4.92e-04, p = 0.17) and REMpost, or between the amount of NREM, |N|, and REMpost (Fig

6B; slope = 0.0041, R2 = 9.83e-04, p = 0.052).

The CDF of the conditional GMM describes the probability of entering REM sleep within

|N| (s) of NREM sleep since the last REM sleep episode, and it can therefore be interpreted as a

measure of the ultradian propensity for REM sleep throughout a single sleep cycle. For a given

value of REMpre, there is considerable variation in the values of |N| during single cycles and we

tested whether the resulting differences in the CDF values at REM onset may influence the

subsequent REM sleep duration. We indeed found that REMpost and the value of the CDF at

REM onset were positively correlated (Fig 6C; slope = 22.82, R2 = 0.013, p = 1.01e-12), suggest-

ing that a higher propensity at REM onset leads to longer REM sleep episodes. This correlation

was particularly pronounced for cycles with REMpre� 60 s. The finding that the REM dura-

tion is more closely correlated with the CDF than with the preceding NREM duration (Wil-

liams’ correlation test, t = 17.59, p = 0.0) suggests that it is not the amount of NREM sleep, but

rather the propensity for REM sleep accumulated throughout the sleep cycle that influences

the REM duration.

Next, to test whether the presence of wake periods affects the correlation between the CDF

and REM duration, we calculated the correlation between the CDF and REMpost separately

for sleep cycles with and without wake episodes (S8D Fig). Importantly, the dependence of

REMpost on the CDF value was not affected by the presence of wake episodes. This finding sug-

gests that the impact of the REM propensity, as quantified by the CDF, on REMpost is not influ-

enced by the presence of wake episodes.

Finally, we analyzed whether the CDF at REM onset also affects the EEG power during

REM sleep. Changes in the EEG power were particularly pronounced for the prefrontal EEG

(Fig 6D; see S8B Fig for parietal EEG). We found that if the animal transitioned to REM sleep

at a low CDF value, the power of the prefrontal EEG in the δ, θ, and σ range was higher than

when REM sleep was entered at a high CDF value (Fig 6D). To test whether the negative corre-

lation between the CDF and EEG power may be explained by differences in the REM sleep

duration, we calculated linear approximations of the spectral densities for each CDF range

based on the distribution of REM durations within this range (S8C Fig and Methods). For

high values of the CDF (CDF� 0.4), the linear approximation closely matched the observed

densities. However, for low CDF values (CDF < 0.4) the approximation considerably differed

sleep in between the current wake episode and either the next wake or REM episode. Shadings, 99% CI. (F) Bar plot showing average drop (or increase) in θ
power, σ power, spindle rate, and MA rate over wake episodes with different durations. All wake episodes for single cycles were divided into five quintiles

based on the distribution of their durations. A drop or increase in each variable was calculated by subtracting the average value for 1 min of NREM after wake

from the average value for 1 min of NREM before wake (θ: Welch’s ANOVA, F(4,899.90) = 10.48, p = 2.65e-08; σ: ANOVA, F(4,1901) = 1.99, p = 0.093;

Spindles: ANOVA, F(4,1901) = 6.22, p = 5.70e-05; MAs: Welch’s ANOVA, F(4,895.63) = 9.13, p = 3.08e-07). Error bars, 95% CI from 1,000 bootstrap

iterations.

https://doi.org/10.1371/journal.pcbi.1009316.g005
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from the observed densities, suggesting that, at least in part, the magnitude of the prefrontal

EEG power during REM sleep reflects REM sleep propensity.

Changes in REM sleep regulation between light and dark phase

Next, we applied our model to test for differences in the regulation of REM sleep between the

light and dark phase. As expected [45,46], mice spent less time in sleep during the dark phase

(Fig 7A). In addition, the ratio of REM sleep to the total amount of sleep was reduced (Fig

7B). To further understand why the relative amount of REM sleep is reduced during the dark

phase, we fit the conditional GMM to the recordings from the dark phase (Figs 7D and S9A).

As was the case for the light phase, the Lilliefors-corrected KS test did not provide enough evi-

dence to reject the null hypothesis that |N| conditional on REMpre follows a lognormal Gauss-

ian mixture distribution (S5 and S6 Tables).

Fig 6. Effects of sleep history on REM episode duration. (A) (Left) Box plot comparing the duration of REM sleep (REMpost) following sequential cycles for different

values of REMpre. Red line, linear regression (slope = -0.22, R2 = 0.010, p = 0.0020). (Right) Box plot comparing REMpost following single cycles for different values of

REMpre. Red line, linear regression (slope = -0.091, R2 = 0.0089, p = 5.07e-09). (B) Box plot comparing REMpost following single cycles with different values of |N|. Red

line, linear regression (slope = 0.0041, R2 = 9.83e-04, p = 0.052). (C) Box plots comparing REMpost dependent on the CDF value at REM onset for single cycles. The

left plot includes all REMpre values; the remaining plots show the correlation for increasing ranges of REMpre. Dashed lines, linear regression (All: slope = 22.82, R2 =

0.013, p = 1.01e-12; [7.5,60): slope = 8.58, R2 = 0.0013, p = 0.090; [60,120): slope = 29.42, R2 = 0.024, p = 1.57e-07; [120,180): slope = 29.64, R2 = 0.039, p = 3.12e-06;

[180,240): slope = 43.28, R2 = 0.077, p = 0.0060). (D) Spectral density of prefrontal EEG during REM episodes following single cycles as a function of the CDF at REM

onset (Welch’s ANOVA, δ: F(4,1078.85) = 16.18, p = 7.04e-13; θ: F(4,1084.95) = 6.06, p = 8.0e-05; σ: F(4,1089.74) = 9.46, p = 1.61e-07).

https://doi.org/10.1371/journal.pcbi.1009316.g006
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Fig 7. Changes in REM sleep regulation between light and dark phase. (A) Bar plots comparing the percentage of REM, NREM sleep, and wake during the light

and dark phase (REM: Welch’s t-test, t = 16.14, p = 3.37e-30; NREM: t-test, t = 20.26, p = 4.53e-38; Wake: t-test, t = -20.79, p = 5.19e-39; nlight = 72, ndark = 35 mice).

Error bars, 95% CIs from 1,000 bootstrap iterations. (B) Bar plot comparing the ratio REM/(REM+NREM) for the light and dark phase (t-test, t = 3.17, p = 0.0019,

nlight = 72, ndark = 35 mice). Error bars, 95% CIs from 1,000 bootstrap iterations. (C) Pie chart showing the percentage of sequential and single cycles during the dark

phase. (D) Comparison of GMM parameters for the light and dark phase (Welch’s t-test with Bootstrap, klong: t = -77.26, p = 0.0; μlong: t = -372.77, p = 0.0; σlong: t =

-57.93, p = 0.0; Methods). (E) Comparison of μlong (solid lines), and threshold (Ref., dashed lines) separating the refractory from the permissive period for the light

and dark phase. Shadings, 95% CIs obtained from 10,000 bootstrap iterations. (F) Comparison of the CDFs of the GMMs for the light and dark phase shown for 4

different values of REMpre.

https://doi.org/10.1371/journal.pcbi.1009316.g007
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Based on our model, we identified two major factors underlying the reduced REM/total

sleep ratio during the dark phase. First, during the dark phase, the average of klong, the weight-

ing factor for the long Gaussian, was significantly increased (Fig 7D and Methods), reflecting

the increased percentage of single cycles and reduction in sequential cycles (Fig 7C) compared

to the light phase (Fig 3B). As single cycles contain less REM sleep relative to NREM sleep,

their reduced frequency during the dark phase, mirrored in the increase of klong, contributes to

the decrease in REM sleep. Second, the mean of the long Gaussian distribution, μlong, was

larger in the dark phase, indicating a delayed increase in the likelihood of NREM to REM sleep

transitions, a second factor contributing to the increase in NREM relative to REM sleep (Fig

7D and 7E). Interestingly, the duration of the refractory period did not significantly differ

between the light and dark phase (Fig 7E) because σlong was also increased during the dark

phase (Fig 7D), counteracting the effects of μlong on the duration of the refractory period. Con-

sequently, for large values of REMpre (� 150 s), the CDFs for both the light and dark phase

stayed close to zero for approximately the same amount of time but then increased at different

rates (Fig 7F). Hence, our model suggests that the probability of sequential cycles is decreased

during the dark phase and that the rate at which REM propensity increases throughout the

sleep cycle is reduced during the dark phase.

Discussion

In this study, we characterized the relationship between REMpre and subsequent NREM sleep

using a conditional GMM. The distribution of NREM sleep during sleep cycles is bimodal,

suggesting that two different types of inter-REM intervals exist (Figs 1 and 2). Using our

model, we separated short from long inter-REM intervals and found that NREM sleep during

short intervals displays reduced δ and increased θ power (Fig 3). Longer inter-REM intervals

begin with a refractory period, during which transitions to REM sleep are highly unlikely (Fig

4). The refractory period proportionally increases in duration with REMpre and is character-

ized by a low θ power, σ power, and spindle rate as well as an increased frequency of MAs. The

total duration of NREM sleep also depends on the number and total duration of wake periods

during the inter-REM interval (Fig 5). REMpre is negatively correlated with the subsequent

REM sleep duration. In addition, the CDF of the conditional GMM is positively correlated

with the next REM duration, suggesting that a higher propensity for REM sleep results in lon-

ger REM episodes (Fig 6). The build-up of the REM propensity is delayed during the dark

phase (Fig 7). Altogether, our analysis suggests that three major factors shape the ultradian

regulation of REM sleep: The presence of two distinct types of sleep cycles, a refractory period

suppressing transitions to REM sleep, and a propensity for REM sleep that influences the next

episode duration.

Sequential sleep cycles

Sequential sleep cycles have been observed in rats [32,33,35], cats [21], monkeys [37] and

humans [36,47]. The presence of both short and long cycles results in a bimodal distribution

of inter-REM intervals in these species. The minimum between the two modes for short and

long inter-REM intervals served as a threshold to separate sequential from single cycles. Com-

parative analysis showed that this threshold and the average duration of inter-REM intervals

increase with brain size [1,34]. In rats and, as shown here, in mice the durations of REM sleep

episodes at the beginning of sequential cycles are on average shorter than those at the start of

single cycles, and the frequency of sequential cycles is reduced during the dark period [33].

Thus, sequential cycles in both species share a lot of statistical similarities suggesting a com-

mon physiological mechanism in both species. Infusion of a serotonin receptor agonist into
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the laterodorsal tegmentum reduced the frequency of REM sleep sequences, while an antago-

nist increased their occurrence in rats [48], suggesting a role of serotonin in their regulation.

We speculate that an increased release of serotonin may contribute to the suppression of

sequential sleep cycles during the dark phase [49,50].

Similar to our findings in mice, the EEG δ and σ power in rats is also reduced during

sequential cycles [51]. A previous study in cats described NREM sleep during sequential cycles

as light slow wave sleep as it is also characterized by low δ power [21]. NREM sleep during

sequential cycles is thus reminiscent of the so-called intermediate stage preceding a transition

to REM sleep, which shares both features of NREM and REM sleep [41,52]. For future studies,

it would be interesting to perform simultaneous local field potential recordings from multiple

sites to test whether both NREM and REM sleep states may locally co-exist in different brain

areas during sequential cycles as observed for the intermediate stage [41,52].

Current dynamical systems models generate the ultradian alternation between NREM and

REM sleep either through feedback from the arousal system to the circadian or homeostatic

drive for sleep [53] or by implementing mutually inhibitory interactions between REM-on and

REM-off neurons [54,55]. In the latter model type, a homeostatic hourglass process dictates

the timing of REM sleep, an assumption supported by the positive correlation between REMpre

and the following inter-REM interval. Testing under which assumptions these models can

reproduce the lognormal distribution of NREM sleep may further constrain the time course at

which REM propensity accumulates. For future studies, it would be interesting to investigate

whether these dynamical models can also explain the generation of sequential cycles, possibly

by introducing physiologically motivated noise terms mimicking fluctuations in firing rates or

neurotransmitter concentrations [54,56].

REM sleep is followed by a refractory period

As the conditional GMM allowed us to separate single from sequential sleep cycles, we could

disentangle the refractory period, which only exists for single cycles, from sequential cycles

and define it for the whole range of REMpre. Since the refractory period proportionally

increases with the duration of the preceding REM sleep episode (by about 2 � REMpre), it may

mechanistically explain the positive correlation between REMpre and succeeding NREM sleep

[29–31]. With its low σ power, spindle rate, and high rate of MAs, the refractory period likely

constitutes a fragile state of NREM sleep in mice. A study in cats similarly found that REM

sleep is followed by a stage of light sleep [21]. In humans, the sleep phase N1, which is charac-

terized by the absence of spindles, is most likely to occur during the sleep cycle after REM

sleep [57] (published in preprint). Hence, the refractory period may be classified as a substage

of NREM sleep in mice that resembles stage N1 in humans.

At present, the refractory period in our study is statistically defined as an interval during

which REM sleep is unlikely to occur. The physiological mechanisms underlying this period,

however, are unknown. To further characterize this substage of NREM sleep, it would be inter-

esting to test whether activation of known REM sleep-promoting neurons specifically during

the refractory period is indeed ineffective in inducing REM sleep. Electrophysiological record-

ings in the ventrolateral periaqueductal gray (vlPAG) indicated a role of GABAergic REM-off

neurons in this area in the ultradian regulation of REM sleep. The activity of vlPAG REM-off

neurons gradually decreases during the inter-REM interval, and abruptly rises at the end of

REM sleep in a duration-dependent manner: The longer the REM episode lasts, the more

these neurons become subsequently activated [13]; an effect which may mediate the depen-

dence of the refractory period on the preceding REM duration [29–31]. Interestingly, vlPAG

GABAergic neurons express orexin/hypocretin receptors [58] and may thus be excited by the
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wake-active orexin/hypocretin neurons known to project to the vlPAG [17]. Such an excitatory

drive may underlie the delayed increase in REM propensity during the dark phase suggested

by our model: A higher baseline activity of REM-off neurons during the dark phase, when

orexin/hypocretin levels are high [59], may delay the time till the activity of these neurons is

low enough to allow for a transition to REM sleep.

Our analysis suggests a close association of θ, σ power, and sleep spindles with the probabil-

ity of NREM to REM transitions. The spindle rate is reduced during the refractory period,

when transitions to REM sleep are highly unlikely, while the increased rate of spindles during

the permissive period may facilitate REM sleep. In support of this view, a recent study showed

that optogenetically triggering spindles through stimulation of the thalamic reticular nucleus

enhances the chance of transitions to REM sleep [42]. For future studies, it is therefore impor-

tant to understand how thalamocortical circuits generating spindles interact with hypotha-

lamic or brainstem circuits controlling REM sleep.

Interaction between REM propensity and REM episode duration

As the REM sleep duration is negatively correlated with the occurrence of sequential cycles

and positively correlated with the duration of the refractory period, it plays a crucial role in

temporally shaping the sleep cycle. Previous studies showed that during the homeostatic

rebound following REM sleep deprivation, REM sleep episodes are elongated [28,60,61], sug-

gesting that an increased propensity for REM sleep is associated with longer episodes. We sim-

ilarly found that during spontaneous sleep a higher REM propensity, as reflected in the CDF of

the conditional GMM, results in longer REM episodes. Our finding suggests that the REM

propensity builds up fast enough during the sleep cycle to influence the duration of REM sleep

episodes. Consistent with this, short-term REM sleep deprivation (as short as 20 min) induces

a detectable rebound in REM sleep, further supporting the notion that REM sleep propensity

accumulates at a time scale relevant to modulate the ultradian timing of REM sleep [60–62].

In addition to the episode duration, the CDF was also correlated with the EEG power dur-

ing REM sleep. Interestingly, sleep recordings in humans also showed a reduction in the REM

EEG power within a similar range (α power), after enhancing the REM propensity through

REM sleep deprivation [63–65]. A recent study in rats found that the θ power declines

throughout REM sleep and this decline is positively correlated with the amount of NREM

sleep during the preceding inter-REM interval, also supporting a close association between

REM propensity and changes in the EEG power [66].

For future studies, it would be interesting to test how the propensity for REM sleep reflected

in the CDF of the conditional GMM relates to the homeostatic long-term process mediating the

rebound in REM sleep following long-term total sleep or REM sleep deprivation. The long-term

process regulates the daily quota of REM sleep and is thought to accumulate in the absence of

REM sleep during both NREM sleep and wakefulness [29,67,68], and has been proposed to be

separate from the short-term process regulating the ultradian timing of REM sleep [28]. In vivo

recordings of vlPAG GABAergic neurons showed that the firing rates of these REM-off neurons

during inter-REM are modulated by the preceding REM sleep duration, suggesting that they

mirror the short-term REM propensity [13]. Recording the same neurons throughout long-

term REM sleep deprivation and recovery sleep may provide important insights into the extent

to which the short- and long-term processes are disjunct or overlap at the neuronal level.

Role of Wakefulness

In addition to the preceding REM sleep, the total amount of NREM sleep during the sleep

cycle is also modulated by wake periods. Similar to REM sleep, although to a lesser degree,
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wake episodes lead to a decrease in the θ power, σ power, and spindle rate and an increase in

the MA rate, quantities which are indicative of the likelihood of NREM to REM sleep transi-

tions. Wake episodes may result in a reduction in the probability of REM transitions and thus

lead to more NREM sleep, which in turn could explain the positive correlation between the

total duration or number of wake episodes and the total NREM duration. Previous studies also

suggest that an increased δ power induced by long intervals of wakefulness enforced by sleep

deprivation suppresses the initiation of REM sleep [29,69]. On the ultradian time scale, how-

ever, we observed no systematic relation between the time course of the δ power and the likeli-

hood of NREM to REM transitions.

Our finding that the presence or absence of wakefulness during the sleep cycle does not

affect the correlation between the CDF value and subsequent REM duration (S8D Fig), indi-

cates that, at least on the ultradian timescale, REM propensity and its impact on the REM epi-

sode duration is more closely associated with the time spent in NREM sleep than with the

combined time in NREM sleep and wake. Thus, while wake periods reduce the following θ
power, σ power, and rate of sleep spindles and may thereby lower the subsequent opportunity

for NREM to REM transitions [32], they do not appear to interfere with the build-up of the

REM propensity reflected in the CDF, reinforcing the notion that the ultradian REM propen-

sity primarily accumulates during NREM sleep [20]. Altogether, our model-based approach

provides a flexible framework to study the key factors underlying the ultradian timing of REM

sleep and will inform future experimental studies to understand the mechanisms regulating

the REM sleep duration, refractory period, and induction of REM sleep sequences.

Methods

Experimental setup

Ethics statement. All experimental procedures were approved by the Institutional Animal

Care and Use Committee (IACUC) at the University of Pennsylvania and conducted in accor-

dance with the National Institutes of Health Office of Laboratory Animal Welfare Policy.

Animals. Experiments were performed in male or female C57BL/6J mice (Jackson Labo-

ratory stock no. 000664). Animals were housed on a 12-h dark/12-h light cycle (lights on

between 7 am and 7 pm) and were aged 6–12 weeks at the time of surgery. All mice were

group-housed with ad libitum access to food and water.

Surgery. All surgeries were performed following the IACUC guidelines for rodent survival

surgery. Prior to surgery, mice were given meloxicam subcutaneously (5 mg/kg). Mice were

anesthetized using isoflurane (1–4%) and positioned in a stereotaxic frame. Animals were

placed on a heating pad to maintain the body temperature throughout the procedure. Follow-

ing asepsis, the skin was incised to gain access to the skull. For EEG recordings, stainless steel

wires were attached to two screws, one on top of the parietal and one on top of the prefrontal

cortex. The reference screw was inserted on top of the cerebellum. For EMG recordings, two

stainless steel wires were inserted into the neck muscles. All electrodes, screws, and the mini-

connector holding the EEG, EMG wires were secured to the skull using dental cement. After

the injection and implantation were finished, bupivacaine (2 mg/kg) was administered at the

incision site.

Sleep recordings. Sleep recordings were performed in the animal’s home cage or in a cage

to which the mouse was habituated for 3 days, which was placed within a sound-attenuating

box. EEG and EMG signals were recorded using an RHD2000 amplifier (intan, sampling rate

1 kHz). EEG and EMG signals were referenced to the common ground screw on top of the cer-

ebellum. During the recordings, EEG and EMG electrodes were connected to flexible record-

ing cables using a small connector. To determine the brain state of the animal, we first
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computed the EEG and EMG spectrogram with consecutive fast Fourier transforms (FFTs)

calculated for sliding, half-overlapping 5 s windows, resulting in a 2.5 s time resolution of the

hypnogram. Next, we computed the time-dependent delta, theta, sigma, and high gamma

power by integrating frequencies in the range 0.5 to 4 Hz, 5 to 12 Hz, 12 to 20 Hz, and 100 to

150 Hz, respectively. We also calculated the ratio of the theta and delta power (theta/delta) and

the EMG power in the range 50 to 500 Hz. For each power band, we used its temporal mean to

separate it into a low and high part (except for the EMG and theta/delta ratio, where we used

the mean plus one standard deviation as threshold). REM sleep was defined by high theta/

delta ratio, low EMG, and low delta power. A state was set as NREM sleep, if delta power was

high, the theta/delta ratio was low and EMG power was low. In addition, states with low EMG

power, low delta, but high sigma power were scored as NREM sleep. Wake encompassed states

with low delta power and high EMG power and each state with high gamma power (if not oth-

erwise classified as REMs). Of the bins classified as wake periods, those forming sequences of

20 s or less were classified as microarousals. Finally, we manually rescored the automatic classi-

fication to correct for errors using a graphical user interface, visualizing the raw EEG, EMG

signals, spectrograms, and hypnogram. The software for automatic brain state classification

and manual scoring was programmed in Python. The light-phase data contained 5098 sleep

cycles from 125 recordings of 72 mice. The dark-phase data contained 1242 sleep cycles from

55 recordings of 35 mice.

Data analysis

Gaussian mixture model parameters. Following the definition in [40], a sleep cycle com-

prises a REM sleep episode and the following inter-REM interval. All sleep cycles with REM

sleep episode duration REMpre< 240 s were divided into 8 groups based on REMpre. We chose

30 s non-overlapping bins ([0,30), [30,60), . . ., [210,240)) to ensure that each group contained

enough cycles to reliably estimate the model parameters while being able to capture the change

in these parameters conditional on REMpre. For each group, we used the Expectation-Maximi-

zation algorithm on ln(|N|) to find the maximum likelihood estimates for klong, kshort, μlong,

μshort, σlong, and σshort. In the case of REMpre� 150 s, the distribution of ln(|N|) was unimodal;

consequently, klong = 1 and we only estimated μlong and σlong. For consistency, we assumed

that the apparent unimodality of the distribution for REMpre< 30 s results from the blending

of the distributions for short and long cycles. Computations were performed using the python

package scikit-learn [70].

Lilliefors-corrected KS test. The standard Kolmogorov-Smirnov (KS) test compares data

to a pre-defined distribution by comparing the CDF to the empirical cumulative distribution

function (ECDF). However, it is invalid when the parameters for the CDF are estimated using

the data [71]. Therefore, to perform a valid goodness-of-fit test with the estimated parameters,

we applied the Lilliefors-corrected KS test as follows:

1. For each consecutive 30 s bin of REMpre, using the estimated parameters, we draw a ran-

dom sample with the same size as the original data and calculate the KS-statistic.

2. We repeat (1) 10,000 times and form a distribution of KS-statistics, KSsim.

3. We calculate the KS-statistic using the observed data (KSobs) and find how extreme KSobs is

when compared to the distribution of the simulated KS-statistics.

4. If KSobs is too large (KSobs > 95% of KSsim), we reject the null hypothesis that our data

comes from the specified distribution.
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Performing the Lilliefors-corrected KS test, we found that there is not enough evidence to

reject the hypothesis that our data is drawn from a Gaussian mixture distribution (S2 Table).

This was the case for both the light and dark phase and held true for different thresholds to

score MAs (S3 Table).

Conditional Gaussian mixture model. After estimating all 6 parameters of the GMM for

each 30 s bin of REMpre, we used either a linear (y = ax+b) or logarithmic (y = a�ln(x+b)+c;
b�0) function to model the relationship between each parameter and REMpre (Figs 2D and

S1A). kshort was implicitly defined as kshort = 1-klong. Because klong = 1 for REMpre > 150 s, we

only used the first 6 values of klong for fitting the function. We calculated the residual sum of

squares (RSS) for both the linear and logarithmic fits and chose the function for which the RSS

was lower. The fitting was performed using the Trust Region Reflective algorithm imple-

mented in SciPy [72]. The logarithmic fit was generally better for all parameters except for

σshort. In total, the model comprises 14 parameters. The complete probability model can be

expressed as follows:

PðlnðjNjÞjREMpre ¼ xÞ ¼ klong � f ðx; mlongðxÞ; s
2

longðxÞÞ þ kshortðxÞ � f ðx; mshortðxÞ; s
2

shortðxÞÞ

where f is the probability density function of a Gaussian distribution, and

klongðxÞ ¼ minðak;long � lnðxþ bk;longÞ þ ck;long; 1Þ

kshortðxÞ ¼ 1 � klongðxÞ

mlongðxÞ ¼ am;long � lnðxþ bm;longÞ þ cm;long

mshortðxÞ ¼ am;short � lnðxþ bm;shortÞ þ cm;short

slongðxÞ ¼ as;long � lnðxþ bs;longÞ þ cs;long

sshortðxÞ ¼ as;short � xþ bs;short

Note that klong(x) is defined as the minimum of the result of the log function and 1, as

klong(x) is a probability and cannot exceed 1.

For the dark phase, the data for 150� REMpre< 180 contained only one single ln(|N|)

value falling into the short Gaussian distribution, resulting in a value for klong below 1. To

avoid that a single data point changes the entire relationship between REMpre and klong, we fit

the logarithmic and linear functions on the first 4 values of klong (Figs 7D and S9A).

Of note, the complete conditional GMM for the light phase is defined only for sleep cycles

with REMpre� 7.5 s, because REMpre = 7.5 s is the lowest value of REMpre for which the intersec-

tion point of the short and long Gaussian distributions, xintersect, satisfies μshort < xintersect < μlong

(S1B Fig). Similarly, the complete model for the dark phase is only defined for sleep cycles with

REMpre� 12.5 s (S9B Fig).

Model simulation. To assess the goodness-of-fit of the model to the data, we performed a

simulation as follows:

1. For each REMpre in the data set with 7.5 s� REMpre< 240 s:

a. Calculate klong, kshort, μlong, μshort, σlong, σshort using the conditional GMM.

b. Based on these parameters, define the Gaussian mixture distribution for the given

REMpre and sample one data point (ln(|N|)) from this distribution.
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2. Perform step (1) 10,000 times.

3. Compare the simulated distribution of ln(|N|) to the actual distribution of ln(|N|) for sleep

cycles with REMpre in the range 7.5 s� REMpre< 240 s.

We found that the simulated distribution of ln(|N|) closely overlaps with the distribution of

the actual data (S1C Fig).

Single and sequential cycles. For each sleep cycle with REMpre in the range

7.5 s� REMpre < 240 s, we label the cycle as either single or sequential using the following

procedure:

1. Using the conditional GMM, determine for REMpre the probability distributions for the

short and long Gaussian distributions.

2. Find the intersection point, xintersect, along the x-axis (ln(|N|) axis) of the PDFs of the two

Gaussian distributions.

3. If ln(|N|) < xintersect, the cycle is sequential, otherwise it is labeled as single.

We use the criterion in step (3) because if ln(|N|)< xintersect, the PDF of the short Gaussian

evaluated at ln(|N|) is larger than the PDF of the long Gaussian evaluated at ln(|N|) and vice

versa. i.e.

lnðjNjÞ < xintersect¼)kshort � fshortðlnðjNjÞÞ > klong � flongðlnðjNjÞÞ

lnðjNjÞ < xintersect¼)kshort � fshortðlnðjNjÞÞ < klong � flongðlnðjNjÞÞ

where fshort and flong correspond to the PDFs of the short and long Gaussian distributions.

Refractory and permissive period. For each value of REMpre in the range

7.5 s� REMpre< 240 s, we determine the threshold separating the refractory from the

permissive period as such:

1. Using REMpre and the conditional GMM, calculate μlong and σlong.

2. Using these parameters, define the CDF of the long Gaussian distribution, Flong(x).

3. The ln(|N|) value for which Flong(ln(|N|)) = 0.01 is set as the threshold.

Sleep spindle detection. For spindle detection, we first calculated the spectrogram for the

prefrontal EEG. The spectrogram was computed for consecutive 600 ms windows with 500 ms

overlap, resulting in a 100 ms temporal resolution. The spindle detection algorithm used two

criteria to determine for each 100 ms time bin whether it was part of a spindle or not: The first

criterion was that the height of the maximum peak in the sigma frequency range (10–16.67

Hz) exceeds a threshold, which corresponded to the 96th percentile of all maximum peaks in

the sigma frequency range of the sleep recording. We determined the optimal percentile value

by maximizing the performance of the algorithm on a manually annotated control data set.

Second, the power value of the peak in the sigma range (10–16.67 Hz) had to be greater than

half of the peak value in the range 0–10 Hz. The optimal value for this ratio (sigma peak ratio)

was again determined on the control data set. Next, the algorithm merged spindle events that

were temporally close to each other. First, spindle events in adjacent bins were considered as

part of the same spindle. Second, we fused together sequences of spindle events that were inter-

rupted by gaps of less than 300 ms. The optimal value for the gap was again determined on the

control data set. Finally, we discarded spindles with duration� 200 ms. Of all the potential

spindles, we only considered those as spindles where for at least half of the time bins the peak
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frequency lied in the range of 10–16.7 Hz. The parameters of the spindle detection algorithm

(sigma percentile threshold, sigma peak ratio, and minimum fusing distance) were optimized

using a manually annotated data set. The algorithm correctly identified 88.8% of spindles pres-

ent in the annotated data set with a false positive rate of 6.9%.

Linear approximation of spectral densities. To test if differences in the EEG spectral

density between single and sequential REM sleep episodes were due to differences in their

respective durations (S3 Fig), we first discretized the distribution of REMpre for both types of

cycles into eight 30 s bins and calculated for each bin the corresponding REM sleep duration-

dependent spectral density, Pdur,i. Then, for single and sequential cycles, we found the propor-

tion of cycles, wsingle,i and wseq,i, with REMpre falling into bin i. Note,

P
iwsingle;i ¼ 1; and

P
iwseq;i ¼ 1 for i 2 f1; . . . ; 8g:

Using these proportions as weights, we calculated a weighted average of the duration

dependent spectral densities to give us linear approximations, P̂seq and P̂single of the true spectral

densities as follows:

P̂single ¼
P

iwsingle;i � Pdur;i and P̂seq ¼
P

iwseq;i � Pdur;i

Similarly, we tested whether differences in the EEG during REM sleep were due to differ-

ences in the CDF at REM onset or the result of differences in REMpre. For each of the five

groups determined by the CDF value at REM onset, we found the proportion of REM periods

falling into each bin and used these proportions as weights for the weighted averages (S8C

Fig).

Spectral density and power estimation. The EEG and EMG signals were sampled at 1000

Hz. The hypnogram was binned in 2.5 s epochs. Spectral densities of the EEG were computed

using Welch’s method with a Hanning window for 3 seconds long, half overlapping intervals,

resulting in a frequency resolution of 1/3 Hz. Frequency bands were defined as follows: δ: 0.5–

4.5 Hz, θ: 5–9.5 Hz, σ: 10–15 Hz. To calculate the power for each frequency band, we approxi-

mated the corresponding area under the spectral density curve using a midpoint Riemann

sum.

Bootstrap comparison of light and dark phase GMM parameters. We performed boot-

strapping with 10,000 iterations on the entire data set for both the light and dark phase and

estimated the GMM parameters using the same procedure as explained above. To compare dif-

ferences between the two phases, we computed for klong, μlong, and σlong the log-function relat-

ing each parameter to REMpre and then determined the average value of that function over the

entire range of REMpre for which the conditional GMM is defined. Repeating this procedure

for each bootstrap iteration resulted in two distributions for each parameter corresponding to

the light and dark phase, respectively. Welch’s t-test revealed significant differences between

the light and dark phases (klong: t = -77.26, p = 0.0; μlong: t = -372.77, p = 0.0, σlong: t = -57.93,

p = 0.0).

Statistics. Statistical tests were performed using the python modules scipy [72] and pin-

gouin [73] and the R package cocor [74]. Linear regressions were performed with the python

module statsmodels [75]. For comparisons of quantities between two groups, we used the

Levene test to check the homoscedasticity of the data and performed either t-tests or Welch’s

t-tests. To compare quantities between multiple groups, the data sets were compared using

either one-way or two-way ANOVA followed by multiple comparisons tests.
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Supporting information

S1 Fig. Conditional GMM for the light phase and model validation. (A) Comparison of log-

arithmic (solid lines) and linear (dashed lines) fits for the functions describing the relationship

between REMpre and each GMM parameter. For klong, we only fitted the functions to the first 6

REMpre bins (filled circles). For the remaining REMpre bins, klong was set to 1. (B) Estimated

probability density functions (PDFs) of the Gaussian distributions for short and long cycles for

each 2.5 s increment of REMpre in the range 2.5 s—12.5 s. (C) Histogram over |N| on the nor-

mal (left) and natural log scale (right). The histogram for the actual data is compared with the

prediction by the GMM (10,000 model simulations).

(PDF)

S2 Fig. Mean and standard deviation of inter-REM and |N| as a function of REMpre. (A)

Mean and standard deviation of ln(inter-REM) as a function of REMpre (n = 5090). (B) Mean

and standard deviation of ln(|N|) as a function of REMpre.

(PDF)

S3 Fig. Prefrontal EEG during REM sleep for sequential and single cycles. (A) Spectral den-

sity of prefrontal EEG during REM sleep for different REM sleep durations (REMpre). (B)

Spectral density of prefrontal EEG during REM sleep for sequential and single cycles. Solid

lines represent the actual densities with shadings indicating the 99% CIs. The dashed lines rep-

resent the weighted averages of the duration-dependent densities in A. The weighted averages

were calculated based on the proportion of REMpre values falling into each 30 s bin (Methods).

(PDF)

S4 Fig. Comparison of different MA thresholds (1). (A) Pie chart showing the percentage of

REM, NREM, and Wake for different MA thresholds. All wake episodes with duration� 30 s

or� 10 s were scored as MA; for the threshold of 0 s, no MAs were scored. (B) Spectral density

of parietal (top) and prefrontal EEG (bottom) during NREM sleep for both sequential and sin-

gle cycles using different MA thresholds. Horizontal lines indicate frequencies at which the

spectral densities for sequential and single cycles are statistically different (Welch’s t-test, ���

p<0.001). Shadings, 99% CI. (C) Progression of θ power, σ power, and MA rate throughout

the refractory and permissive period for different MA thresholds. The durations of both the

refractory and permissive period were normalized to unit length and subdivided into quartiles

of equal normalized duration. The average for all REMpre values is shown in black. Shadings,

99% CI.

(PDF)

S5 Fig. EEG power, spindle rate, and MA rate throughout the refractory and permissive

period. (A) Spectral density of the parietal EEG for NREM sleep during the refractory and per-

missive period. Horizontal lines indicate frequencies at which the spectral densities for sequen-

tial and single cycles are statistically different; (Welch’s t-test, ��� p<0.001, nrefractory =

npermissive = 3934). (B) Progression of δ power throughout the refractory and permissive period

for different ranges of REMpre. The average for all REMpre values is shown in black. Shadings,

99% CI. (C) Progression of θ power, σ power, rate of spindles, and rate of MAs on normalized

time scale throughout NREM sleep. Similar to Fig 4F but with the last 40 s of NREM sleep

before the onset of the next REM episode excluded. (D) Progression of spindle rate and MA

rate on the non-normalized time scale throughout the first 600 s of NREM sleep during the

inter-REM interval for different values of REMpre. The two vertical dashed lines indicate the

lowest and highest threshold separating the refractory from the permissive period derived

from the low and high bounds of the corresponding REMpre range. Shadings, 99% CI. (E)
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Progression of θ power, σ power, spindle rate, and MA rate on the non-normalized time scale

throughout the first 600 s of NREM sleep after a wake period. Different ranges of wake episode

durations were selected to match the corresponding durations of REMpre in D. Shadings, 99%

CI.

(PDF)

S6 Fig. Comparison of different MA thresholds (2). (A) Box plots comparing total NREM

duration, |N|, for single cycles with increasing values of total wake duration, |W|, for different

MA thresholds (30 s: Welch’s ANOVA, F(5,832.43) = 320.67, p = 2.87e-191; 10 s: Welch’s

ANOVA, F(5,1850.87) = 359.09, p = 2.22e-269; NoMA: Welch’s ANOVA, F(4,1951,53) =

1113.21, p = 0.0). The x-tick q0 corresponds to cycles without wake. The remaining cycles with

|W|> 0 were subdivided into quintiles, labeled q1—q5, based on the distribution of |W| for

single cycles. For the threshold of 0 s, there was no cycle without wake. (B) Box plots compar-

ing |N| for single cycles based on the number of wake episodes occurring during the inter-

REM interval (30 s: Welch’s ANOVA, F(5,249.10) = 281.68, p = 2.54e-100; 10 s: Welch’s

ANOVA, F(8,511.64) = 202.86, p = 2.55e-153; NoMA: Welch’s ANOVA, F(19,681.55) =

448.18, p = 0.0). (C) Progression of θ power, σ power, spindle rate, and MA rate during NREM

sleep before and after a wake episode for different MA thresholds. Only sequences with at least

1 minute of NREM sleep both before and after wake during the inter-REM interval of single

cycles were included. The duration of NREM episodes was normalized. ‘Before’ refers to all

NREM sleep in between either the previous REM or wake episode and the current wake epi-

sode. ‘After’ refers to NREM sleep in between the current wake episode and either the next

wake or REM episode. Shadings, 99% CI.

(PDF)

S7 Fig. Relationship between wake episodes and NREM sleep. (A) Scatter plots for |W| vs.

|N| during single cycles for an increasing number (1–10) of wake episodes during the inter-

REM interval. For each number of wake episodes, |W| and |N| are positively correlated. Red

lines, linear regression fits. (B) Scatter plots for the number of wake episodes vs. |N| during sin-

gle cycles for increasing ranges of |W|. In each case, the number of wake episodes and |N| was

positively correlated. Red lines, linear regression fits.

(PDF)

S8 Fig. Variables influencing REM episode duration and EEG. (A) Box plot comparing the

duration of REM sleep (REMpost) following single cycles for different values of inter-REM.

Red line, linear regression (slope = 0.0012, R2 = 4.92e-04, p = 0.17). (B) Spectral density of pari-

etal EEG during REM episodes following single cycles for different values of the CDF at REM

onset (δ: ANOVA, F(4,3794) = 1.27, p = 0.27; θ: Welch’s ANOVA, F(4,1158.22) = 16.18,

p = 6.65e-13; σ: Welch’s ANOVA, F(4,1161.57) = 16.27, p = 5.62e-13). (C) Comparison of the

true and estimated spectral densities of REM periods for different ranges of the CDF values at

REM onset. Solid lines represent the true spectral densities with shadings representing the 99%

CIs. Dashed lines indicate estimated weighted averages (Methods). (D) Comparison of the

relationship between the CDF (REM propensity) at REM onset and REMpost for single cycles

with wake (|W| > 0) and single cycles without wake (|W| = 0). The first row shows box plots

comparing REMpost of single cycles with |W| > 0 with different CDF values at REM onset. The

first column shows the correlation for the full range of REMpre; the remaining columns display

the results for different bins of REMpre. The second row shows the same comparisons for single

cycles with |W| = 0. Dashed lines, linear regression (‘s’ indicates the slope of the regression

line). The third row shows the linear regression results of CDF vs. REMpost for single cycles

with |W| > 0 and single cycles with |W| = 0. Shadings indicate 95% CIs obtained from 10,000
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bootstrap iterations. Columns correspond to different bins of REMpre.

(PDF)

S9 Fig. Conditional GMM for the dark phase. (A) Comparison of logarithmic and linear fits

for the functions describing the relationship between REMpre and each GMM parameter for

the dark phase. For klong, the functions were only fitted to the first 4 REMpre splits (filled cir-

cles). (B) Estimated PDFs of the short and long Gaussian distributions for each 2.5 s increment

of REMpre in the range 5 s—15 s for the dark phase.

(PDF)

S1 Table. Inter-individual variability. Mean and standard deviation across animals of key

variables in the sleep pattern of mice during the light and dark phase. Note that the R2 values

for REMpre vs. |N|, |W|, or inter-REM differ from those in Fig 1B, as linear regression was per-

formed for each animal individually before averaging, instead of computing R2 values for the

whole data distribution from all animals.

(PDF)

S2 Table. GMM parameters for the light phase. The columns indicate for each range of

REMpre the number of sleep cycles, the weight of the long Gaussian distribution, mean and

standard deviation of the short and long Gaussian distribution and the p-value obtained for

the Lilliefors-corrected Kolmogorov-Smirnov (KS) test (Methods).

(PDF)

S3 Table. P-values from Lilliefors-corrected KS-test for GMMs estimated for different MA

thresholds. The GMM was fitted on the light phase data set for varying thresholds used to

score MAs. The columns show the p-values of the Lilliefors-corrected KS-test for the different

MA thresholds.

(PDF)

S4 Table. Coefficients of the conditional GMM for the light phase. Each column shows the

coefficients (a,b,c) for the logarithmic or linear functions describing each GMM parameter as

a function of REMpre (Methods). For all parameters, we used a logarithmic fit except for σshort.

(PDF)
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40. Trachsel L, Tobler I, Achermann P, Borbély AA. Sleep continuity and the REM-nonREM cycle in the rat

under baseline conditions and after sleep deprivation. Physiol Behav. 1991; 49: 575–580. https://doi.

org/10.1016/0031-9384(91)90283-t PMID: 2062936

41. Gottesmann C. The transition from slow-wave sleep to paradoxical sleep: evolving facts and concepts

of the neurophysiological processes underlying the intermediate stage of sleep. Neurosci Biobehav

Rev. 1996; 20: 367–387. https://doi.org/10.1016/0149-7634(95)00055-0 PMID: 8880730

42. Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in

the onset of rapid eye movement sleep. Nat Commun. 2020; 11: 1–12. https://doi.org/10.1038/s41467-

019-13993-7 PMID: 31911652

43. Hartmann E. Mechanism underlying the sleep-dream cycle. Nature. 1966; 212: 648–650. https://doi.

org/10.1038/212648b0 PMID: 5971699

44. Le Bon O, Linkowski P. Absence of systematic relationships between REMS duration episodes and

spectral power Delta and Ultra-Slow bands in contiguous NREMS episodes in healthy humans. J Neu-

rophysiol. 2013; 110: 162–169. https://doi.org/10.1152/jn.00020.2013 PMID: 23596336

45. Wimmer ME, Rising J, Galante RJ, Wyner A, Pack AI, Abel T. Aging in mice reduces the ability to sus-

tain sleep/wake states. PloS One. 2013; 8: e81880. https://doi.org/10.1371/journal.pone.0081880

PMID: 24358130

46. Soltani S, Chauvette S, Bukhtiyarova O, Lina J-M, Dubé J, Seigneur J, et al. Sleep–Wake Cycle in
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