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Abstract: The edible yellow mealworm (Tenebrio molitor), contains an extremely diverse panel of
soluble proteins, including proteins with structural functions such as muscle proteins, as well as
proteins involved in metabolic functions such as enzymes. Most of these proteins display a more
or less pronounced allergenic character toward previously sensitized people, especially people
allergic to shrimps and other shellfish. A mass spectrometry approach following the separation of a
mealworm protein, extracted by sodiumdodecyl sulfate-polyacrylamide gel electrophoresis, allowed
us to identify up to 106 distinct protein fractions including molecules with structural and functional
functions, susceptible to developing an allergenic potential due to the possibility of immunoglobulin
E-binding cross-reactions with their counterparts occurring in shellfish. In this respect, most of the
sera from people allergic to shrimps reacted with the mealworm protein extract in Western blot
experiments. Moreover, the potential mealworm allergens triggered the in vitro degranulation of rat
leukemic basophils transfected with the human high-affinity IgE receptor (FcεRI), upon sensitization
by the IgE-containing sera from people allergic to shrimps and other shellfish foods. Owing to
the large repertoire of IgE-binding cross-reacting allergens the yellow mealworm shares with other
phylogenetically-related groups of arthropods, it would seem prudent to inform the consumers,
especially those allergic to shellfish, by appropriate labeling on edible mealworm packages about the
potential risk of developing an allergic reaction.

Keywords: allergen; allergenicity; immunoglobulin E cross-reacting allergens; yellow mealworm;
Tenebrio molitor; arthropods; food allergy; in vitro degranulation test; mass spectrometry

1. Introduction

Promoting the use of alternative sources of proteins to cover the food needs of the steadily
increasing world population has now become a major concern for the future. Additionally, new sources
of proteins are required to be produced in accordance with the energetic and environmental constraints,
e.g., with an environmentally accepable carbon footprint [1–8]. In this respect, the industrial farming of
edible insects and the production of insect proteins has reached a sufficient degree of improvement to
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meet most of these environmental requirements [9–11]. Beyond their nutritional value, insect proteins
produced from industrial farming meet the toxicological and microbiological safety requirements
allowing them to be available as safe food products [12–16]. However, due to the phylogenetic
relationship between insects and other arthropods, there is some allergological concern since an allergic
reaction may occur in consumers suffering from a shrimp allergy [17–23]. In agreement, hypersensitivity
reactions due to the consumption of edible insects have been reported, especially in people living
in countries where edible insects are traditionally consumed for a long time [24–31]. In addition,
tropomyosin and arginine-kinase have been identified as the major allergens of insects [32–36]. More
recent investigations have pointed out the risk of allergic reactions associated with the consumption of
yellow mealworm (Tenebrio molitor), a commonly farmed edible insect in European countries, for people
allergic to shrimps [37–39]. Different IgE-binding cross-reacting allergens including tropomyosin,
α-amylase, arginine kinase, and hexamerin, have been identified as the major offending food allergens,
especially of the yellow mealworm [40–42]. However, owing to the extreme complexity of the insect
protein content, the list of IgE-binding cross-reacting allergens occurring in mealworm most probably
remains incomplete and the present work was aimed at providing a more exhaustive list of potential
immunoglobulin E (IgE)-binding cross-reacting allergens susceptible to occur in mealworm.

2. Experimental Procedure

2.1. Yellow Mealworm Protein Extract

A total of 150 mg of yellow mealworm flour (Micronutris) was suspended in 850 µL of tris-buffered
saline (Tris 20 mM, NaCl 130 mM, ethylenediaminetetraacetic acid 2 mM, pH 7.4) and homogenized
by two grinding steps of 40 s each with steel pellets in a Fast Prep-24 homogenizer (MP Biomedicals,
Illkirch, France). The resulting slurry was centrifuged at 13,000 rpm for 10 min at 4 ◦C. The supernatant
fraction was carefully collected while avoiding the floating lipid layer and stored at −20 ◦C until used.
The protein content in the mealworm protein extract was estimated by the bicinchoninic method kit
(Pierce) [43], using bovine serum albumin (Sigma, Saint Quentin Fallavier, France) as a standard.

2.2. Patient Sera

Well documented blood samples with various specific IgE content were drawn after receiving
the informed consent of 21 patients experiencing shrimp anaphylaxis. Their reactivity towards the
yellow mealworm extract was checked in dot-plot experiments and Western blot analyses. Dust mite
allergic patient sera (n = 13) were also checked for IgE-reactivity towards the mealworm extract. A new
table indicating for 21 sera from shrimp-allergic patients and 13 sera from dust mite allergic patients
(Table A1), the measured specific IgE contents (express as kU·L−1) and cross-reactivities, is proposed as
an Annex to the text.

2.3. Dot-Blot Screening

The shrimp-allergic patient sera were screened for their IgE-reactivity towards the yellow
mealworm protein extract using a dot-blot technique. The mealworm protein extract (1 µL) was
spotted on a nitrocellulose membrane at increasing protein concentrations (1, 5, 10, 15, and 20 µg·mL−1),
and checked for IgE-binding reactivity with the shrimp-allergic patient sera using goat horseradish
peroxydase (HRP)-labelled antihuman IgE (Invitrogen) as a probe, as described in §4.3 for Western
blot experiments. Dust mite allergic patient sera (n = 13) were also checked for IgE-reactivity towards
the mealworm extract but only two of them gave a readily positive result in dot-blot experiments.

2.4. SDS-PAGE and Western Blot Experiments

SDS-PAGE was performed in 12.5% acrylamide gels and protein fractions were stained with
Coomassie blue R250 (BioRad, Marnes-la-Coquette, France) [44]. Western blot experiments were
performed after a semi-dry transfer of the protein fractions separated by SDS-PAGE on nitrocellulose
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sheets (Amersham, Les Ulis, France). After an overnnight incubation in 10 mM PBS (pH 7.4) containing
5% (v/v) skimmed milk, membranes were soaked in properly 1:10 diluted shrimp-allergic patient sera
and incubated in a moist chamber for 2 h at room temperature. After three washings of 10 min each
with the same buffer, membranes were soaked and incubated for 1 h under gentle stirring, in goat
HRP-labelled antihuman IgE (Invitrogen) diluted 1:1500. Following three washings of 10 min each
with buffer, the immunolabelled protein fractions were revealed using the SuperSignal West Dura
substrate (ThermoScientific, Illkirch, France) by chemiluminescence.

Bi-dimensional SDS-PAGE was performed using strips with pH 3.0–10.0 (ZOOM Strip pH
3-10NL-Novex, Illikirch, France). The yellow mealworm protein extract was mixed with the rehydration
solution BioRad (CHAPS 4%, 0.2% BioLyte 1X, urea 8M, DTT 20 mM), added to a final volume of
155 mL/strip, and strips were rehydrated overnight in the scelled ZOOM IPGRunner cassettes (Thermo
Fisher Scientific, Illkirch, France). The IEF migration was conducted consecutively at 175 V (15 min),
up to 2000 V (45 min), and at 2000 V (45 min). Strips were incubated for 15 min in the reducing solution
(625 µL 4X NuPage LDS Sample Buffer, 2075 µL dist. water, 300 µL NuPage Sample Reducing Agent
10X), and further incubated in the alkylation solution (300 µL 4X NuPage LDS Sample Buffer, 2700 µL
dist. water, 70 mg iodoacetamide) for an additional 15 min. Strips were then introduced at the top of a
12.5% acrylamide SDS-PAGE gel, covered with 0.5% (w/v) molten agarose, and run at 200 V/30 mA
using a Tris-glycine running buffer (pH 8.3). Protein spots were stained with Coomassie blue R250
(BioRad, Marnes-la-Coquette, France).

2.5. Degranulation Test

Degranulation of rat leukemic cells RBL SX38 [45], transfected with the high-affinity human FcεRI
receptor, in the presence of the meaworm protein extract, was performed in 96-well plates on RBL
SX38 cells (2.105 cells) cultured in minimum essential medium (MEM) Gibco (Thermo Fisher Scientific,
Illkirch, France) containing 10% (v/v) foetal calf serum, for 2 days at 37 ◦C. Cells were then cultured in
the MEM medium containing 2% (v/v) sample sera from different shrimp-allergic patients (diluted 1:40,
v/v), for 2 days at 37 ◦C. Cells were washed two times with tyrode buffer (Sigma, Saint-Quentin Fallavier,
France and incubated for 45 min at 37 ◦C in tyrode/D2O (1:1, v/v) buffer containing 1.0 µL of mealworm
protein extract. Cells were further incubated for 90 min at 37 ◦C in 50 µL of 0.05 M citrate buffer
(pH 4.5) containing 1.3 mg/mL of p-nitrophenyl N-acetyl-β-D-glucosaminide (Sigma, Saint-Quentin
Fallavier, France) as a chromogenic substrate for the hexosaminidase. The color reaction was stopped
by adding 100 µL of 0.4 M glycine buffer (pH 10.7) and the absorbance was spectrophotometrically
measured at 410 nm. Degranulation obtained under similar conditions by probing a shrimp protein
extract, was used as a sample for the 100% degranulation value.

2.6. Digestion and Nano-LC-MS/MS Analysis

Proteome samples were reduced and alkylated using equilibration buffers containing dithiothreitol
and iodoacetamide, and loaded onto a 12% SDS-polyacrylamide gel. After Instant Blue
(Invitrogen) staining of the gel, bands were excised and digested by the addition of 60 µL
of a solution of modified trypsin in 25 mM NH4HCO3 (10 ng/µL, sequence grade, Promega,
Charbonnières, France). The mixture was incubated at 37 ◦C overnight. The peptides mixtures
were analyzed by nano-LC-MS/MS (Liquid chromatography–mass spectrometry/Mass spectrometry)
using nanoRS UHPLC system (a nanoliter-range ultra high performance liquid chromatography,
Dionex, Amsterdam, The Netherlands) coupled to an LTQ-Orbitrap Velos mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany). Five microliters of sample were loaded on a C18 precolumn
(300 µm inner diameter × 5 mm, Dionex) at 20 µL/min in 5% acetonitrile, 0.05% trifluoroacetic acid.
After 5 min desalting, the precolumn was switched in line with the analytical C18 column (75 µm
inner diameter × 15 cm; in-house packed) equilibrated in 95% solvent A (5% acetonitrile, 0.2% formic
acid) and 5% solvent B (80% acetonitrile, 0.2% formic acid). Peptides were eluted using a 5%–50%
gradient of solvent B during 105 min at a 300 nL min−1 flow rate. The LTQ-Orbitrap was operated in
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data-dependent acquisition mode with the Xcalibur software. Survey scan MS spectra were acquired in
the Orbitrap on the 300–2000 m/z range with the resolution set to a value of 60,000. The 20 most intense
ions per survey scan were selected for collision-induced dissociation (CID) fragmentation, and the
resulting fragments were analyzed in the linear trap (LTQ). Dynamic exclusion was used within 60 s to
prevent repetitive selection of the same peptide.

The Mascot Daemon software (version 2.5, Matrix Science, London, UK) was used to perform
database searches in batch mode with all the raw files acquired on each sample. To automatically extract
peak lists from Xcalibur raw files, the Extract_msn.exe macro provided with Xcalibur (version 2.2
SP1.48, Thermo Fisher Scientific, Illkirch, France) was used through the Mascot Daemon interface. The
following parameters were set for creation of the peak lists: parent ions in the mass range 400–4500, no
grouping of MS/MS scans, and threshold at 1000. A peak list was created for each analyzed fraction (i.e.,
gel slice), and individual Mascot searches were performed for each fraction. Data were searched against
all entries in the Tenebrionidae 20170606 protein database (22,376 sequences; 10,097,372 residues).
Oxidation of methionine and carbamidomethylation of cysteine were set as variable modifications for
all Mascot searches. Specificity of trypsin digestion was set for cleavage after Lys or Arg except before
Pro, and one missed trypsin cleavage site was allowed. The mass tolerances in MS and MS/MS were
set to 5 ppm and 0.8 Da, respectively, and the instrument setting was specified as “ESI-Trap”. Mascot
results were parsed and validated with an in-house software called Proline (ProFi Proteomics, France).
The target-decoy database search allowed us to control and estimate the false positive identification
rate of our study, and the final catalogue of proteins presented an estimated false discovery rate (FDR)
below 1% for peptides and proteins.

2.7. Bioinformatics

Multiple amino acid sequence alignments were carried out with CLUSTAL-X [46] using the
stuctural Risler’s matrix for homologous residues [47].

Except for the three-dimensional structures of apoL-III of Locusta migratoria (protein data bank
(PDB) code 1AEP [48] and 1LS4 [49]) and Manduca sexta (PDB code 1EQ1) [50], and the 12 kDa
hemolyph protein of Tenebrio molitor (PDB code 1C3Z) [51], which are available at the Protein Data
Bank (PDB), the three-dimensional models of other apoL-III, 12 kDa HLP (hemolymph protein) and
larval cuticle proteins were built by homology modeling with the YASARA Structure program [52].
The three-dimensional structure of the Locusta migratoria apoL-III (PDB code 1AEP) was used as a
template to build up to 3 different models for each of the modelled apoL-IIIs. Finally, hybrid models of
the apoL-III of Acheta domesticus (house cricket), Bombyx mori (silkworm), Galleria mellonella (greater
wax moth), Musca domestica (housefly), and Schistocerca americana (American grasshopper) were built
up from the different previous models. Similarly, the three-dimensional structures of odorant binding
proteins (OBP) from Apis mellifera (PDB code 3S0D) [53], Anopheles gambiae (PDB code 3R1P) [54],
AtraPBP1 from Amyelois transtyella (PDB code 4INW) [55], Antheraea polyphemus PBP1 (PDB code
2JPO) [56], Bombyx mori GOBP2 (PDB code 2WCJ) [57], chemosensory protein from Mamestra brassicae
(PDB code 1N8V) [58], and chemosensory protein 1 from Bombyx mori (PDB code 2JNT) [59]), were
used as templates for the building of the 12 kDa HLP models. Finally, hybrid models of the 12 kDa HLP
(hemolymph protein) of Manduca sexta (Carolina sphinx moth), Rhynchophorus ferrugineus (red palm
weevil), and Tenebrio molitor (yellow mealworm) were built up from the different previous models.
A single protein template, the crystal structure of p53 epitope-scaffold of a cysteine protease in complex
with human MDM2 protein (5SWK), available at the PDB, was used for building the 3D-model for the
larval cuticle proteins (LCP) of Tenebrio molitor, Bombyx mori, Locusta migratoria, Musca domestica, and
Tribolium castaneum (red flour beetle). PROCHECK [60], Atomic Non-Local Environment Assessment
(ANOLEA) [61], and the calculated QMEAN scores [62,63], were used to assess the geometric and
thermodynamic qualities of the three-dimensional models. Using ANOLEA to evaluate the models,
only a few residues of the different models exhibited an energy over the threshold value. Both residues
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are mainly located in the loop regions connecting theα-helices orβ-sheets in the models. The calculated
QMEAN6 score of all of the models gave values > 0.5.

The ConSurf server was used to discriminate between conserved and variable regions in the
allergen models [64]. Molecular cartoons were drawn with YASARA [52] and Chimera [65].

3. Results

3.1. Dot-Blot Screening of Shrimp-Allergic Patient Sera Towards a Yellow Mealworm Protein Extract

A dot-blot screening of a number of sera from patients allergic to the shrimp (n = 21) and the
dust mite Dermatophagoides peteronyssinus (n = 13) toward a mealworm protein extract immobilized
on nitrocellulose sheet resulted in positive responses for almost all (20/21) of the checked shrimp
sera (Figure 1), whereas a very few dust mite sera reacted positively (2/13). However, depending on
the checked shrimp sera, large discrepancies with respect to the IgE-binding capacity were noticed
between strongly and more weakly IgE-reacting serum samples.
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Figure 1. Dot-blot screening of the yellow mealworm protein extract (protein concentration of
15 mg mL−1) by 20 sera from shrimp-allergic patients, revealed with an anti-IgE second antibody. Data
not shown for the single nonreactive serum #21. Depending on the patient sera, the IgE cross-reacting
antibodies interacted strongly (dark dot) or weakly (grey dot) with the immobilized protein extract.
No data for sera from dust mite allergic patients were shown because most of them (11/13), gave
negative results. C+ and C− correspond to the positive and negative controls (first IgE antibody
omitted) performed with a shrimp protein extract, respectively.

3.2. Identification of IgE-Binding Cross-Reactive Allergens in the Yellow Mealworm Protein Extract

Some of the IgE-binding protein fractions reavealed in Western blot experiments using different
sera from patients allergic to shrimp corresponded to allergens previously identified in yellow
mealworm protein extracts, e.g., tropomysosin, HSP (heat shock protein) 70, α-amylase, and arginine
kinase (Figure 2) [36]. Many other mealworm allergens also interacted with the cross-reacting
IgE-binding sera but have not been clearly identified by mass spectrometry. Other allergen proteins
with low molecular weights have been identified at the bottom of the SDS-PAGE gels. They consist of
predominantly hydrophobic proteins that are involved in the transportation of hydrophobic ligands
like the apolipophorin-III (apoLp-III), often associated to the larval cuticle protein (LCP), which is
abundantly represented in the yellow mealworm, and to a weaker IgE-binding signal corresponding to
the 12 kDa hemolymph protein (12 kDa-HLP).

Molecular modeling of these allergenic proteins (Figure 3) reveals the occurrence of hydrophobic
cavities most probably adapted to the binding of hydrophobic ligands like fatty acids (apoLp-III) [48–50]
or pheromone-like ligands (12 kDa-HLP) [51–59]. These newly identified insect allergens are reminscent
of other proteins like the lipid transfer protein (LTP) allergens occurring in pollens and fruits, which also
participate in the transport of hydrophobic compounds such as Pathogenesis-Related PR-14 members
of the plant defense protein [66]. All of the newly identified insect allergens consist of ubiquitous
proteins that share very conserved three-dimensional structures but rather poorly conserved amino
acid sequences among the phylogenetically related insect species (Figures 4 and 5). In this respect,
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all of these ubiquitous allergens of different origins exhibit similar three-dimensional structures that
are readily superposable even though their amino acid sequences are much less conserved (Figure 6).
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Figure 2. SDS-PAGE of the yellow mealworm (second line labelled, YMW). The first line corresponds
to the electrophoretic migration of the MW markers (kDa). Lines 1, 2, 3, and 4 correspond to the
Western blots of a yellow mealworm extract revealed by IgE-containing sera from different patients
allergic to shrimp. The identified allergenic fractions HSP (heat shock protein) 70, α-amylase, arginine
kinase (AK), tropomyosin (TPM), apolipophorin-III (apoLp-III), larval cuticle protein (LCP), and 12 kDa
hemolymph protein (12kDa-HLP (hemolymph protein)) of mealworm are indicated by arrows.
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Figure 3. (A) Ribbon diagram of apolipophorin-III of Tenebrio molitor (sagital view). Alpha-helices
numbered α1–α5 are differently colored. N and C correspond to the N- and C-terminus of the
polypeptide chain, respectively. (A’) Ribbon diagram of apolipophorin-III of T. molitor: upper view
showing the arrangemernt of α-helices around a central hydrophobic pocket. (B) Ribbon diagram of
the larval cuticlar protein (LCP) of T. molitor, built up from the association of two antiparallel bundles
of β-sheet in a β-sandwich structure. (C) Ribbon diagram of the 12 kDa hemolymph protein (12 kDa
HLP) of T. molitor, built up from the association of six α-helices around a central hydrophobic pocket.
Alpha-helices are differently colored.
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Putative N-glycosylation sites are colored red.
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Figure 5. Multiple alignment of 12 kDa HLP and OBP (odorant bindin proteins) from the edible insects
Apis mellifera, Bombyx mori, Locusta migratoria, Manduca sexta, Musca domestica, Schistocerca gregaria, and
Tenebrio molitor. Identical amino acids residues are in black boxed white letters whereas structurally
homologous residues are grey boxed. Putative N-glycosylation sites are colored red.
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N and C indicate the N- and C-terminal ends of the polypeptide chains.

However, SDS-PAGE of the mealworm protein extract does not account for the extreme diversity in
the soluble protein content of the mealworm. In this respect, the Coomassie blue-stained 2D SDS-PAGE
gels offer a more relevant picture of the protein diversity occurring in the mealworm protein extract,
which exhibits a number of protein spots occurring in the range between pH 3.0 and pH 9.0, with MW
ranging from 10 kDa up to 100 kDa (Figure 7). This apparent diversity of the soluble protein content
suggests that a huge number of soluble protein fractions occurring in the mealworm protein extract
could behave as potential cross-recting IgE-binding allergens.
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Figure 7. Bidimensional SDS-PAGE electrophoregram of the mealworm protein extract stained with
Coomassie blue. A number of protein fractions with a MW in the range between 10 kDa and 100 kDa,
occur between pH 3.0 and pH 9.0. Low MW protein fractions containing the apoLp-III, LCP and the
12 kDa-HLP allergens occur at the bottom of the gel (*).

3.3. Characterization of the Potential Allergenic Protein Repertoire of the Mealworm Protein Extract

A more sophisticated SDS-PAGE coupled to a mass spectrometry characterization allowed the
identification of up to 106 distinct protein fractions in the mealworm protein extract (Table 1).
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Table 1. List of proteins identified in the yellow mealworm (Tenebrio molitor) protein extract. Proteins
are ranked by decreasing scores. Proteins already identified as IgE-binding allergens from arthropods
are in bold.

Score: Protein: Score: Protein:

2984.019 α-Myosin 222.675 28 kDa dessication stress protein
1214.674 Aldehyde oxidase 219.963 Masquerade-like serine protease
1066.813 Ca-transporting ATPase 213.041 13 kDa hemolymph protein d
1025.416 Actin 87E 211.853 Larval cuticle protein A3A
940.811 86 kDa Early stage encapsulation 211.417 12 kDa hemolymph protein c

inducing protein 210.607 Myosin light chain alkali
895.841 Tropomyosin 2 209.594 Fructose-biphosphate aldolase
806.565 Actin 5C 209.332 Serine proteinase
765.02 Actinin α 207.818 Glutathione S-transferase
740.12 Tubulin β 201.438 13 kDa hemolymph protein b
664.062 Prophenoloxidase 198.188 Vitellogenin receptor
609.664 Tropomyosin 1 190.799 Troponin C

ATP synthase subunit β 189.968 Calreticulin
504.441 α-Amylase 187.099 4.5 LIM domains protein 5
493.123 Tubulin α 184.454 Cytochrome c2
474.845 Odorant binding protein OBP 14 179.106 Nucleoside triphosphatase A
474.053 Apolipophorin-III 177.997 Muscle-specific protein 20
446.015 Myosin heavy chain, non-muscle 176.202 Muscle LIM protein Mlp84B
445.547 Arginine kinase 171.809 Enolase
439.842 HSP 70 171.39 Obstractor C2
423.306 Filamin-A 168.27 Protein disulfide-isomerase
395.328 12 kDa hemolymph protein a 164.625 13 kDa hemolymph protein c
386.89 Twitchin-like protein 161.351 Phosphoglycerate kinase
370.18 Cockroach allergen-like protein 159.53 Chemosensory protein CSP12
363.618 Serpin 1 157.539 α-Spectrin
359.558 ATP synthase subunit α 157.443 14.3.3. ζ
340.168 Hexamerin 2 155.443 Glycogenin-1-like protein
338.385 Glyceraldehyde-3-phosphate 151.351 Phosphoglycerate kinase

dehydrogenase 147.874 Ferritin
337.266 56 kDa Early stage encapsulation 142.987 Calumenin

inducing protein 141.375 Cathepsin L11
326.698 Voltage-dependant anion-selective 140.034 Ribosomal protein S3

channel protein 132.912 Nucleobindin-2 like protein
315.75 Paramyosin long form 130.118 Trypsin
313.141 Serpin 93 kDa 129.432 G protein-coupled receptor kinase 1
296.596 Larval cuticle protein A1A 124.835 THP isoform 84aa-XY
286.543 Serpin 40 122.826 Chitin deacetylase 1
280.057 Cathepsin F10 122.326 Myosin regulatory light chain-2
279.884 α-1,4-glucan phosphorylase 122.024 Malate dehydrogenase
278.386 Larval cuticle protein A2B 121.525 Cuticular protein
278.215 Troponin T 118.956 Chitinase
276.285 Melanization-related protein 116.322 Glucose-6-phosphate isomerase
273.213 Paramyosin short form 99.944 Carbonyl reductase 1
269.133 Peptidyl-prolyl cis-trans isomerase 98.68 Protein lethal/essential for life
260.731 Apolipophorin-like protein 96.268 Transketolase-like protein 2
259.533 Myosin heavy chain, muscle 89.762 Multiple coagulation factor
259.092 HSP 60 deficiency protein 2
254.399 V-type proton ATPase subunit β 87.931 60S ribosomal protein L31
251.439 Pyruvate kinase 87.574 ATP carrier protein
249.266 Melanin-inhibiting protein 87.104 Lysosomal aspartic protease
247.353 Serpin 48 78.888 Aspartate aminotransferase

246.2 Superoxide dismutase (Cu-Zn) 76.674 Elongation factor 1-α
237.263 12 kDa hemolymph protein b 69.44 Adenosylhomocysteinase
229.745 RNA-binding protein squid-like 59.528 Muscular protein 20
227.752 Sarcalumenin 34.596 Reticulon-like protein
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The identified proteins may be arbitrarily distributed in different categories according to their
structure–function relationships, such as functional proteins (33 total, 31%), enzymes (32 total, 30%),
structural proteins (18 total, 17%), muscle proteins (17 total, 16%), and others (6 total, 6%) (Figure 8).
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Figure 8. Distribution of the 106 proteins identified in the T. molitor extract, according to their potential
functions: proteins with a functional role (33, orange), enzymes (32, blue), proteins with a structural
function (18, green), muscle proteins (17, red), and proteins with other roles (6, yellow).

Most of the protein fractions belonging to the different structural and functional categories consist
of cross-reacting IgE-binding allergens that have been previously identified in various insects and other
groups of arthropods (dust mites, shrimps) and mollusks (mussels, oysters, snails) [67–76]. In this
respect, a number of proteins involved in muscle contraction (actin, myosin) and others associated with
muscle contraction (tropomyosin, troponin, actinin) occupy a large part of the allergen list. Allergens
with enzymatic functions are also highly represented. It is noteworthy that the T. molitor list includes
most of the allergens identified so far in both the American (Periplanta americana) and European (Blattella
germanica) cockroaches.

3.4. The Cross-Reacting Allergens of the Mealworm Protein Extract Are Functional in Degranulation Tests
In Vitro

In vitro degranulation experiments performed with different cross-reacting sera from
shrimp-allergic patients as probes resulted in positive results for all of the assayed sera (Figure 9).
However, depending on the shrimp patient sera, a large discrepancy was observed in the degranulation
potency of the mealworm protein extract. These results suggest that the cross-reacting IgE-binding
allergens of the mealworm protein extract are apparently functional and might trigger some allergenic
response in previously sensitized people, e.g., in shrimp-allergic people. These degranulation data are
in agreement with those previously reported for T. molitor [36,37].
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Figure 9. Degranulation potency, expressed as degranulation percentage (%), caused by the mealworm
protein extract, using six different sera (5,16,17,18,20,10) from shrimp-allergic patients as IgE-binding
cross-reacting allergens toward the mealworm allergenic proteins. A shrimp protein extract (grey
histogram) was used as the 100% degranulation value (control C). Each value is the mean of six separate
measurements. Values for specific IgE in sera 5, 16, 17, 18, 20, and 10, are indicated.
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4. Discussion

A few protein members in the mealworm protein extract were identified as new potential
allergens, including the apolipophorin-III (apoL-III), the larval cuticular protein (LCP), and the 12 kDa
hemolymph protein (12 kDa HLP). Both apolipophorin-III and 12 kDa HLP proteins participate in the
binding and transport of hydrophobic ligands like fatty acids and derivatives for apoL-III and LCP or
12 kDa HLP [48–59]. The 12 kDa HLP consist of ubiquitous proteins closely related to the odorant
binding proteins OBP widely distributed in insects, exhibiting conserved three-dimensional structures
(Figure 6) even though their amino acid sequences are moderately conserved (Figure 5). However,
the nature of small hydrophobic ligands they transport still remains a matter of debate. The larval
cuticle proteins LCP represent a rather well conserved group of proteins possessing a chitin-binding
domain. They play a key role in the deposition of the newly synthesized chitin chains forming the
chitinous shell during the ecdysone-driven molt periods of insect larvae. They closely resemble some
other pupal cuticle proteins, which also consist of a large hydrophilic central part with a β-fold flanked
by two hydrophobic regions containing alanin-rich repetitive motifs [77].

Most, if not all, of the protein allergens of edible insects identified so far consist of ubiquitous
proteins widely distributed in other arthropods including dust mites, crustaceans and other insects,
mollusks, and nematods as well [78]. However, the number of proteins identified as insect allergens still
remains very scarce compared to the diversity and complexity of their protein content. In this respect,
some of the insect protein components, e.g., the hemolymph proteins for all the insect groups and
muscle proteins for the flying insects, display an extreme diversity that reflects the successful adaptation
of this group of animals to diverse ecological conditions during their evolution. Accordingly, it is
expected that the still poorly understood allergen repertoire of edible insects will become progressively
enriched by new proteins with allergenic properties. In fact, the difficulties in identifying and obtaining
clinically well documented sera from insect allergic patients is a major breakthrough in the identification
of new insect allergens. Even in countries where edible insects have traditionally been a significant part
of the diet, only a few reports are available on the food allergic reactions attributable to eating crude or
roasted insects [26]. In future years, the forthcoming introduction of insect flour as a protein-enriched
supplement in the diet, will problably result in an increase of allergic manifestations among consumers.
It will thus be possible to identify new allergenic proteins and, eventually, allergens specifically
associated to some edible insect species.

Beside their potential negative impact on people suffering from shrimp allergy, mealworm protein
flour should be used as a protein-rich source to supplement the diet for the treatment and care of
severely undernourished people, owing to its excellent nutritional properties [79–82]. In addition,
proteins from the yellow mealworm protein extract might bring some beneficial effect in mild to
moderate hypertensive consumers, by providing angiotensin I-converting enzyme (ACE) inhibitory
peptides upon digestive proteolysis. Like many other inhibitory peptides previously identified in the
edible insect protein hydrolysates, ACE inhibitory peptides derived from Tenebrio molitor larva protein
hydrolysate have been known for a long time [83,84]. Introducing some yellow mealworm protein
flour into the diet should create a relevant source of ACE inhibitory peptides available for helping
mildly hypertensive people to regulate their blood pressure. Yellow mealworm larvae also contain
bioactive compounds with inhibitory activities for factor Xa and platelet aggregation [85]. Moreover,
due to their antioxidant activities, introduction of edible insects in the diet could be beneficial for other
oxidative-stress associated health disorders [86,87]. However, in addition to their beneficial properties,
the sensory attributes of edible insects might be deeply investigated for improving the acceptance of
edible insects in food production, especially by people of Western countries [88].

In spite of their beneficial properties, the incorporation of edible insects or insect proteins into the
diet of shellfish allergic people still remains hazardous since the risk of an anaphylactic response can
not be ruled out. In this respect, an appropriate labelling of edible insect packages and food product
containing insect proteins is advisable to inform the consumers of such a potential risk. However,
some recent reports demonstrate that appropriate food processing methods, e.g., thermal processing or
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enzymatic proteolysis, can drastically reduce the risk of cross-reactivity and allergenicity associated to
edible insect proteins [37,38,89].
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Appendix A

Table A1. Sera from patients allergic to shrimp (1a–21a) and dust mite (1b–13b), and specific IgE values.

Seum: Gender: Shrimp Specific IgE (kU·mL−1) Der p 10 Specific IgE (kU·mL−1)

1a Female 81.1
2a Female 45.3
3a Female 49.8
4a Male 28.2 >100
5a Female 21.1
6a Male >100
7a Female 66.8
8a Male >100
9a Male 33.9

10a Female 24.4
11a Male 61.8
12a Female 54.8
13a Male 11.2 40.8
14a Female >100
15a Female 18.8
16a Female 66.8
17a Male 11.8
18a Male 29.4
19a Female >100
20a Male 52.1 >100
21a Female 10.2
1b Male >100
2b Female >100
3b Female >100
4b Female 17.0 >100
5b Female >100
6b Female >100
7b Female >100
8b Male >100
9b Male 1.4 >100
10b Female 27.3 >100
11b Male 2.4 84.6
12b Female 0.1 13.1
13b Male >100
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