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Abstract

Multiple sclerosis is associated with Epstein–Barr virus (EBV) infection,
B-cell dysfunction, gut dysbiosis, and environmental and genetic risk
factors, including female sex. A disease model incorporating all these
factors remains elusive. Here, we hypothesise that EBV-infected
memory B cells (MBCs) migrate to gut-associated lymphoid tissue
(GALT) through EBV-induced expression of LPAM-1, where they are
subsequently activated by gut microbes and/or their products
resulting in EBV reactivation and compartmentalised anti-EBV
immune responses. These responses involve marginal zone (MZ)
B cells that activate CD4+ T-cell responses, via HLA-DRB1, which
promote downstream B-cell differentiation towards CD11c+/T-bet+

MBCs, as well as conventional MBCs. Intrinsic expression of low-
affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs
promotes polyreactive BCR/antibody responses against EBV proteins
(e.g. EBNA-1) that cross-react with central nervous system (CNS)
autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific
CD11c+/T-bet+ MBCs migrate to the meningeal immune system and
CNS, facilitated by their expression of CXCR3, and induce cytotoxic
CD8+ T-cell responses against CNS autoantigens amplified by BAFF,
released from EBV-infected MBCs. An increased abundance of
circulating IgA+ MBCs, observed in MS patients, might also reflect
GALT-derived immune responses, including disease-enhancing IgA
antibody responses against EBV and gut microbiota-specific
regulatory IgA+ plasma cells. Female sex increases MZ B-cell and
CD11c+/T-bet+ MBC activity while environmental risk factors affect
gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk
factors converge in GALT to generate aberrant B-cell responses that
drive pathogenic T-cell responses in the CNS.
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INTRODUCTION

Multiple sclerosis (MS) is an immune-mediated
inflammatory disease of the central nervous
system (CNS) that results in demyelination of
neurons and neurological disability. Multiple risk
factors for developing MS have been identified,1,2

including female sex; genetic variations impacting
the function of the immune system,3 particularly
alleles of genes encoding human leucocyte
antigens (HLAs) of which HLA-DRB1*1501 is the
strongest genetic risk factor4; chronic infection
with Epstein–Barr virus (EBV)5; variation of the
gut microbiome; low ultraviolet radiation (UVR)
exposure; low vitamin D levels; and smoking
cigarettes. While past research on the
immunopathology of MS has focussed on CD4+

T cells, there is growing awareness that CD8+

T cells and B cells, and the effect of EBV infection
on these cells, are central to the
immunopathology underlying MS.6 We have
examined various aspects of B-cell dysfunction7–10

and the relationship of gut microbiome-derived
short-chain fatty acids (SCFAs) with immune
dysfunction11 in patients with early MS and
identified abnormalities that led to the hypothesis
proposed here; that EBV infection, B-cell
dysfunction and other risk factors converge in
gut-associated lymphoid tissue (GALT) to generate
aberrant B-cell responses that drive pathogenic
T-cell responses in the CNS (Figure 1).

Recently, there have been several important
developments in understanding the relationship
between EBV infection and the
immunopathogenesis of MS.12–14 However, the
hypothesis presented here, coupled with
published evidence from this and other
laboratories, provides a deeper and clearer insight
into the mechanisms by which EBV infection may
drive MS development.

EBV-INDUCED DYSFUNCTION OF
MEMORY B CELLS IS CENTRAL TO THE
IMMUNOPATHOGENESIS OF MS

The peri-vascular and parenchymal inflammatory
infiltrates associated with demyelination in brains
of MS patients are characterised by an abundance
of CD8+ T cells, which predominantly have
characteristics of resident memory T (Trm) cells,
and B cells.6,15,16 While uncertainty remains about
interactions between CD8+ T cells and B cells,6

B cells clearly play a fundamental role in the

inflammatory process. This became apparent over
40 years ago with the description of oligoclonal
immunoglobulins in the CSF of MS patients. More
recently, the contribution of B cells has been
demonstrated by the pronounced therapeutic
effect of B-cell depletion therapies.17 Most
recently, it has been reported that CSF oligoclonal
immunoglobulins are enriched for antibodies
reactive with EBV proteins, particularly EBV
nuclear antigen-1 (EBNA-1), reflecting the
expansion of oligoclonal B cells producing an
antibody response against EBNA-1.12 Because of
antigenic cross-reactivity, some of these antibodies
also recognise GlialCAM, a cell adhesion molecule
expressed by astrocytes and oligodendrocytes in
the CNS, in a subset of patients. Furthermore,
plasma levels of IgG antibodies to GlialCAM were
significantly higher in three independent groups
of MS patients compared with controls.12 These
findings provide a mechanistic explanation for the
numerous reports linking MS with EBV infection,5

culminating in recent reports that serological
evidence of EBV infection is present in 100% of
MS patients18 and that EBV infection acquired in
late adolescence or early adulthood is associated
with a 32-fold increased risk of developing MS.13

Furthermore, the particular significance of
antibodies to EBNA-1 in MS immunopathogenesis
is illustrated by reports that high serum levels of
anti-EBNA-1 IgG antibodies are not only
associated with an increased risk of MS but
synergise with other risk factors to increase that
risk and predict conversion from clinically isolated
syndrome suggestive of MS (CIS) to MS, whereas
antibodies to other EBV proteins do not.19–21

Epstein–Barr virus is a human gamma-
herpesvirus that is transmitted from one person to
another primarily by saliva and infects both
epithelial cells and B cells, the latter via CD21
(complement receptor 2). Following primary EBV
infection, a reservoir of latently infected B cells is
established in lymphoid tissue, particularly in the
oro-pharynx,22 from where EBV-infected B cells
may migrate to GALT and associated lymph
nodes.23 This migration is facilitated by EBV-
induced expression of the ‘gut homing molecule’
LPAM-1 (integrin a4/b7) (Figure 1). EBV primarily
establishes persistent infection of IgD�CD27+

B cells (conventional memory B cells [cMBCs]).
However, EBV DNA is also detectable to a lesser
degree in CD27+IgD+ B cells,24 which form the
major component of the IgM+ MBC subpopulation
and exhibit characteristics of circulating marginal

2022 | Vol. 11 | e1418

Page 2

ª 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

EBV, B cells and GALT in MS pathogenesis J Leffler et al.



Figure 1. Proposed model of MS disease pathogenesis. (a) During primary EBV infection, a reservoir of EBV-infected MBCs is established in

lymphoid tissue, particularly in the oro-pharynx. Reactivation of latent EBV infection in MBCs responding to oropharyngeal infections leads to lytic

EBV infection, which induces an EBV-specific CD8+ T-cell and antibody response by circulating T cells and B cells expressing high affinity BCRs.

Active EBV infection in MBCs during primary EBV infection, and possibly during subsequent reactivations of infection, induces LPAM-1 expression

on EBV-infected MBCs and their migration to GALT. (b) Episodic reactivation of latent EBV infection in MBCs residing in GALT by gut microbes

via BCRs and/or pathogen recognition receptors and/or SCFAs leads to lytic EBV infection, which induces a compartmentalised EBV-specific

immune response. This response includes MZB2 cells, some of which may also become infected by EBV. Low-affinity BCRs on MZB2 cells promote

an antibody response against EBV proteins, such as EBNA-1, that is polyreactive and cross-reacts with CNS autoantigens, such as GlialCAM. CD4+

T cells are activated by MBZ2 cells via HLA-DRB1 and ‘autoproliferate’, including in blood, as well as migrate to the CNS. These CD4+ T cells

produce IFN-c, which facilitates a CD11c+/T-bet+ MBC differentiation pathway amongst both EBV-infected and -uninfected EBV/autoantigen-

specific MZB2 cells. Gut microbiota-specific IgA+ B cells and/or plasma cells are also produced in GALT and migrate to the CNS. In addition, IgA+

cMBCs and T-bet+ MBCs accumulate in blood, possibly as a result of repeated EBV reactivation in GALT, and may generate EBV-specific IgA

antibody responses that interfere with EBV-specific IgG antibody responses. The major genetic and environmental factors associated with an

increased risk of developing MS affect these processes in GALT. (c) Both EBV-infected and -uninfected EBV protein/CNS autoantigen-specific

CD11c+/T-bet+ IgG+ MBCs migrate to the meningeal immune system within the dura, and subsequently to the CNS, facilitated by cell-surface

expression of CXCR3. At sites of inflammation in the CNS, these B cells mediate a B-cell/antibody response against EBV proteins (e.g. EBNA-1)

and CNS autoantigens (e.g. GlialCAM). This drives an autoantigen-specific CD8+ T-cell response by CD11c+/T-bet+ IgG+ MBCs acting as APCs

themselves and/or by generating production of IgG antibodies that form immune complexes with autoantigens and deliver them to cDCs, which

cross-present antigens to, and activate, CD8+ T cells. Autoantigen-specific CD8+ T cells mediate a cytotoxic cellular immune response against

antigens of myelin and/or glial cells. These activities are augmented by BAFF produced by EBV-infected CD11c+/T-bet+ MBCs or cMBCs or both.

Gut microbe-specific IgA+ plasma cells may modulate CD8+ T-cell activation via IL-10.
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zone (MZ) B cells.25 Infection of B cells by EBV
leads to the production of various EBV proteins,
including the cell-surface molecules latent
membrane protein (LMP) 1 and 2, as well as viral
transcription factors, such as EBNA-1. Together,
these molecules modulate B-cell function to keep
the infected MBC alive and evade innate and
adaptive immune responses.26 Such immune
evasion strategies first become apparent during
primary EBV infection when EBV-induced B-cell
dysfunction causes a decreased abundance of
circulating MBCs and impaired EBV-specific
neutralising antibody responses.27 This appears to
reflect impaired B-cell proliferation and survival
associated with increased expression of Fas (CD95)
on B cells and increased plasma levels of Fas
ligand, as well as increased plasma levels of B-cell-
activating factor (BAFF) but decreased levels of a
proliferation-inducing ligand (APRIL), associated
with reciprocal changes in B-cell expression of
their receptors.

Approximately 95% of adults are infected by
EBV with the majority of infections occurring
during childhood. The risk of MS is highest in
individuals who experience symptomatic primary
EBV infection, usually presenting as infectious
mononucleosis (IM), in adolescence or early
adulthood.28 IM is not observed in younger
children,29,30 possibly reflecting differences in the
immune system associated with young age, such
as Th2-skewedness, more abundant regulatory
T cells and a smaller pool of memory T cells,
rather than differences in plasma EBV DNA loads,
which are comparable in children with primary
EBV infection and IM patients.30,31 As tonsillar
B cells of IM patients strongly express the b7
integrin component of LPAM-1, it has been
proposed that EBV establishes a reservoir of
latently infected B cells in GALT during primary
infection to evade EBV-specific CD8+ T-cell
responses.23 In chronic EBV infection, EBV-specific
circulating CD8+ memory T (CD8+ Tm) cells and
CD8+ Trm cells normally control EBV replication in
epithelial cells and MBCs of the oropharynx.32 By
contrast, EBV-specific CD8+ T-cell responses may
be less effective in GALT because gut CD8+ T cells
are predominantly intra-epithelial and lamina
propia CD8+ Trm cells.31,33 In addition, MS
patients exhibit progressively less effective
circulating CD8+ Tm cell responses against
EBV-infected B cells, related to a decreased
abundance and exhaustion of EBV-specific CD8+

Tm cells. This is associated with skewing of the

EBV-specific immune response towards latent
phase antigens and increased production of IgG
antibodies to EBNA-1.34

DISEASE-ASSOCIATED MBCS IN MS
PATIENTS EXHIBIT HETEROGENEOUS
IMMUNOPHENOTYPIC AND
FUNCTIONAL CHARACTERISTICS

A large proportion of B cells infiltrating the brain
of MS patients are CD27+ MBCs and express the
EBV proteins LMP-1 and -2 on their surface.35

These cells also produce BAFF, likely as a result of
the transcriptional regulation by LMP-1.36

Analyses of CSF cells from MS patients have
provided some insight into the derivation of these
B cells. An unsupervised analysis of cells detected
by mass cytometry demonstrated a CD27+ B-cell
population that was clearly associated with MS,
although represented < 1.5% of total cells.37

Notably, these B cells expressed the chemokine
receptor CXCR3, which facilitates cell trafficking
to tissues and is only expressed by about one-
third of circulating MBCs.38 In a separate study,
analysis of single-cell transcriptomes and
immunoglobulin sequences in defined B-cell
subpopulations demonstrated that clonally
expanded, somatically hypermutated IgG1+ and
IgM+ B cells were associated with inflammation,
blood–brain barrier breakdown and intrathecal
immunoglobulin synthesis.39 Furthermore, when
compared with blood, transcripts upregulated in
CSF switched MBCs (IgD�CD27+) and plasmablasts
included those for the Th-1-associated
transcription factor T-bet, as well as CXCR3,
providing further evidence that disease-associated
MBCs might differ from the majority of circulating
MBCs. In addition, somatically hypermutated
(antigen experienced) IgM+ B cells had a
phenotype resembling MZ B cells. Together, these
observations provided evidence that MBCs
associated with CNS immunopathology in MS
might, wholly or in part, differ from cMBCs.

One of the first abnormalities of circulating
B cells recognised in MS patients was expansion of
age-associated B cells (ABCs).40 While ABCs were
initially considered to be activated and senescent
MBCs, it is now clear that they represent a distinct
subpopulation of MBCs, commonly referred to as
‘atypical MBCs’, which exhibit phenotypic and
functional characteristics that distinguish them
from cMBCs. These characteristics include
activation via TLR7 and 9 as well as B-cell
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receptors (BCRs) and differentiation under the
influence of T cells and Th1-associated cytokines,
such as IFN-c.41–43 In addition, they express a
distinctive pattern of molecules that determine
their functional characteristics, particularly T-bet
and the integrin molecule CD11c (integrin alpha
X).41,44,45 Furthermore, transcriptome analysis of
‘atypical MBCs’ has demonstrated high expression
of CD18 (integrin b2).42 The CD11c/CD18 complex
is a major adhesion molecule on antigen
presenting cells (APCs), particularly conventional
dendritic cells (cDCs).46 ‘Atypical MBCs’ express
high levels of CXCR3 in health and disease,47

reflecting the regulation of CXCR3 expression by
T-bet,48 and low levels of CD21, while CD27
expression is variable.41 Thus, whereas CD21�/T-bet+

MBCs usually exhibit a double negative (DN;
CD27�/IgD�) phenotype, differentiation towards
plasma cells is associated with high CD27
expression.49 Several other names are used to
describe B-cell subpopulations that are identical
to, or substantially overlap with, ‘atypical
MBCs’50–54 (Table 1), including CD11c+/T-bet+

MBCs which, in our opinion, best describes these
cells with regard to important functional
characteristics and is how we will refer to them
moving forward.

Production of CD11c+/T-bet+ MBCs is part of the
normal B-cell response to infection by various
pathogens, most comprehensively described for
viruses and Plasmodium sp., and to viral
vaccines.41,55,56 Furthermore, data from studies in
mice suggest that CD11c+/T-bet+ MBCs contribute
to the control, as opposed to prevention, of virus
infections, including infection by EBV-like gamma-
herpesvirus 68.57,58 In view of the T-cell
dependence of CD11c+/T-bet+ MBC
differentiation,43 the functional effects of these
cells likely occur in concert with those of effector
T cells, particularly CD8+ T cells. There is also

accumulating evidence indicating that CD11c+/
T-bet+ MBCs contribute to autoantibody responses
and that activation of these cells via TLR7 (the
gene of which is on the X chromosome) may in
part explain the female predominance of some
autoimmune diseases.52,59 Indeed, ABCs were first
observed in aged female mice predisposed to
autoimmune disease.59 Furthermore, B-cell-specific
depletion of T-bet in a mouse model of SLE not
only resulted in decreased disease manifestations
but also resulted in reduced levels of germinal
centre B cells and plasmablasts, suggesting that
T-bet+ B cells may be precursors of autoantibody-
producing plasmablasts. B cell-specific T-bet
depletion was also associated with decreased
T-cell activation.60

Although circulating CD11c+/T-bet+ MBCs are
increased in some MS patients,40 their
contribution to MS immunopathology has been
unclear. Recently, van Langelaar et al.61

demonstrated that patients with advanced MS
exhibited an accumulation of CXCR3+ B cells in
the CSF, meninges and brain and that circulating
CXCR3+ B cells expressed T-bet, the level of which
correlated with the level of CXCR3 expression.
These CXCR3(T-bet)+ B cells also expressed IgG.
CXCR3(T-bet)+ IgG+ B cells were less abundant in
blood than the CNS but their abundance
increased after natalizumab therapy, which blocks
a4 integrin and prevents migration of cells
expressing this molecule, providing evidence that
CXCR3(T-bet)+ IgG+ B cells migrate from blood to
the CNS of MS patients. The high transmigration
capacity of CXCR3(T-bet)+ IgG+ B cells was
confirmed by ex vivo studies.61 In addition, ex-vivo
cell culture studies demonstrated that T-cell-
derived IFN-c increased the expression of T-bet in
B cells of MS patients to a greater degree than in
controls and that this correlated strongly with
CXCR3 expression.61 Together, these findings

Table 1. Various names used to describe CD11c+/T-bet+ memory B cells

Name Context in which described

Age-associated B cells Originally described in aged mice and subsequently shown to be increased in autoimmune

disease in mice and humans45

Tissue-like MBCs HIV-1 infection50

Atypical MBCs Chronic infectious diseases, including HIV-1 infection, malaria and tuberculosis51

Double negative type 2 (DN2) B cells Systemic lupus erythematosus (SLE)52

CD21low B cells Common variable immunodeficiency disorder53

CD11c+, T-bet+ or CD11c+/T-bet+ MBCs Autoimmune diseases, including SLE, rheumatoid arthritis and systemic sclerosis, as well as

infectious diseases, including HIV-1 infection and malaria54
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provided compelling evidence that CD11c+/T-bet+

MBCs are more abundant than normal in the CNS
of MS patients, to where they have migrated from
blood facilitated by their expression of CXCR3.

Preliminary evidence suggests that CXCR3
(T-bet)+ IgG+ B cells are induced by reactivation of
EBV infection, as EBV DNA load correlated with
the frequency of circulating CXCR3+ cMBCs in MS
patients who had received an autologous
haematopoietic stem cell transplant, which
increases the risk of EBV reactivation.62 Supportive
evidence is provided by a study of the single-cell
transcriptome of primary B cells infected with EBV
ex vivo, which demonstrated that EBV infection
simulates antigen-induced activation and
differentiation of B cells, including production of
‘atypical MBCs’ expressing CXCR3, FcRL4 and
T-bet.63 In mice, CD11c+ B cells exhibit potent APC
activity for T cells, associated with higher
expression of HLA-DR and the costimulatory
molecules CD80 and CD86 as well as more stable
interactions with T cells, compared with follicular
B cells.64 Therefore, CD11c+/T-bet+ MBCs may be
involved in MS pathogenesis through increased
numbers related to EBV replication, increased
migratory capacity to the CNS via CXCR3
expression and by acting as APCs for pathogenic
T cells (Figure 1).

While most B cells in the meninges,
peri-vascular spaces and brain parenchyma
adjacent to areas of demyelination are IgG+,
IgA+ cells are also present and predominantly
have the characteristics of plasma cells.65 These
cells presumably produce the IgA that increases in
CSF during relapses of MS.65 Probstel et al.65 also
reported that a subset of these cells are gut
microbiota-specific IgA+ plasma cells that express
IL-10 and might play an immunoregulatory role in
MS.

REACTIVATION OF EBV IN GALT MAY
INDUCE PATHOGENIC MBC
RESPONSES

As evidence mounts that CD11c+/T-bet+ MBCs may
be important contributors to MS
immunopathology in the CNS, evidence is also
emerging that B-cell dysfunction induced by EBV
infection may arise in GALT. Within GALT and
associated mesenteric lymph nodes,23 EBV-infected
MBCs are exposed to microbial SCFAs, which have
been shown to exert stimulatory and inhibitory

effects on EBV replication,66 as well as to
antigenic stimulation by gut microbes via
BCR-dependent and -independent mechanisms.67

We propose that MBC activation and corresponding
reactivation of EBV infection induces
compartmentalised immune responses against
EBV. The GALT consists of multifollicular lymphoid
tissues, such as Peyer’s patches of the small
intestine, isolated lymphoid follicles of the small
and large intestines, the appendix, caecal and
colonic patches and rectal lymphoid tissues.67

These lymphoid tissues contain diverse immune
cells involved in the initation and propagation of
immune responses, including CD4+ T cells, IgM+

MBCs such as MZ B cells, as well as both IgA+ and
IgG+ MBCs. IgA+ MBCs are particularly prominent
because of the importance of IgA antibodies in
regulating microbial growth in the intestines.
Furthermore, IgA+ B cells and/or plasma cells
derived from GALT are an important component
of the gut-meningeal immune axis that protects
the CNS from gut-derived infections.68,69 MZ
B cells, which differentiate from IgMhi T2
transitional B cells, circulate between the spleen
MZ and GALT, where they occupy a micro-
anatomical niche independently of cMBCs.67,70

Two subpopulations of MZ B cells have recently
been defined in GALT and spleen, referred to as
MZB1 and MZB2 cells.71 MZB2 cells exhibit
characteristics that suggest they contribute to
antiviral responses and, importantly, express
HLA-DRB1 in contrast to MZB1 cells.71 DN MBCs
have also been demonstrated in GALT but it is
unclear whether they are CD11c+/T-bet+ MBCs.71

Studies undertaken in mice and humans have
demonstrated that CD11c+/T-bet+ MBCs migrate to
MZ regions of the spleen after interacting with
T follicular helper (Tfh) cells in lymphoid
follicles44,72 and it is possible that, like MZ B cells,
they also migrate to GALT. In support of this
proposal is the finding that rotavirus infection of
the gastro-intestinal tract induces circulating
antigen-specific MBCs that are skewed towards
CD27� IgG+ MBCs, as well as MZ B cells.73,74

To gain further insight into circulating MBC
dysfunction in patients with early MS, we
investigated the characteristics of MBCs expressing
BCRs with different immunoglobulin isotypes.10

We demonstrated an increased abundance of IgA+

MBCs, which has been confirmed in an
independent study of patients with more
advanced MS.75 The IgA+ MBCs in our study
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consisted of one major and two smaller
subpopulations that were all more abundant
compared with controls. One of the smaller
subpopulations consisted of CD27� IgA+ MBCs,
which are enriched amongst gut bacteria-specific
B cells,76 and may be precursors of the gut
microbiota-specific IgA+ plasma cells proposed to
exert an immunoregulatory role in MS patients.65

The major subpopulation had characteristics of
cMBCs (CD27+/CD24hi) while the other smaller
subpopulation consisted of T-bet+/CD21low IgA+

MBCs. The increased abundance of these
subpopulations also suggested an accumulation of
MBCs from mucosal B-cell responses, possibly from
repeated episodes of EBV reactivation. In support
of this proposal are reports that patients with
naso-pharyngeal carcinoma (NPC), a classical EBV-
induced cancer of mucosal tissue, exhibit an
increased frequency of IgA+ B cells in the tumor
microenvironment and blood,77,78 although a
direct relationship remains to be established.
Furthermore, a strong relationship between high
serum levels of IgA antibodies to EBV proteins
and both the development of, and a poor
outcome from, NPC has been reported.79,80

Preliminary evidence suggests that IgA antibodies
to EBV proteins may have a pathogenic effect in
EBV-associated diseases, including interference
with antibody-dependent cellular cytotoxicity
(ADCC) of EBV-infected cells mediated by IgG
antibodies.79,81 Similar mechanisms have been
reported to explain the adverse effect of IgA anti-
HIV-1 gp120 on ADCC responses in people with
HIV-1 infection.82 The circulating IgA+ MBCs that
are more abundant in MS patients might
therefore be part of separate immune responses
against gut microbiota or EBV that have opposite
effects on disease pathogenesis (Figure 1). It is
possible that the increased abundance of
circulating IgA+ MBCs in EBV-associated diseases is
an effect of EBV infection itself, as expression of
EBV LMP-1 on B cells induces class switch
recombination (CSR) of immunoglobulin heavy
chain (IGHC) gene DNA, potentially through
increased expression of BAFF and APRIL.36

In addition to the increased abundance of
circulating IgA+ MBC, further evidence that B-cell
dysfunction in patients with early MS arises in
GALT is provided by our observations on
abnormalities of circulating MZ B cells. First,
female patients exhibited decreased expression of
the inhibitory Fcc receptor (FccR) FccRIIb on

circulating MZ B cells, as well as on na€ıve B cells,
which was associated with serological evidence of
EBV reactivation.9 Second, EBV reactivation was
associated with an increased abundance of
circulating T-bet+/CD21low IgM+ MBCs and CXCR3+

IgM+ MBCs as well as increased expression of
HLA-DR on IgM+ MBC in all patients.10 Based on
these findings and those of multiple studies in mice
and humans implicating MZ B cells in producing
autoantibody responses,83 we propose that MZ
B-cell activation and dysfunction associated with
EBV reactivation in GALT may be determinants of
pathogenic B-cell responses in MS (Figure 1). MZ
B cells express BCRs with low affinity for antigens,84

which would confer greater polyreactivity with
antigens.85 While this may be advantageous in
‘frontline’ B-cell responses against pathogens,
including gut microbes, it increases the likelihood
of BCR and antibody cross-reactivity with
autoantigens and induction of autoantibody
responses.86 Indeed, monoclonal IgG antibodies to
HIV-1 gp140 derived from intestinal B cells of
people with HIV infection exhibit low affinity,
high polyreactivity and cross-reactivity with
autoantigens.87 Impaired regulation of MZ B-cell
activation via decreased FccRIIB expression in
female patients with MS would compound these
abnormalities by impairing peripheral tolerance
mechanisms.88 In addition, murine T-bet+ IgM+

MBCs, which also express CXCR3, generate
multilineage effector B cells89 and maintain long-
term antibody responses.90 It is therefore possible
that the circulating T-bet+/CD21low and CXCR3+

IgM+ MBCs we observed to be associated with
EBV reactivation are precursors of the CXCR3
(T-bet)+ IgG+ B cells implicated in the
immunopathogenesis of brain lesions in advanced
MS61 and of the circulating T-bet+/CD21low IgA+

MBCs that we reported are increased in patients
with early MS.10 However, further studies are
required to experimentally establish such a link.
Infection of CD11c+/T-bet+ MBCs by EBV is likely to
occur at the MZ B-cell stage because these cells
express large amounts of CD21.83 Notably, CpG
DNA ligation of TLR9 induces terminal
differentiation of MZ B cells into autoantibody-
producing cells,91 which may contribute to EBV-
induced MZ B-cell dysfunction. Therefore, we
propose that MZ B cells expressing polyreactive
BCRs are primed by the microbiome and/or lytic
EBV infection in the GALT and differentiate into
CD11c+/T-bet+ MBCs.
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EBV-INDUCED ACTIVATION AND
DYSFUNCTION OF B CELLS IN GALT
MAY INDUCE B-CELL RESPONSES THAT
FACILITATE PATHOGENIC CD8+ T-CELL
RESPONSES IN THE CNS

While debate continues about the role of CD8+

T cells in CNS lesions of MS patients,92 compelling
arguments have been made that they mediate
glial cell damage and/or demyelination, although
uncertainty remains concerning their antigen
reactivity.6 Whether the CD8+ T-cell response is
primarily against neurons, other CNS cell-types, or
against EBV-infected cells, with bystander damage
to neurons, remains uncertain. Indeed, there has
been a robust debate as to whether or not EBV
proteins or genomes are detectable in brain
lesions of MS patients.93 In our view, there is
convincing evidence of EBV in inflammatory cells,
including B cells,94,95 as well as evidence that CD8+

T cells reactive with multiple lytic and latent
phase proteins of EBV and exhibiting a cytotoxic
phenotype are co-located with B cells in CNS
lesions of patients with advanced MS.94 However,
it could not be determined whether these CD8+

T cells were EBNA-1-specific because only the
most immunodominant EBNAs (3A and 3C) were
included in the pentamer probes used.
Nevertheless, the demonstration of cross-reactive
B-cell responses against EBNA-1 and GlialCAM in
patients with MS12 provides support for a
hypothesis that EBV-infected MBCs, including
CD11c+/T-bet+ MBCs, generate B-cell responses
against both EBV proteins and glial cell and/or
myelin proteins that could drive pathogenic CD8+

T-cell responses. Thus, EBV-infected B cells are
capable of cross-presenting antigens to CD8+

T cells, facilitated by increased expression of class I
and II MHC molecules and the costimulatory
molecules CD40, CD80 and CD86, as well as
activation of the cross-presentation machinery.96

This process is likely more robust in CD11c+/T-bet+

MBCs because they express molecules typically
found on APCs (CD11c/CD18) and exhibit potent
APC activity in mice.64 In addition, IgG antibodies
to antigens, such as EBNA-1/GlialCAM, might
enhance CD8+ T-cell responses against these
molecules, and possibly other CNS autoantigens
through epitope spreading,97 via cDCs. As
exemplified by HIV-198,99 and murine
cytomegalovirus100 infections, antibodies can act
synergistically with CD8+ T cells in immune
responses against viruses, which is likely to occur

via binding of antigen–antibody complexes to
FccRs on cDCs and cross-presentation of antigens
to CD8+ T cells.101,102 The latter mechanism would
likely be augmented by an IgG antibody response
generated from CD11c+/T-bet+ MBCs as they are
skewed towards IgG3, as well as IgG1,
production.103–105 IgG3 binds more avidly to cell-
surface FccRs than other IgG subclasses106 and also
elicits an antiviral response by binding to the
intra-cellular Fc receptor TRIM21,107 which when
bound by immune complexes in DCs, promotes
antigen cross-presentation and stimulation of
CD8+ T cells.108 Furthermore, in murine models of
SLE, CD11c+/T-bet+ MBCs cause aberrant
differentiation of Tfh cells resulting in impaired
affinity maturation of antibody responses.109 Our
observation that serum levels of IgG2, which is
encoded by the third IGHC gene block (IgG2, IgG4
and IgA) and a product of high levels of CSR in
MBCs,105 are decreased in patients with early MS7

raises the possibility that expansion of CD11c+/
T-bet+ MBCs may also impair Tfh cell regulation of
B-cell CSR in patients with MS. Together, these
effects of CD11c+/T-bet+ MBCs might explain our
observations that higher serum IgG3 levels predict
the rate of progression of early MS7 and that the
abundance of IgG3+ MBC is increased in some MS
patients.110

Another mechanism by which MBCs might
activate T cells was proposed by Jelcic et al.,111

who demonstrated that circulating MBCs from
patients with MS drive the proliferation of
autologous CD4+ T cells (referred to as
autoproliferation). This mechanism was HLA-DR-
dependent and most notable in patients carrying
HLA-DR15. ‘Autoproliferative’ CD4+ T cells
exhibited a Th1 phenotype, including production
of IFN-c, and it was proposed that they contribute
to autoimmune responses in the CNS. Notably, the
degree of CD4+ T-cell ‘autoproliferation’ positively
correlated with the frequency of circulating
unswitched MBCs only, implying that CD4+ T-cell
proliferation was driven by IgM+ MBCs, which are
predominantly MZ B cells. Furthermore, the same
research group demonstrated that CD4+ T-cell
responses against self-peptides, presented by
HLA-DR15 on B cells, may be cross-reactive with EBV
peptides.112 Given that MZ B cells can potently
stimulate CD4+ T cells,113 our observations that
reactivation of EBV infection in patients with
early MS is associated with increased expression of
HLA-DR on IgM+ MBC10 and decreased expression
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of FccRIIb on circulating MZ B cells in females9

raises the possibility that EBV-induced activation
and/or dysregulation of MZ B cells may contribute
to CD4+ T-cell ‘autoproliferation’. Furthermore,
IFN-c produced by ‘autoproliferative’ CD4+ T cells
might promote a pathway of CD11c+/T-bet+ MBC
differentiation from MZ B cells43 (Figure 1). It
should be noted that ‘autoproliferative’ CD4+

T cells were most frequent during disease remission
but this likely reflects the ‘brain-homing’
characteristics of these cells during disease
relapse.111

EBV-INDUCED DYSREGULATION OF
THE BAFF/BAFF-R PATHWAY MAY
CONTRIBUTE TO PATHOGENIC B-CELL
RESPONSES THAT DRIVE CD8+ T-CELL
RESPONSES

Primary EBV infection is associated with increased
production of BAFF and decreased expression of
BAFF-R on B cells,27 likely reflecting the effect of
LMP-1 on BAFF production by B cells36 and BAFF-R
shedding resulting from BAFF ligation.114 Our
analysis of circulating MBCs in patients with early
MS demonstrated decreased BAFF-R expression on
multiple B-cell subpopulations and was related to
serum BAFF levels.10 EBV-induced dysregulation of
the BAFF/BAFF-R pathway may therefore persist in
early MS, although we did not observe a
relationship between BAFF-R expression and EBV
reactivation.10 The role that the BAFF/BAFF-R
pathway plays in the immunopathogenesis MS is
unclear, as highlighted by the failure of BAFF
inhibitor therapy to prevent relapses of MS in
clinical trials.115 However, there is robust evidence
that CSF BAFF levels and CSF/serum BAFF indices
are decreased in MS37,116 and that CSF/serum BAFF
indices correlate inversely with intrathecal IgG
synthesis,117 suggesting BAFF utilisation by CNS
and/or meningeal B cells. Evidence from other
diseases, such as malaria,118 suggests that the
effect of BAFF on CNS and/or meningeal B cells
may impact CD11c+/T-bet+ MBCs to a greater
degree than cMBCs. In controlled human malaria
infection, an increased abundance of circulating
CD11c+/T-bet+ MBCs, increased plasma BAFF levels
and reduced expression of BAFF-R on B cells were
observed and BAFF levels correlated with
proliferation of CD11c+/T-bet+ MBCs but not
cMBCs.118 In addition, in patients with SLE,
inhibition of BAFF activity by belimumab, a
monoclonal antibody to BAFF (also known as

Blys), led to a decline in circulating CD11c+/T-bet+

MBCs (defined as IgD�/CD27� or CD11c+/CD21�),
as well as na€ıve B cells but not cMBCs (IgD�/
CD27+).119 Interestingly, murine T-bet+ IgM+ MBCs
express larger amounts of BAFF-R compared with
follicular B cells.89 Given that BAFF enhances the
APC activity of B cells,120 it is possible that BAFF
produced by EBV-infected MBCs35 or astrocytes121

augments the effects of pathogenic B cells on
CD8+ T-cell responses in the CNS (Figure 1). The
effect of belimumab therapy is currently being
evaluated in patients with MS (ClinicalTrials.gov
identifier: NCT04767698).

THE INCREASED RISK OF MS
DEVELOPMENT IN FEMALES MAY BE
RELATED TO SEX-SPECIFIC B-CELL
RESPONSES AGAINST EBV

MS is 2–3 times more common in females than in
males.122,123 It is well-established that females
respond more strongly to viral infections than
males and this also applies to EBV, as we have
recently reviewed.124 As a result, EBNA-1-specific
IgG antibody levels are generally higher in females
than in males125,126 and this likely contributes to
some of the increased risk of MS in females. Sex-
related differences in the function of CD11c+/T-bet+

MBCs and MZ B cells might also contribute. Data
from animal models suggest that CD11c+/T-bet+

MBCs are more prominent in females than in
males, particularly during ageing when only
female mice display an expansion of these cells.59

A recent study has further identified that CD11c+/
T-bet+ MBCs are functionally different in females
compared with males, particularly in their ability to
mount an interferon gene signature, and this
difference was related to the development of SLE
in female mice.127 The mechanism by which
CD11c+/T-bet+ MBCs are expanded in females
remains unclear but likely relates to TLR7 signalling
being a driving pathway for CD11c+/T-bet+ MBC
induction and TLR7 expression being higher in
females because of deficient X chromosome
inactivation.45 Support for this argument is
provided by the recent report that TLR7 gain-of-
function mutations are a cause of SLE.128 The
location of CXCR3 on the X chromosome and its
susceptibility to X chromosome inactivation
escape129 may also result in higher CXCR3
expression on CD11c+/T-bet+ MBCs in females. In
our studies, low expression of FccRIIb was only
observed on MZ and naive B cells in females.9
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Healthy females have lower expression of FccRIIb
on B cells than males130 and oestrogens increase
the abundance of MZ B cells.83 Hyper-
responsiveness and increased abundance of MZ B
cells might therefore contribute to dysregulation
of downstream B-cell subsets following class
switching and female predisposition to
autoimmune diseases, including MS.

POTENTIAL EFFECTS OF CHANGES
IN GUT MICROBIOME, LOW SUN
EXPOSURE, LOW VITAMIN D LEVELS
AND CIGARETTE SMOKING ON
EBV-INDUCED B-CELL DYSFUNCTION
IN GALT

Environmental risk factors for MS, such as an
altered gut microbiome, low sun exposure, low
vitamin D levels and cigarette smoking must also
be considered in a hypothesis that implicates EBV-
infected MBC within GALT in the
immunopathogenesis of MS (Figure 1). Here,
these risk factors will be considered as potential
regulators of EBV infection and immune cell
interactions in GALT.

Gut microbiota

The gut microbiota plays a homeostatic role in
regulating intestinal barrier integrity and cellular
interactions in GALT. Soluble products of gut
microbes, particularly SCFAs, may alter B-cell
activity131,132 and contribute to modulating other
immune cells in GALT.133,134 This laboratory has
shown, like others,135 that serum propionate
levels are lower in patients with CIS or MS than in
healthy controls.11 Furthermore, serum levels of
propionate positively correlated with the
frequencies of circulating Tfh and T follicular
regulatory cells. Serum levels of butyrate
correlated positively with frequencies of IL-10-
producing B cells but negatively with frequencies
of cMBCs, while acetate levels correlated
negatively with TNF production by polyclonally-
activated circulating total B cells. Thus, levels of
serum SCFAs were associated with changes in
circulating immune cells that can be implicated in
regulation of immune cell function in GALT and
the development of MS. Furthermore, the
findings of other investigators suggest that there
is a link between changes in the gut microbiota
and dysregulation of MZ B cells associated with
autoimmunity.83

Antigenic cross-reactivity between gut microbes
and autoantigens has been proposed as a
mechanism of inducing autoreactive T cells in
several autoimmune diseases.136 In addition,
SCFAs produced by gut microbes may exert
stimulatory or inhibitory effects on EBV
reactivation in GALT MBCs, particularly in the
colon where acetate, propionate and butyrate are
produced in large amounts by bacteria.66

However, the relationship between plasma levels
of SCFAs and their abundance in the colon, and
the effect of relative amounts of each SCFA on
EBV reactivation, require further investigations.

Low sunlight exposure

A latitude gradient for MS risk has been
recognised for decades, with a higher prevalence
of MS recorded in populations living at higher
latitudes.137 A recent study has also suggested a
relationship between low sun exposure and MS
severity.138 Multiple mechanisms of immune
suppression after skin exposure to sunlight and its
component ultraviolet B (UVB) radiation have
been proposed and many altered immune cell
types and soluble mediators have been described
as potential contributors to systemic
immunosuppression.139–141 A recent study by our
group suggested that narrowband UVB
phototherapy primed the participant’s B cells to
be less responsive to activation through TLR7.8

Direct induction of type I IFNs through sun
exposure could be another mechanism of UV-
induced immune modulation of MS.138

In a recent report, low sun exposure acted
synergistically with high EBNA-1 antibody levels in
its association to increased MS risk142 supporting
the submitted hypothesis. The authors proposed
that the two risk factors for MS (EBV infection
and low sun exposure) re-enforced the actions of
each other. In addition, the proportion of EBV
positive individuals is positively associated with
latitude independently of MS status.143

Exposure of skin to suberythemal narrowband
UVB phototherapy can also modulate the gut
microbiome.144 In healthy individuals receiving
three exposures to narrowband UVB radiation
over a single week, there was increased diversity
of the gut microbiome and the relative
abundance of Firmicutes and Proteobacteria
increased in their faecal samples; the
Bacteroidetes phyla were reduced by UVB.144 In
mice chronically exposed to suberythemal
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broadband UVR, similar faecal changes in
Firmicutes and Bacteroidetes have been
reported.145

The impact of these UVR-induced changes has
been difficult to interpret for patients with MS,
for whom there have been multiple varied and
confusing disease-associated changes reported in
their microbiome.11 In the context of gut
microbiota, families within Firmicutes, such as
Lachnospiraceae and Ruminococcaceae, are
generally considered health promoting.146 Despite
indirect evidence, further studies are required to
determine whether any UVB radiation-induced
changes to the microbiome of MS patients might
regulate reactivation of EBV infection and/or
EBV-specific immune responses and EBV-induced
immune dysregulation in the GALT.

Low vitamin D levels

Low vitamin D levels are a risk factor for MS.147

However, it is much debated whether they are
merely a biomarker of low sun exposure or the
causal agent in the development of immune-
driven diseases associated with low sun exposure.
Supplementation studies of vitamin D for patients
with MS have cast doubt on the role of reduced
vitamin D levels per se147 but more studies are
required. Of interest, reduced serum levels of
EBNA-1 antibodies have been reported in vitamin
D-supplemented MS patients.148,149 Although the
active form of vitamin D (1,25(OH)2 vitamin D) has
proven direct effects on immune cells in vitro,150

in studies of mice, vitamin D obtained by diet
induced a different gut microbiome to that
measured in those obtaining their vitamin D by
broadband UVR exposure.145,151 By contrast, there
was evidence that UVR-induced vitamin D was
responsible for microbiome changes in individuals
receiving UVB phototherapy.144 It remains possible
that UVR regulates the gut microbiome, and we
propose immune cell reactivity in the GALT, by
multiple pathways that may be dependent on,
and independent of, vitamin D actions.

Cigarette smoke

Smoking cigarettes is a well-established risk factor
for MS.152 Recently, the impact of smoking on
EBV reactivation and circulating levels of anti-
EBNA IgG and IgA has been investigated.153 These
and other studies154 suggest that smoking may
promote EBV reactivation and increase serum

EBNA-1 IgG antibody levels. Furthermore, a
history of IM and smoking appears to interact to
increase the risk of MS.153 Cigarette smoking also
affects the composition of the gut microbiome155

and may interact with other factors affecting the
gut microbiome in MS patients. Smoking induces
an expansion of circulating cMBCs, including IgA+

cells,156,157 but this effect may be transient
because circulating B-cell profiles are not different
in smokers and non-smokers.157 Expression of
CD11c or T-bet by B cells does not differ in
smokers compared with non-smokers.158

CONCLUSIONS AND FUTURE
PERSPECTIVES

Our hypothesis brings together the major genetic
and environmental risk factors for developing MS
into a single disease model (Figure 1) and
proposes mechanisms to explain altered B-cell
phenotypes, the production of B-cell and antibody
responses against EBV proteins that cross-react
with CNS autoantigens, the contribution of CD4+

T cells, and the concurrence of CD8+ T cells and
B cells in CNS inflammatory lesions. It also opens
new avenues of research on MS
immunopathogenesis and therapy. As shown in
Table 2, all three types of MBCs likely contribute
to the immunopathogenesis of MS, but through
different mechanisms. As all express CD20,
monoclonal anti-CD20 antibody therapies would
deplete all subpopulations. We suggest that
investigation of EBV-specific immune responses
arising in GALT may be as enlightening as
investigations of gut microbiota-specific immune
responses have been, specifically those involving
MZ B cells, CD11c+/T-bet+ IgG+ MBCs and IgA+

MBCs. Furthermore, the possibility that all GALT-
associated B cells contribute to the gut-meningeal
immune axis69 in health and disease should be
considered. Such investigations may lead to more
targeted therapies for modulating B-cell
dysfunction. For example, therapeutic inhibition
of adenosine receptor 2a on CD11c+/T-bet+

MBCs159 is potentially a means of decreasing
pathogenic B-cell responses without impairing
global B-cell function. Future investigations of the
gut microbiota and/or SCFAs in studies of MS
pathogenesis should include analyses of the
relationship with EBV reactivation and activation
of circulating MBCs, particularly MZ B cells. Such
investigations may identify new biomarkers to
assess interactions of EBV with B cells and reveal
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novel therapeutic targets to limit EBV-associated
immunopathology in the CNS.
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