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Metabolomic analyses of human gut microbiome samples can unveil the metabolic
potential of host tissues and the numerous microorganisms they support, concurrently.
As such, metabolomic information bears immense potential to improve disease
diagnosis and therapeutic drug discovery. Unfortunately, as cohort sizes increase,
comprehensive metabolomic profiling becomes costly and logistically difficult to perform
at a large scale. To address these difficulties, we tested the feasibility of predicting the
metabolites of a microbial community based solely on microbiome sequencing data.
Paired microbiome sequencing (16S rRNA gene amplicons, shotgun metagenomics,
and metatranscriptomics) and metabolome (mass spectrometry and nuclear magnetic
resonance spectroscopy) datasets were collected from six independent studies
spanning multiple diseases. We used these datasets to evaluate two reference-based
gene-to-metabolite prediction pipelines and a machine-learning (ML) based metabolic
profile prediction approach. With the pre-trained model on over 900 microbiome-
metabolome paired samples, the ML approach yielded the most accurate predictions
(i.e., highest F1 scores) of metabolite occurrences in the human gut and outperformed
reference-based pipelines in predicting differential metabolites between case and
control subjects. Our findings demonstrate the possibility of predicting metabolites
from microbiome sequencing data, while highlighting certain limitations in detecting
differential metabolites, and provide a framework to evaluate metabolite prediction
pipelines, which will ultimately facilitate future investigations on microbial metabolites
and human health.

Keywords: metabolome, human microbiome, computational prediction, metabolic potential, Next Generation
Sequence

INTRODUCTION

The scientific community has only recently begun to realize and fully appreciate the significant role
of the microbiome in human health (Turnbaugh et al., 2007; Integrative HMP (iHMP) Research
Network Consortium, 2014). Increased access to high-throughput sequencing technologies has
facilitated a record number of metagenomic- and metatranscriptomic-based investigations of host
tissues and the microbial communities they support, which have begun to shed light on the pivotal
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impact of this ecosystem’s eubiosis in human health. Omics
technologies empower mechanistic and therapeutic discovery
relating to disease onset, progression, and treatment (Metwaly
and Haller, 2019; Zhang et al., 2019). Small molecules are key
factors in all host-microbe interactions, which can be synthesized,
metabolized, and even modified by specific microbial taxa.
The downstream effects of such metabolite modulation have
been implicated in biological processes germane to human
health (Zierer et al., 2018; Descamps et al., 2019). For
example, researchers have shown that the microbial metabolite
trimethylamine-N-oxide (TMAO) is a predictive marker of
cardiometabolic diseases (Ussher et al., 2013; Ufnal et al., 2015;
Li et al., 2018), as have secondary bile acid metabolites on
immune system homeostasis and glucose and lipid metabolism
(Molinero et al., 2019; Song et al., 2019), and microbial-derived
gamma-aminobutyric acid (GABA) as a neurotransmitter of the
central nervous system (Bravo et al., 2011; Strandwitz et al., 2019;
Zheng et al., 2019).

Untargeted metabolomic analyses greatly facilitate the
detection and characterization of a wide range of metabolites,
affording researchers a comprehensive understanding of the
metabolic pathways invoked within a microbial community.
Such techniques have bolstered and accelerated mechanistic
studies and biomarker identification strategies across a variety of
diseases (Li et al., 2016; Franzosa et al., 2019; Glinton and Elsea,
2019; Urpi-Sarda et al., 2019). With massively large amounts of
raw microbiome sequencing data being deposited into public
sequence repositories at ever-increasing rates, we hypothesized
that it is possible to predict metabolic profiles based solely on
the sequencing data from a microbial community. After all, an
accurate and reliable in silico means of predicting metabolic
capacity from nucleic acid sequences would embolden drug
discovery by generating testable hypotheses sans cost-prohibitive
upstream metabolome profiling analyses.

Recent years have seen advances in linking microbiome
sequencing data to metabolome data. One such strategy relies
on the network of connections linking a given gene to
reactions and compounds in a database. These linkages are
used to infer molecular compound identities from the genetic
information housed within a microbial community. A method
called predicted relative metabolomic turnover (PRMT) was
used to predict metabolites from a coastal marine metagenomics
dataset, and the predicted metabolites correlated strongly with
environmental factors (Larsen et al., 2011). MIMOSA was later
developed to predict metabolic potential in a given microbial
community and identify the microbial taxa most responsible
for the synthesis/consumption of key metabolites (Noecker
et al., 2016). Capitalizing on plentiful abundances of gene-
to-metabolite data housed in repositories like KEGG, these
utilities promote the generation of testable hypotheses and
identification of potential drug targets (Chang et al., 2019).
MIMOSA has been successfully applied in a number of studies
to identify the microbial origin of certain metabolites (Stewart
et al., 2018; Sharon et al., 2019). Meanwhile, interested in
metabolites that directly associate with genes regardless of
the reaction network and not limited to the KEGG database,
we developed Mangosteen: a metabolome prediction pipeline

dependent upon relationships between KEGG/BioCyc reactions
and the molecular compounds directly associated with those
reactions. Both MIMOSA and Mangosteen are reference-based,
and as such, they rely heavily on the completeness and accuracy
of the database queried. As the vast majority of microbial
taxa belonging to the human gut microbiome remain unknown
(Turnbaugh et al., 2007; Sunagawa et al., 2013), predictions from
these reference databases provide a partial view of the metabolic
capacity housed within a community.

Mallick et al. (2019) devised MelonnPan, which exploits
machine learning (ML) to predict metabolomic potential. Via
MelonnPan, a model trained from paired microbiome and
metabolome datasets can be used to predict metabolites from
a novel microbiome dataset san a priori knowledge regarding
relationships between genes and metabolites. This approach
circumvents the limitations of the reference-based methods
discussed above and has been used to generate promising
results between two inflammatory bowel disease (IBD) cohorts
(Franzosa et al., 2019; Mallick et al., 2019).

Despite the development and refinement of these pioneering
pipelines, to date there has not been a thorough comparison
of reference-based and ML-based techniques. Ergo, we
comparatively analyzed the performance of two reference-
based methods, Mangosteen and the compound prediction
component of MIMOSA, and the ML-based MelonnPan
approach in conducting microbiome metabolite predictions
(Figure 1). A detailed evaluation was performed on occurrence,
abundance, and between-group differences against metabolome
data acquired via empirical measurements (Figure 1B).

MATERIALS AND METHODS

Data Collection
A PubMed search querying the keywords “gut microbiota” OR
“gut microbiome” OR “fecal microbiota” OR “fecal microbiome”
AND “metabolome” AND “humans” resulted in 171 papers
(Supplementary Figure 1). Filtering was applied to remove
studies that (1) were not original research articles, (2) were
conducted in vitro or in newborn and/or infant subjects, (3)
consisted of samples other than stool or intestinal tissue, (4) had
microbiome data other than NGS sequencing, (5) had targeted
metabolomics data, and (6) had fewer than 30 microbiome-
metabolome paired samples. Notably, as different metabolome
generation and processing methods have significant impact
on results, we only selected studies which applied untargeted
metabolome profiling with multiple liquid chromatography-mass
spectrometry (LC-MS) methods or nuclear magnetic resonance
(NMR) for a comprehensive view of the metabolite pool. Eighteen
studies were retained and six were used in this evaluation due to
data accessibility (Table 1).

Microbiome Sequencing Data
Pre-processing
Raw sequencing data were either downloaded from NCBI
Sequence Read Archive (SRA) for public studies or generated in-
house using the Illumina platform (Table 1). We analyzed
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FIGURE 1 | (A) Metabolite prediction workflow for Mangsoteen, MIMOSA, and MelonnPan. (B) Evaluation metrics used to appraise prediction performance
regarding occurrence and differential metabolite identification.

16S rRNA amplicon Illumina sequencing data using
DADA2 (Callahan et al., 2016) and subjected to functional
composition prediction via Piphillin with identity set at
0.97 (Iwai et al., 2016; Narayan et al., 2020). For 16S rRNA
amplicon pyrosequencing data, we compared it to StrainSelect
(strainselect.secondgenome.com) using USEARCH (Edgar,
2010). We assigned a strain operational taxonomic unit (OTU)
to sequences matching a unique strain with a global alignment
identity ≥99% and with the highest identity to a single strain.
To ensure specificity of these strain matches, a difference
≥0.25% between the identity of the best and second-best match
was required (e.g., 99.75 vs. 99.5). All remaining non-strain
sequences were quality filtered and dereplicated with USEARCH.
We then clustered the resulting unique sequences at 97%
using UPARSE (de novo OTU clustering) and determined a
representative consensus sequence per de novo OTU. Piphillin
(Iwai et al., 2016; Narayan et al., 2020) was then applied to the
OTU table to infer community function.

For metagenomic and metatranscriptomics reads,
adapter sequences and low-quality ends were trimmed
with Trimmomatic (<Q20; Bolger et al., 2014). We then
removed contaminant sequences, e.g., PhiX174 and sequencing
primers, using Bowtie2 (Langmead and Salzberg, 2012). For
metatranscriptomic data, all rRNA sequences from all three
domains of life were identified and removed from consideration
using SortMeRNA 2.0 (Kopylova et al., 2012). Host sequences
were omitted using Kraken (Wood and Salzberg, 2014), which
used exact matches of raw shotgun sequences to k-mers derived
from the human reference genome. Filtered DNA sequences
were mapped against a custom database built from KEGG (May
2019 release; Kanehisa et al., 2011) and BioCyc (version 23.0;
Karp et al., 2017). Specifically, we collected protein sequences
of bacteria, fungi and viruses from KEGG as well as protein
sequences in MetaCyc and all PGDBs in BioCyc followed by a
de-replication step at 0.99 identity and 0.99 alignment coverage
using CD-HIT (Li and Godzik, 2006; Fu et al., 2012). A search
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TABLE 1 | Characteristics of datasets included for prediction and evaluation.

Disease area –
sample type

Study Treatment group
(counts of
biospecimens in
each group)

Metabolome dataset Microbiome dataset Contrast for
differential
analysisProfiling technology Target region Profiling

technology
Data
availability

Healthy – Stool
samples

Maier et al.,
2017

High resistant starch
intervention (14)
Low resistant starch
intervention (14)
Baseline control (13)

SolariX Fourier
transform ion cyclotron
resonance mass
spectrometer
(FT-ICR-MS; Bruker
Daltonik GmbH)

16S rRNA
gene: V4-V6

HiSeq 2000
(Illumina)

EBI-ENA
accession:
ERP104494

High resistant
starch intervention:
Baseline control

Colorectal cancer
(CRC) – Biopsy
samples

Hale et al.,
2018

Diseased tissue (28)
Healthy tissue distal to
diseased tissue (35)
Healthy tissue proximal
to diseases tissue (20)

Quadruple time-of-flight
mass spectrometer
(Agilent Technologies
6550 Q-TOF)

16S rRNA
gene: V3-V5

MiSeq (Illumina) NCBI SRA
BioProject:
PRJNA445346

Diseased tissue:
Healthy tissue distal
to diseased tissue

Autism spectrum
disorder (ASD) –
Stool samples

Kang et al.,
2018

ASD (23)
Healthy control (21)

Varian Direct Drive
(VNMRS) 600 MHz
spectrometer
(Agilent Technologies)

16S rRNA
gene: V2-V3

Genome
Sequencer
FLX-Titanium
System (Roche)

Qitta: study ID
11169

ASD: Healthy
control

Inflammatory bowel
disease (IBD) –
Stool samples

Franzosa
et al., 2019

Crohn’s disease (88)
Ulcerative colitis (76)
Non-IBD Control (56)

Q Exactive Hybrid
Quadrupole-Orbitrap
mass spectrometer;
Exactive Plus Orbitrap
mass
spectrometer (Thermo
Fisher Scientific)

Whole genome HiSeq 2500
(Illumina)

NCBI SRA
BioProject:
PRJNA400072

Crohn’s disease:
Non-IBD Control

Lloyd-Price
et al., 2019

Crohn’s disease (139)
Non-IBD Control (86)

Q Exactive/Exactive
Plus orbitrap mass
spectrometers (Thermo
Fisher Scientific)

Whole genome HiSeq2000;
HiSeq 2500
(Illumina)

NCBI SRA
BioProject:
PRJNA398089

Crohn’s disease:
Non-IBD Control

Whole
transcriptome

HiSeq2500
(Illumina)

SG_IBD
(generated
in this
study)

Active ulcerative
colitis (10)
Inactive ulcerative
colitis (19)
Healthy control (15)

Q Exactive orbitrap
mass spectrometers
(Thermo Fisher
Scientific)

16S rRNA
gene: V4

MiSeq (Illumina) NCBI SRA
BioProject:
PRJNA668188

Active ulcerative
colitis: Healthy
control

Whole
transcriptome

NextSeq 550
(Illumina)

for translated DNA sequences was executed using Diamond
(Buchfink et al., 2014) and hits that spanned ≥ 20 amino acids
with ≥80% similarity were retained. Upon identifying multiple
hits, reads were equally split between the best hits.

Metabolite Identifier Curation
Detailed LC-MS/NMR conditions, software and library databases
for metabolite data generation per each study are listed in
Supplementary Table 1. These annotated metabolites were
assigned unique identifiers corresponding to an in-house
chemical dictionary so as to facilitate comparison between
studies. KEGG, BioCyc, the PubChem Identifier Exchange
Service1, and the Chemical Translation Service2 were used to
identify and convert metabolites.

Metabolite Prediction Using Mangosteen
A relationship table linking KEGG orthologs (KO) and BioCyc
reactions (RXNs) to the compounds housed in KEGG (release
date 2019 May) and BioCyc (version 23.0) databases was

1https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi
2https://cts.fiehnlab.ucdavis.edu/batch

compiled. Specifically, if KOs have corresponding KEGG
reactions which produce or consume KEGG compounds, we
directly linked those KOs to KEGG compounds. An example
is that K24443 corresponds to two reactions R02428, R02526,
which produce or consume compounds C02753, C00001,
C00502, C01114, and C00545. Thus, K24443 is linked to
those compounds. There are cases when KOs do not have
corresponding reactions but KEGG Enzyme numbers, and
we would link those enzymes to reactions and further to
compounds. An example is that K00046 has no corresponding
reactions but the enzyme number EC:1.1.1.69, through which we
linked to reactions R01738, R01740 and the reactions produce
or consume compounds C00257, C00003, C01062, C00004,
C00080, C00006, C00005, thus those compounds are linked
to K00046. Manual effort was also made to link transporter
KOs (BRITE class: ko02000) to their associated compounds. For
the BioCyc database, RXNs and their associated compounds
were inferred from “core_description_of_RXNs” directly, which
included reactions from both MetaCyc and all PGDBs in BioCyc.
This collection of reactions is referred to as “BioCyc reactions”
in the remainder of the text. Reaction directionality was not
taken into consideration when constructing the relationship table
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because many biochemical reactions are reversible depending on
the reactant and product concentrations.

We inferred all metabolites that linked to KOs or RXNs
based on the relationship table for coverage evaluation. If a KO
or RXN links to multiple metabolites, all were reported. For
differential metabolite prediction, we first identified differential
microbial functions (KOs/RXNs) between case and control
samples via DESeq2 analysis (adjusted p-value threshold = 0.2;
Love et al., 2014) following prevalence filtering at 5%. The list
of differential microbial functions was used as the input for
Mangosteen and all compounds linked to them were reported to
be differential compounds.

Metabolite Prediction Using MIMOSA
Using the source code from MIMOSA3, we updated the
community metabolic network template to the May 2019 version
of the KEGG database. Microbiome functional abundance data
were normalized by means of MUSiCC using default settings
(Manor and Borenstein, 2015), as is recommended prior to
applying MIMOSA for prediction. We then calculated the
community-metabolic-potential (CMP) of each sample, which
served as the predicted metabolome.

Metabolite Prediction Using MelonnPan
In lieu of applying the default model included in the MelonnPan
package (Mallick et al., 2019), we constructed a model based on
metabolome and microbial function abundance data from six
previous investigations (Table 1). Because multiple microbiome
sequencing datatypes exist for two studies (shotgun metagenomic
and metatranscriptomic data in Lloyd et al. study; Lloyd-Price
et al., 2019; 16S rRNA gene amplicon and metatranscriptomic
data in SG_IBD study), we chose to leave-one-study-out cross-
validation to minimize potential overfitting for MelonnPan. We
retained all metabolites and microbial KOs or RXNs with over
10% prevalence and mean relative abundance over 0.01% in
accordance with MelonnPan operating procedures. From the
model that resulted, we mitigated the potential for spurious
results by omitting metabolites predicted by only one KO or RXN
from consideration (model size = 1).

Evaluation Metric
Predicted community metabolite profiles were compared to
empirically measured metabolite profiles, and both occurrence
and abundance were appraised. We then calculated the
precision, recall, and F1 score for each dataset per pipeline.
Occurrence evaluation only considers the presence or absence
of a metabolite in a given microbial community. Abundance
evaluation considers both the results of Procrustes analyses
conducted across the predicted and measured abundance
matrices (Peres-Neto and Jackson, 2001) and the identification
of differential metabolite described below.

Prevalence filtering was applied to measured metabolome
data, as well as MIMOSA and MelonnPan predicted metabolome
data, and metabolites detected or predicted in fewer than 5% of
the samples were omitted from consideration. Data resulting

3https://github.com/borenstein-lab/MIMOSA

from empirically measured- and MelonnPan predicted-profiles
were log transformed after imputing zeros with the minimum
non-zero value per metabolite. We then conducted Student’s
t-tests to identify differential metabolites between case and
control samples, followed by Benjamini-Hochberg FDR
correction (adjusted p-value threshold = 0.2). As the abundance
matrix generated with MIMOSA includes both positive and
negative values, we elected to apply Wilcoxon rank sum tests
with Benjamini-Hochberg FDR correction (adjusted p-value
threshold = 0.2). Wilcoxon signed rank tests were used to
comparatively evaluate precision, recall, and F1 scores across
pipelines and databases between paired datasets.

Random sampling analysis was also performed and compared
to the pipeline prediction. For coverage evaluation, the same
number as the predicted metabolites were randomly selected
from the in-house chemical dictionary and compared with
the pipeline predicted results. For differential metabolite
identification, gene labels were randomly shuffled prior to
DESeq2 and used for prediction for Mangosteen. For MIMOSA
and MelonnPan, predicted metabolite labels were shuffled in
the predicted matrices, followed by the same procedure for
differential metabolite identification. The results were further
evaluated against the measured metabolites and performance was
represented in precision, recall and F1 score. The procedure was
repeated for 99 times.

RESULTS

Selected Studies Include Diverse
Metabolome and Microbiome
Sequencing Technologies
Among the 6 studies that fit our selection criteria as described
in Supplementary Figure 1, we considered the datasets from
three IBD studies (Franzosa et al., 2019; Lloyd-Price et al., 2019),
one colorectal cancer (CRC) investigation (Hale et al., 2018),
one autism spectrum disorder study (Kang et al., 2018), and one
dietary intervention (Maier et al., 2017; Table 1). Many of the
samples originated from stool (n = 648 from five studies), while
a smaller subset (n = 83) arose from intestinal tissue samples
of the CRC study. All samples were subjected to metabolomic
analysis via either mass spectrometry (MS; five studies)
or NMR spectroscopy (NMR; one study). For microbiome
profiling, half of the datasets originate from 16S rRNA gene
amplicon sequencing (four datasets), followed by shotgun
metagenomic analysis (two datasets), and metatranscriptomic
sequencing (two datasets).

Pipeline Paradigm Determines
Metabolite Prediction
Empirically measured metabolome profiles from each of
the aforementioned datasets were compared directly with
pipeline predictions. Only peaks corresponding to known
compounds were retained, which resulted in a total of 1,998
metabolites spanning six studies. We observed significant
differences in metabolite numbers across different metabolomics
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technologies. Fourier transform ion cyclotron resonance mass
spectrometer (FT-ICR-MS) identified the greatest number
of metabolites (n = 1,273) and NMR the least (n = 62;
Supplementary Figure 2A). Of all metabolites detected,
1,887 corresponded to KEGG-specific compound identifiers
and 987 to BioCyc-specific compound identifiers. Quality-
controlled metagenomic and metatranscriptomic data were
mapped against KEGG and BioCyc databases and Piphillin
(Iwai et al., 2016; Narayan et al., 2020) was applied to 16S
rRNA sequencing data to infer communities’ functional
profiles. Ultimately, we identified 11,527 KOs and 8,427 RXNs
across eight datasets spanning six studies (Supplementary
Figure 2B), which collectively served as the input for each
prediction pipeline.

The Mangosteen pipeline identified 3,315 KEGG- and 5,957
BioCyc-associated metabolites across all studies (Magosteen-K
and Mangosteen-B, respectively). While Mangosteen-B predicted
significantly fewer unique microbial functions than Mangosteen-
K (Supplementary Figure 3A), it linked to significantly more
metabolites (Supplementary Figure 3B). MIMOSA predicted
a total of 1,590 metabolites using the KEGG database, 1,077
of which were shared with Mangosteen-K (Figure 2A). In
comparison, the ML-based MelonnPan pipeline predicted
only 334 metabolites upon interrogating models built on
microbial functions mapped to KEGG (MelonnPan-K) or BioCyc
(MelonnPan-B; Figures 2A,B and Supplementary Figure 4).

Metabolites bearing KEGG identifications were then assigned
to their corresponding BRITE classifications (Kanehisa et al.,
2011). Melonnpan-K predicted significantly greater fractions
of metabolites deemed “Compounds with biological roles”
(BRITE ID: 08001), “Phytochemical compounds” (08003),
“Lipids” (08002), and “Target-based classification of compounds”
(08010) than the reference-based approaches (Figure 2C).
Considering only the “Compounds with biological roles”
category, MelonnPan-K predicted the greatest fractions of
metabolites resembling “Peptides,” “Organic acids,” “Lipids,” and
“Steroids” and smallest fractions of those resembling “Nucleic
acids,” “Vitamins and Cofactors,” “Hormones and transmitters,”
and “Carbohydrates” (Figure 2D). Mangosteen-K was the only
pipeline to predict metabolites belonging to the “Antibiotics”
category of classification.

ML-Based MelonnPan Yielded the
Highest F1 Score in Predicting
Metabolite Occurrence
Predicted metabolite profiles were compared to empirically
measured metabolite profiles. MelonnPan exhibited the greatest
precision (MelonnPan-K: mean 0.44, MelonnPan-B: mean
0.44) in predicting the presence/absence of metabolites in the
human gut, followed by MIMOSA (0.08) and Mangosteen
(Mangosteen-K: 0.06, Mangosteen-B: 0.03; Figure 3). Recall

FIGURE 2 | Results of metabolite prediction as performed by different pipelines. Upset plots (Lex and Gehlenborg, 2014) depict the measured and predicted
metabolite numbers resulting from each pipeline and their intersections based on (A) KEGG and (B) BioCyc databases. Pie charts display predicted metabolite
classification according to (C) KEGG BRITE classes, and specifically (D) metabolites belonging to the “Compounds with biological roles” BRITE class.
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FIGURE 3 | Evaluation of predicted occurrence (presence/absence) as appraised by precision, recall, and F1 score. Each point indicates a dataset used for
evaluation. A pairwise Wilcoxon signed-rank test was applied at ∗∗∗p < 0.01, ∗∗p < 0.05.

was significantly greater with Mangosteen-K, as opposed to
MIMOSA, and with Mangosteen-B as opposed to MelonnPan-
B. Taking into consideration both precision and recall, F1
scores demonstrated the superiority of ML-based MelonnPan
predictions (MelonnPan-K: 0.36, MelonnPan-B: 0.36). KEGG-
referenced Mangosteen exhibited a small but significant increase
in both precision (Mangosteen-K vs. Mangosteen-B: mean 0.06
vs. 0.03, p = 0.01) and overall F1 scoring (0.1 vs. 0.06, p = 0.01)
compared to its BioCyc-referenced counterpart. With respect to
ML-based MelonnPan, these two reference databases used for
model building performed equally well and yielded no significant
differences in precision, recall, or F1 score. We also compared
the prediction results to random sampling, which randomly
predicted the same number of metabolites, and all pipelines
showed significantly better performance regarding precision,
recall and F1 score (p < 0.01).

None of the Predicted Metabolite
Profiles Retain High Levels of Similarity
to the Empirically Measured Metabolome
As both MIMOSA and MelonnPan output metabolite abundance
predictions, we examined the extent of similarity between
the predicted and empirically measured metabolite abundance

profiles. Euclidean distance from the predicted and measured
metabolomes were calculated to facilitate Procrustes analyses
(Peres-Neto and Jackson, 2001). Very little similarity was
observed between the metabolomes (correlation coefficient
range: 0.04–0.26, p > 0.05), with squared m12 values (a
measure of fit between two datasets; low value indicates high
similarity; Peres-Neto and Jackson, 2001) ranging from 0.93 to
1 (Supplementary Figure 5). With respect to Procrustes analysis,
MIMOSA- and MelonnPan-generated prediction profiles did not
significantly differ when compared to measured metabolome,
and neither did KEGG-referenced and BioCyc-referenced
MelonnPan predictions.

All Pipelines Performed Poorly in
Identifying Differential Metabolites
We evaluated these pipelines on their ability to identify
differentially abundant metabolites between case and control
groups as shown in Table 1. The predicted differential
metabolites identified in each pipeline were compared to
differential metabolites identified in experimental data. ML-
based MelonnPan predictions yielded the highest precision
and F1 scores (but still low and not significant) compared
to the two reference-based prediction methods (MelonnPan-K
Precision mean: 0.11, F1 score: 0.11; MelonnPan-B: Precision:
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0.11, F1 score: 0.10; Figure 4). We also compared the
results to random sampling, where differential metabolites were
identified from either shuffled microbial abundance table (for
Mangosteen) or predicted metabolite abundance tables (for
MIMOSA and MelonnPan). Despite of the overall low F1 score,
Mangosteen showed significantly higher F1 scores (p < 0.05)
compared to random prediction while MIMOSA and MelonnPan
did not (MIMOSA: p = 0.2, MelonnPan-K: p = 0.37, and
MelonnPan-B: p = 0.42).

DISCUSSION

Gaining insight into the metabolite pool of a microbial
community is of paramount importance to understand its
ecological role(s), not to mention its potential as a source of
therapeutics and other invaluable molecules (Jia et al., 2008;
Patel and Ahmed, 2015; Wishart, 2016). As an alternative to
cost- and resource-prohibitive full-scale metabolome profiling,
metabolome prediction from a priori microbiome sequencing
data affords researchers the ability to generate hypotheses
in a rapid, cost-effective, and relatively reliable fashion. We
systematically compared the ability of metabolite predictions by
two published tools alongside a newly developed reference-based
pipeline using more than 900 paired microbiome-metabolome
stool/intestinal tissue samples from six different studies on
various human diseases. Resulting metabolite profile predictions

were compared to one another and contrasted alongside an
empirically measured metabolome dataset, focusing primarily
on occurrence (i.e., presence vs. absence) and identification of
differentially abundant metabolites.

When used to predict the presence or absence of given
metabolites within a community, the ML-based MelonnPan
approach significantly outperformed its reference-based
competitors, with respect to overall precision and F1 score.
However, the reference-based Mangosteen and MIMOSA
pipelines did exhibit high recall despite their lower precision
and F1 scores. As recall is calculated based on true-positive and
false-negative tallies, the high number of metabolites predicted
via these reference-based pipelines likely contributed to the
elevated recall values. In addition, any given KO may participate
in any number of distinct reactions, bearing the potential to
dramatically increase the number of associated metabolites.
With regard to reference-based methods, MIMOSA surpassed
Mangosteen-K in both precision and F1 score. This speaks to the
benefit of considering the directionality as well as the network of
connections between reactions within a community. Although
Mangosteen showed worse performance in metabolite prediction
compared to MIMOSA, it was able to link more metabolites
and could be useful for mining metabolites outside of known
metabolic network. While the type of microbiome data examined
also affects prediction performance, we lacked an appropriate
number of independent datasets to evaluate this aspect in
our study (one study for metagenomic to metatranscriptomic

FIGURE 4 | Evaluation of predicted differential metabolite identification as appraised by precision, recall, and F1 score. Each point indicates a dataset used for
evaluation. A pairwise Wilcoxon signed-rank test was applied at ∗∗p < 0.05.
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and another for 16S rRNA amplicon to metatranscriptomic
sequencing comparisons). A pipeline’s ability to accurately
distinguish differential metabolites between case and control
groups is typically a sound foundation from which hypotheses
are structured and biomarker and therapeutics discovery
initiatives expound. Such evaluations are predicated upon
accurate predictions of metabolite abundance, and as such, are
much more stringent than occurrence prediction. While we did
not observe promising results in any of the pipelines, MelonnPan
predictions yielded the highest mean F1 scores (around 0.1 in
both MelonnPan-K and MelonnPan-B).

Machine-learning-based MelonnPan outperformed the
reference-based methods in predicting both occurrence and
differential metabolites. In contrast to the reference-based
pipelines, this powerful technique considers the impact of host
metabolism and hitherto undiscovered interactions that do not
exist in reference databases. Like all ML strategies, MelonnPan
relies heavily on the accuracy of training data. As such, while
untargeted metabolome profiling strategies generate the most
comprehensive overview of the metabolites present within a
sample, coverage is unavoidably limited due to the inherent
technical biases associated with either MS or NMR (Christians
et al., 2011; Vuckovic, 2012). Hence, we were mindful to include
metabolome data generated by multiple platforms to expand and
diversify the training set and thus improve coverage of human
gut-associated metabolites. In the current evaluation, although
we tried our best to include as many paired samples as possible
(over 900 pairs) to train the ML model, variance in prediction
performance was observed across studies, which suggests more
training sets are still needed to obtain a general and robust
prediction model.

While conducting the differential metabolite evaluation, we
observed the highest F1 score in the MelonnPan-predicted
metagenomic dataset of Franzosa et al. (2019) as well as
the metagenomic dataset of Lloyd-Price et al. (2019). Similar
results were observed while evaluating MelonnPan with datasets
generated in three independent IBD studies (for a disease-
specific model; Supplementary Figure 6). Of all the datasets
evaluated, these two were generated in the most similar manner,
i.e., metabolome data were obtained from 4 LC-MS methods
(targeting polar metabolites, metabolites of intermediate polarity,
and lipids) while microbiome metagenomic sequencing data were
generated using an Illumina HiSeq platform. Numerous factors
and processes contribute significantly to variances observed
between studies (e.g., sample preparation, instrument settings,
and user variation) in both metabolome and microbiome
sequencing-based investigations (Gika et al., 2010; Tulipani et al.,
2013; Clooney et al., 2016). Thus, the high F1 scores observed in
Franzosa et al. and Lloyd-Price et al’s metagenomic datasets are
likely due to similar data generation techniques. Furthermore,
it stands to reason that while one dataset is used in a training
model, prediction for a new study of similar datatypes is more
accurate. This could also explain the superior performance
reported in Mallick et al. (2019) MelonnPan paper, wherein
training and testing datasets were generated using the exact same
microbiome sequencing and metabolomic technologies. We also
noticed metatranscriptomic-based prediction performed worse
than metagenomic-based prediction for differential metabolite

identification. This again could be due to the dataset type in
the training set because we observed higher RTSI scores (a
measurement to quantify the representativeness of new samples
with respect to training datasets from MelonnPan; the higher
the value, the more accurate prediction is; Mallick et al., 2019)
when using metagenomic data for prediction compared to
metatranscriptomics in the Lloyd-Price et al’s study. The choice of
training datasets will also impact the computing demand for ML-
based methods and should be taken into consideration. From our
experiences, MelonnPan took average 24 CPU hours to train with
the current datasets (∼900 paired samples) while the prediction
step finished in less than 10 min, similar to the reference-based
MIMOSA and Mangosteen prediction. Ultimately, the training
time could be eliminated if one general model is built and
used repeatedly for prediction. This information is extremely
useful for future metabolite prediction applications using ML-
based approaches like MelonnPan and reminds the user of
the importance of choosing appropriate training and prediction
datasets with the goal of optimizing downstream prediction
indices. With more and more metabolomic data being deposited
into public domains, the ability to construct either datatype
depend or independent ML models will expand rapidly and
researchers will be able to choose appropriate datasets for training
and prediction. Moreover, advances in untargeted metabolomic
technologies with broader coverage, superior resolution, and
greater accuracy (Ghaste et al., 2016; Ortmayr et al., 2016;
Týčová et al., 2017; Bingol, 2018) will collectively lead to
significantly improved training data, and in turn, more accurate
ML-based predictions.

As opposed to ML-based and data-driven approaches,
reference-based methods can potentially identify/predict
metabolites whose concentration or specific chemical properties
precluded them from detection via conventional untargeted
metabolome profiling as well as ML-based prediction (Karu
et al., 2018). Reference-based prediction pipelines make use
of well-curated information in massively large repositories to
infer possible metabolites within a sample. As such, the integrity
and comprehensiveness of the database to be queried factors
significantly into the process. KEGG (Kanehisa et al., 2011)
and BioCyc (Caspi et al., 2011) are two widely used databases
that house curated metabolic pathway information from the
annotated genomes. With regard to Mangosteen predictions, we
linked significantly more metabolites from RXNs collected from
BioCyc than the KEGG database (Supplementary Figure 3), but
this did not help BioCyc-based prediction to achieve greater F1
scores. The greater number of observed compound connections
with BioCyc is consistent with previous reports showing BioCyc
houses a greater number of compounds associated with reactions
(“all reaction substrates”) than KEGG (Altman et al., 2013).
There are also many assumptions germane to reference-based
prediction that are not accurate when describing the human
gut microbiome (e.g., gene and/or transcript abundance is
reflective of enzymatic activity, microbial communities are
well-mixed, steady-state systems sans compartmental effects;
Kumar et al., 2019). Nevertheless, de novo metabolite prediction
is only one possible use of these reference-based tools, as the
full functionality of MIMOSA is to identify metabolites which
show strong evidence of their microbial producers/consumers
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and Mangosteen is better at identifying all linked metabolites
when given a microbial feature (KO or RXN), either differential
ones between case and control or any features the researchers are
interested in. Ultimately, caution and common sense go a long
way in interpreting the predicted metabolite profiles resulting
from reference-based pipelines.

There are several limitations in the current evaluation that
need to be taken into consideration when researchers try to
choose the optimal prediction tool for their research. While we
treated the empirically measured, untargeted metabolome as a
“gold standard” and directly compared all pipeline prediction
results to this profile, biases in technology render even this
portrayal imperfect in its attempt to unveil the true and
complete metabolite pool (Christians et al., 2011; Vuckovic,
2012; Karu et al., 2018). In reality, predicted metabolites
that were treated as false positives might not actually be
false, and in turn, the actual performance of these prediction
pipelines might supersede what we report here. Additional
profiling of these “false positive” metabolites or technological
advances in untargeted metabolomics will help to mitigate
the issue on “false positive” predictions. In addition, although
we tried to select the metabolome data in a uniform way,
there are variations in extraction methods, chromatography
conditions, model of the machines as well as software and
databases between studies (Supplementary Table 1), which are
currently not considered during evaluation. Secondly, the current
evaluation only focuses on the human microbiome from stool
and intestinal tissues, the performance of these software on
other types of microbiome data, such as environmental samples,
could vary and warrants further evaluation efforts. Moreover,
emerging tools that integrate microbiome and metabolome data
could add more interpretability beyond metabolites prediction
and help researchers to understand the origin of metabolites
and its association with microbiome, such as Annotation
of Metabolite Origins via Networks (AMON; Shaffer et al.,
2019), neural network based mmvec (Morton et al., 2019),
MIMOSA2 (MIMOSA2, 2020), Generalized correlation analysis
for Metabolome and Microbiome (GRaMM; Liang et al.,
2019), etc.

Predicting metabolic capacity and metabolite diversity
is of paramount consequence to better understanding and
manipulating the function(s) of microbial communities, all
of which bears immense significance to improving human
health and empowering environmental microbiome research
(Turnbaugh and Gordon, 2008; van Dam and Bouwmeester,
2016; Van Treuren and Dodd, 2020). Ultimately, this evaluation
serves as a framework and launching point for future initiatives
interested in exploiting metabolite prediction as a cost-effective
means of generating cogent hypotheses.
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