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Abstract: Microbial biofilms are communities of aggregated microbial cells embedded in a
self-produced matrix of extracellular polymeric substances (EPS). Biofilms are recalcitrant to extreme
environments, and can protect microorganisms from ultraviolet (UV) radiation, extreme temperature,
extreme pH, high salinity, high pressure, poor nutrients, antibiotics, etc., by acting as “protective
clothing”. In recent years, research works on biofilms have been mainly focused on biofilm-associated
infections and strategies for combating microbial biofilms. In this review, we focus instead on
the contemporary perspectives of biofilm formation in extreme environments, and describe the
fundamental roles of biofilm in protecting microbial exposure to extreme environmental stresses
and the regulatory factors involved in biofilm formation. Understanding the mechanisms of biofilm
formation in extreme environments is essential for the employment of beneficial microorganisms and
prevention of harmful microorganisms.

Keywords: microorganism; extreme environment; biofilm; extracellular polymeric substances (EPS);
adaptative mechanism

1. Introduction

In the natural world, there exist some extremely harsh environments [1,2], such as high-intensity
ultraviolet (UV) radiation, high or low temperature, high alkalinity, high acidity, high salinity,
high pressure, poor nutrients, plentiful antibiotics, etc. Previously, these environments are considered
to be life prohibiting; however, after further exploration, these extreme environments are in fact
found to contain abundant microorganisms. They are not only alive, but also thrive well in extreme
environments that were formerly thought to be inhospitable to life [3]. Microorganisms that are able to
survive in these extreme environments are called extremophiles [4,5], which include radiation-resistant
extremophiles, thermophiles, psychrophiles, alkaliphiles, acidophiles, halophiles, piezophiles, etc.
Each microorganism surviving under these extreme conditions exhibits its specific resistant mechanism,
among which the role of biofilm is considered to be crucial [6,7].
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A biofilm is an organized aggregate of microorganisms living within a self-produced matrix of
extracellular polymeric substances (EPS) that is attached to a biotic or abiotic surface [8–10]. It is
considered to be one of the most widely distributed and successful modes of life on the Earth [11], and in
most natural environments, a biofilm is the predominating microbial lifestyle [12]. Indeed, fossilized
biofilms have been found in a 3.2 billion-year-old deep-sea volcanogenic massive sulfide deposit from
the Pilbara Craton of Australia [13], and in a 3.3 to 3.4 billion-year-old hydrothermally influenced
sediment from the Barberton greenstone belt of South Africa [14]. Similar biofilm structures have also
been identified in modern hydrothermal systems, such as deep-sea vents [15] and hot springs [16].
These data suggest that the ability to form biofilms can protect microorganisms from extreme
environments [17,18]. Further studies have also shown that biofilms can increase microbial resistances
against UV radiation [19], extreme temperature and pH [20–22], high salinity [23], high pressure [24],
poor nutrients [25], various antibiotics [26], etc. The resistance of biofilms against extreme environments
seems to be capable of creating a suitable habitat for microbial populations, makes the exchange of
substances and information between microorganisms more convenient, and is thus a self-protective
mechanism for the growth of microorganisms [27]. The morphological structures of microorganisms
in the biofilm and their sensitivity to environmental factors as well as biological characteristics
are substantially different to planktonic microorganisms [28]. Such a three-dimensional structure
of biofilm seems to provide a natural barrier and protective layer to microorganisms; in addition,
the immobile microorganisms in EPS are more resistant to extreme environments than planktonic
microorganisms [29].

In the current review, we try to provide contemporary perspectives on the molecular mechanism
of biofilm formation, the roles of biofilm in extreme environments, and the various signaling cascades
involved in biofilm formation. It aims at providing new ideas for the employment of beneficial
microorganisms, as well as the prevention and control of harmful microorganisms.

2. Microbial Biofilms

Biofilm formation is a complex and dynamic process, in which organized communities of
microorganisms are encased in a matrix of EPS that cluster microbial cells together [30,31]. EPS are
mainly composed of polysaccharides, proteins, lipids, and nucleic acids (RNA and extracellular DNA
(eDNA)) [32,33], which form a highly hydrated polar mixture that contributes to the overall scaffold
and three-dimensional structure of a biofilm.

The biofilm lifestyle is an endless cycle, and the process of biofilm formation can be summarized
into the following five major stages based on the previous studies [34–36] (Figure 1): (I) Attachment:
microorganisms are reversibly adsorbed to a surface via weak interactions (such as the van
der Waals forces) with a biotic or abiotic surface [37]; (II) Colonization: microorganisms are
irreversibly attached to the surface via stronger hydrophilic/hydrophobic interactions by flagella,
pili, lipopolysaccharides, exopolysaccharides, collagen-binding adhesive proteins, etc. [38,39];
(III) Development: the multilayered cells are accumulated by proliferation, and EPS are produced and
secreted [32,40]; (IV) Maturation: stable formation of a three-dimensional community that contains
channels to effectively distribute nutrients and signaling molecules within the biofilm [41]; (V) Active
dispersal: microbial cells are detached in clumps or separated, due to interactions with either intrinsic
or extrinsic factors, with the disseminated cells subsequently colonizing on other locations [42].

In this dynamic process, specific enzymes are involved in degrading and reconfiguring biofilm,
resulting not only in partial matrix degradation, but also the active dispersal of biofilm and subsequent
surface recolonization [7]. Attachment is the beginning for a biofilm formation, while active dispersal
is not the end, but also the creation of the next round of biofilm formation. The continuous recirculation
of biofilm gives the microorganisms the ability to adapt to various extreme environments.
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Attachment: microbial cells adhere to the surface reversibly. II. Colonization: microbial cells attach to 

Figure 1. Model of microbial biofilm formation. Biofilm formation consists of five distinct stages: I.
Attachment: microbial cells adhere to the surface reversibly. II. Colonization: microbial cells attach
to the surface irreversibly via flagella, pili, exopolysaccharides, etc. III. Development: multilayered
cells accumulate and produce extracellular polymeric substances (EPS). IV. Mature: stable formation
of a three-dimensional community. V. Active dispersal: microorganisms are disseminated from the
aggregate biofilm and return to a planktonic state.

3. Biofilms in Extreme Environments

Biofilm formation is a unique growth mode chosen by microorganisms in response to various
environmental stresses, and previous studies have shown that the ability to form biofilms is important
for microorganisms to grow in various extreme environments (Figure 2).
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Figure 2. A schematic representation of the biofilm function. Biofilm formation can increase the 
resistances of microorganisms to various extreme environments. 
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400 nm), UV-B (290 to 320 nm), and UV-C (100 to 290 nm) [43]. Besides their implication in damaging 
proteins and membranes, UV-A can damage DNA by generating reactive oxygen species to induce 
single-strand DNA breaks [44,45], while UV-B can be absorbed directly by DNA to alter or mutate 
nucleotides [46]. On the other hand, UV-C is the most energetic source that produces more 
photoproducts than either UV-A or UA-B radiation [47]. 

RM4440 is a Pseudomonas aeruginosa FRD1 derivative that carries a plasmid-based recA-
luxCDABE fusion that serves as a Pseudomonas aeruginosa whole-cell biosensor for monitoring DNA 
damage [48]. Elasir et al. have immobilized RM4440 in an alginate matrix to simulate the biofilm 
formation to study the response of biofilm to UV radiation damage [49]. The results reveal that 
compared to planktonic bacteria, the matrix of EPS seems to be protective in physically shielding 
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resistances of microorganisms to various extreme environments.

3.1. Biofilm in UV Radiation

The solar UV radiation comprises three types based on the range of wavelength: UV-A (320
to 400 nm), UV-B (290 to 320 nm), and UV-C (100 to 290 nm) [43]. Besides their implication in
damaging proteins and membranes, UV-A can damage DNA by generating reactive oxygen species
to induce single-strand DNA breaks [44,45], while UV-B can be absorbed directly by DNA to alter or
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mutate nucleotides [46]. On the other hand, UV-C is the most energetic source that produces more
photoproducts than either UV-A or UA-B radiation [47].

RM4440 is a Pseudomonas aeruginosa FRD1 derivative that carries a plasmid-based recA-luxCDABE
fusion that serves as a Pseudomonas aeruginosa whole-cell biosensor for monitoring DNA damage [48].
Elasir et al. have immobilized RM4440 in an alginate matrix to simulate the biofilm formation to study
the response of biofilm to UV radiation damage [49]. The results reveal that compared to planktonic
bacteria, the matrix of EPS seems to be protective in physically shielding microorganisms against UV-C,
UV-B, and UV-A radiations, and transmitting only 13%, 31%, and 33% of the UV light, respectively,
to the microorganisms. Thus, biofilms are effective at protecting microbial cells from UV radiation
and exposure.

Biofilm formation can also protect Listeria monocytogenes from UV-C radiation [50]. Listeria
monocytogenes N53-1 that was isolated from salmon smoke house and allowed to form a biofilm
for seven days exhibited higher UV-C resistance than that incubated for only one hour. Recently,
Enyedi et al. revealed that there is a high microbial diversity in the biofilms of naturally radioactive
hydrothermal spring caves, which had been especially adapted to an environment of high radioactivity
of the subsurface [51]. Also, they found that the higher radioactivity, the less diversity but more
radiation-resistant microbial communities in biofilms.

Deinococcus geothermalis is a representative of the extremely radiation-resistant family of
Deinococcaceae [52]. Frösler et al. demonstrated that the biofilm of Deinococcus geothermalis DSM
11300 appears to be more UV-tolerant than that of planktonic cells, and speculated that it is possibly
due to the generation of reactive oxygen species from the photodissociation of water molecules retained
in the cells or matrix of EPS in the biofilm [53].

Biofilm formation is one of clever strategies for microorganisms to survive UV exposure.
The study of mechanisms of biofilm formation under UV radiation is also helpful for the control of
harmful microorganisms. A number of studies have shown that with the protection of biofilms by
“radiation-resistant clothing”, a variety of microorganisms are more active under extreme UV radiation
environments. Thus, a better understanding of the microbial-resistant mechanism to UV may help
provide protection for the human aerospace industry.

3.2. Biofilm in Extreme Temperature

Temperature exerts a significant influence on microorganisms, and biofilm can adequately
explain the effects of microorganisms against extreme temperatures. Cihan et al. studied the biofilm
formation of thermophilic bacteria in the Bacillaceae family at different temperatures, and revealed
that an incubation temperature at 65 ◦C is more effective in biofilm production than at 55 ◦C for the
Thermolongibacillus, Aeribacillus, Geobacillus, and Anoxybacillus thermophilic genera [54].

Some species in Sulfolobus genus are thermophilic acidophiles that grow optimally at 75 ◦C [55,56].
Koerdt et al. tested the biofilm formation at temperatures ranging from 60 to 85 ◦C, and the results
demonstrate that the amounts of biofilm in both Sulfolobus acidocaldarius (isolated from Yellowstone
National Park, United States (USA)) and Sulfolobus solfataricus (a European isolate from Italy) are
increased at 60 ◦C and 85 ◦C. At 60 ◦C, they showed a fivefold and fourfold increase in biofilm
formation, respectively [17].

Studies of cold-adapted bacterium Bacteriovorax showed that at temperatures below 10 ◦C,
the number of bacteria is significantly reduced in the water column, but not in the surface biofilms [57].
Further studies by Williams et al. showed that at 5 ◦C, Bacteriovorax lives 50% longer in biofilms than
in suspension [58]. Also, EPS in biofilm from Antarctic bacteria (cold-tolerant Winogradskyella CAL384
and CAL396, psychrophiles Colwellia GW185, and Shewanella CAL606) showed an ability to form stable
emulsions to protect cells from freeze–thawing cycles, thus increasing the adaptability of microbial
cells to cold environments [59].

Therefore, biofilm formation enables microorganisms in extreme environments to become more
resistant to damage caused by temperature stress. Throughout environmental changes, biofilm can
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act as a “protective clothing” to provide a suitable habitat for their survival and metabolism. In the
extreme temperature environment, the biofilm serves more as a “smart garment” when dealing with
such high temperatures: it can resist the external high temperature and render the interior suitable for
growth and reproduction. On the other hand, biofilm can also stabilize the internal environment when
it is extremely cold outside, causing no freeze of the cells and enabling them to survive.

3.3. Biofilm in Extreme pH Environments

Biofilms also help microorganisms resist the effects of extreme pH, in which both acidophiles and
alkaliphiles generally exist in biofilms [60–62].

Species abundance usually decreases under extremely acidic conditions, but a large number of
acidophiles that are protected in biofilm are still prevalent [63]. In fact, under extremely acidic pH,
it has been found that the solubility of heavy metals increase, and therefore increasing the toxicity
index. The combination of extremely acidic pH and heavy metals together was found to lead to a
significant change in the EPS composition of the biofilm, which plays a vital role in the adaptation
of microorganisms to extreme environments [3]. It can not only prevent heavy metal toxicity, but
also capture and enrich trace elements [64]. Besides, the inositol and 3-O-methylglucose contents in
EPS were found to positively correlate with the toxicity index. Early research showed that inositol
polyphosphates can inhibit the formation of hydroxyl radicals by ferric iron, which can decrease its
toxicity [65], and methylglucose-containing polysaccharides from marine microorganisms have also
been exploited to remove heavy metals from solutions [66]. This data suggests that biofilms play a
protective effect in extremely acidic environments that are mediated, at least in part, by specific sugars.

Under alkaline conditions, the alkaliphilic communities have also been shown to form biofilms to
enclose the microorganisms in a matrix of EPS [67,68]. Charles et al. showed that under a thick EPS
layer, Alishewanella and Dietzia are capable of growth at pH values between 11.0–11.5, and maintain
internal pH values of 10.4 and 10.7, respectively, demonstrating that biofilm formation can provide a
shelter for alkaliphilic communities to survive hyperalkaline stress to a large extent [69].

To compare the responses of bacteria in biofilm or planktonic state to alkaline stress, clinical isolates
of Enterococcus faecalis, Lactobacillus paracasei, Olsenella uli, Streptococcus anginosus, Streptococcus
gordonii, Streptococcus oralis, and Fusobacterium nucleatum from infected root canals were placed
under a stress at pH 10.5 for 4 h. The results showed that bacteria can survive alkaline shifts better in
the biofilm than in the planktonic state [70]. Additionally, van der Waal et al. reported that increased
EPS production in biofilm protects Enterococcus faecalis against 20 mM of Ca(OH)2 [71].

In general, microorganisms shielded in biofilms can resist extreme pH stress better than in a
planktonic state. However, the exact mechanisms behind the survival of microorganisms in biofilms
exposed to acidic and alkaline challenge is worthy of further studies. As an acid-resistant and
alkali-resistant “strong protective clothing”, it is still unclear whether the biofilm is correlated with
the biological evolution of bacteria. With further exploration, it will be interesting to discover the
characteristic features and structure of this “protective clothing”.

3.4. Biofilm in High-Salinity Environments

There are many halophiles on the Earth, most of which are found in high-salinity environments,
such as salt lakes, marine environments, and inland saline soils. In these places, microbial cytoplasmic
lysis and cell death are significantly caused by increasing osmotic pressure [72,73]. Microorganisms
can, in fact, form biofilms that are resistant to high salt damage [74,75]. Indeed, Amjres et al. isolated a
halophilic strain Halomonas stenophila HK30 from a saline wetland in Brikcha (Morocco) that is able
to form biofilm in a medium with 5% w/v salt [76]. Mallic et al. showed that the two halophiles of
Kocuria flava AB402 and Bacillus vietnamensis AB403, which were isolated from mangrove rhizosphere
of Sundarban, can not only form biofilms effectively, but also produce a large amount of EPS under
salt stress; they can also use EPS to develop inherent resistance and adsorb a large amount of metal
elements, etc. [77].
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Many researchers have conducted a variety of salt tolerance tests of non-halophiles to study
their resistant mechanisms. Kim et al. evaluated the effects of salinity on the biofilm formation of
Vibrio sp. B2 isolated from seawater, brine, and a biofouled membrane coupon, and found that the
salinity-stressed bacteria still maintain good cellular activity and overproduce EPS, which exhibits a
high potential to cause biofouling and biofilm formation [23]. Zhao et al. studied the composition of
EPS from microbial biofilms at different salinity, and found that the production of both proteins and
polysaccharides contents of soluble, loosely, or tightly bound EPS in biofilm increase with increasing
salinity [78].

EPS are the main components of the biofilm, which acts as a gel-like matrix that binds cells
together to form aggregates and provide protection for microorganisms against high salt stress [79].
Whether halophiles or non-halophiles, the biofilm produced by them may thus play an important role
in agricultural productions, because they can be used to adsorb various metal elements to help crop
growth and promote soil bioremediation under salt stress.

3.5. Biofilm in High-Pressure Environments

Piezophiles (barophiles) are microorganisms whose survival and reproduction is optimized to
high pressures, such as those in deep-sea environments. Since the piezophiles are difficult to separate
and culture, and live with restrict distribution [80], there have been very few studies on their biofilm
formation. A few available studies only show that an increase in pressure leads to an increase in
the expression of the outer membrane protein [81]. To make up for the deficiency of the research on
biofilm formation of piezophiles, the research on the biofilm of non-piezophiles under high pressure
is increasing.

High hydrostatic pressure (HHP) can especially alter many macromolecules in microorganisms
and also affect their translation and transcription within the cells, leading to the production of
dysfunctional proteins [82,83]. Studies on HHP biofilms have shown that microorganisms in the
biofilms are more resistant to high pressure than planktonic microorganisms. Also, biofilms formed by
Gram-negative bacteria are more resistant to HHP than those of Gram-positive bacteria [82].

Biofilm formation can also enhance microbial tolerance to high mechanical pressure. Hou et al.
compared the responses of biofilms to mechanical pressure between an EPS-producing Staphylococcus
aureus ATCC 12600 and a non-EPS-producing Staphylococcus aureus 5298, and found that the biofilm
of former bacterium exhibits a higher resistance to exerted mechanical force because it can yield an
immediate increase in polysaccharide content [24].

Under high-pressure stimulation, the “pressure-resistant garments” of both piezophiles and
non-piezophiles become more “solid”. The studies of formation mechanism and structural composition
of the “pressure-resistant garments” in high-pressure environments will thus play important roles in
the fields of medicine, industry, and biotechnology.

3.6. Biofilm in Oligotrophic Conditions

Under oligotrophic conditions, microbial growth may be affected due to poor nutrients. However,
during this time, biofilm formation is also found to play a role in the microbial tolerance to the restricted
of microbial growth.

Bacteria can be separated into two general groups regarding the nutrient requirement in the
living environments: copiotrophs and oligotrophs, which grow optimally in high and low nutrient
conditions, respectively.

For copiotrophs, some authors concluded that biofilm production is enhanced in the poor nutrient
medium [84,85]. For example, Cherifi et al. investigated the biofilm formation of copiotroph Listeria
monocytogenes (isolated from pork slaughterhouses and cutting facilities) under a rich medium (brain
heart infusion, BHI) or a 10-fold diluted BHI (BHI/10) [86]. They demonstrated that the biofilm
biovolume in BHI/10 is significantly higher than that in BHI. Further investigation revealed that relative
poor nutrients enhance cell death and release eDNA, leading to enhanced biofilm formation and
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structural stability. Vibrio cholerae is also a special kind of copiotrophs; when placed in an environment
lacking glucose and mannose, Vibrio cholerae A1552 seems to stimulate cyclic adenosine monophosphate
(cAMP) synthesis, to form a cAMP–cAMP receptor protein (CRP) complex to regulate the expression of
downstream genes related to nutrient acquisition and utilization, leading to the stimulation of biofilm
formation [87,88].

Oligotrophs are the dominant strains in oligotrophic environments and are more common in
pure water. As oligotrophs, the non-tuberculous mycobacteria are the natural inhabitants in pure
water or engineered water systems and soils, and are able to grow at low carbon concentrations [89].
During its growth, biofilms help oligotrophs resist the oligotrophic environments. Although there are
few available studies on oligotrophic biofilms, it is not difficult to speculate that under oligotrophic
conditions, biofilm formation is a good survival strategy for oligotrophs.

Under oligotrophic conditions, such “protective clothing” takes a series of measures to ensure
the normal reproduction and metabolism of microorganisms, and preferentially distributes limited
nutrients within this “protective clothing” [90]. Thus, biofilms seem to play a huge role in the survival
of bacteria in the extreme oligotrophic conditions. Regardless of their types, biofilms act as a “protective
garment” for microorganisms, and are responsible for protecting their survival and reproduction.

3.7. Tolerance and Resistance to Antibiotics in Biofilms

Microorganisms in biofilms seem to show a strong tolerance and resistance to antibiotics. Microbial
tolerance is generally related to the mode of biofilm formation, which is a transient and nonheritable
phenotype [91]. Microbial resistance is an acquired ability of microorganisms to resist antibiotics in an
inheritable mode [92]. Several molecular mechanisms are involved in the biofilm-specific tolerance
and resistance.

Biofilms can confer microbial tolerance to antibiotics mainly through the following types [26,93].
First, biofilms can serve as physical barriers, and their thickness and chemical composition can

prevent the perfusion of antibiotics [94]. There are many anionic and cationic molecules in the EPS
of biofilms, such as uronic acids, proteins, glycoproteins, glycolipids, eDNA, etc. They can also bind
to charged antibiotics and form a shelter for microorganisms [40,95], in order to help microbial cells
embedded within the biofilms establish tolerance against antibiotics [96]. Singh et al. demonstrated
that the penetration of oxacillin, cefotaxime, and vancomycin are significantly reduced through the
biofilms of Staphylococcus aureus and Staphylococcus epidermidis [97]. The adsorption of antibiotics by
biofilm components [98] or the degradation of antibiotics by hydrolase, such as a β-lactamase [99,100],
can also limit antibiotic penetration. Pel exopolysaccharide, which is cross-linked with negatively
charged eDNA in the Pseudomonas aeruginosa matrix of EPS [101], can also play both structural and
protective roles to reduce its susceptibility to aminoglycoside antibiotics [102].

Second, physiological limitations including the growth rate [103–105], biofilm age [106],
starvation [107], etc., can reduce biofilm susceptibility to the antibiotics. Williamson et al. demonstrated
that the subpopulation of inactive bacteria harbored in Pseudomonas aeruginosa biofilms is resistant
to killing by tobramycin and ciprofloxacin, but the actively growing population remains sensitive to
antibiotic killing [108]. Besides, a small subpopulation of bacteria in biofilm and persister cells entering
a slow-growing or starving state is also highly tolerant to killing by antibiotics [109].

Microorganisms growing in biofilms are more resistant to antibiotics than in planktonic
counterparts. Several authors have also revealed an interconnection between biofilm formation
and the resistance to antibiotics [110,111].

First, microbial genetic diversification in biofilms can contribute to resistances to antibiotics [112].
Second, the biofilm is considered to be a main reservoir of genetic diversity that promotes microbial
survival in extreme environments, leading to the development of resistances to antibiotics. It is reported
that biofilm formation causes an increasing average plasmid copy number as well as the increasing
transcription of plasmid-borne resistant genes in Enterococcus faecalis cells [113]. This finding suggested
that biofilm growth can reduce microbial susceptibility to antibiotics.
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Second, multidrug efflux pumps in biofilms can transport antibiotics to prevent toxic
accumulation [114–116]. The PA1874-1877 efflux pump in Pseudomonas aeruginosa is more expressed in
the biofilm state than in the planktonic state, and is involved in resistance to antibiotics [117]. Deletion
of the PA1874 to PA1877 genes encoding this pump in Pseudomonas aeruginosa PA14 increases the
microbial sensitivity to tobramycin, gentamicin, and ciprofloxacin, especially when this mutant strain
is present in a biofilm.

Third, sub-minimal inhibitory concentrations (sub-MICs) of antibiotics can also induce resistances
to antibiotics. In clinical isolates of Staphylococcus epidermidis, sub-MICs of erythromycin [118],
tetracycline, and quinupristin–dalfopristin [119] seem to enhance the expression of intercellular
adhesion gene clusters, leading to increased EPS expression and invasiveness. Sub-MICs of β-lactam
antibiotics also stimulate a thicker biofilm via the upregulated genes that are involved in glycogen
biosynthesis in the non-typeable Haemophilus influenzae strains that were isolated from patients with
chronic otitis and chronic bronchitis [120].

Furthermore, polymicrobial biofilms show enhanced resistances to antibiotics [121–123].
For example, Candida albicans, β-1,3-glucan, can bind with ofloxacin, and Escherichia coli cells
embedded within the Candida albicans biofilm show increased resistance to ofloxacin compared to the
monomicrobial Escherichia coli biofilm [124]. Also, polymicrobial biofilms formed by Staphylococcus
albicans and Candida albicans are often found in different types of infections, with Staphylococcus albicans
coated in the matrix secreted by Candida albicans showing enhanced resistance to vancomycin [125–127].

Relatively speaking, the studies of “protective clothing” of microorganisms are more thorough and
comprehensive in the fields of tolerance and resistance to antibiotics than other resistant mechanisms,
but people are paying more attention to learning how to destroy or take off this “protective clothing”
to reduce the damage that it causes to humans.

Together, the biofilm can provide a shelter for microorganisms to survive against many kinds of
extreme environments. In addition to those discussed above, biofilms can also protect microorganisms
from several types of acute environmental stressors such as desiccation, heavy metal pollution,
oxidative stress, etc. [3,128] (Figure 2). For example, space habitats living in the International Space
Station (ISS) are under extreme UV radiation, desiccation, temperature, and pressure stresses, but it
was demonstrated that these stresses can trigger abundant EPS production and biofilm formation.
The Mir space station was found to be heavily colonized by biofilms, which damaged quartz windows
and corroded various metal surfaces [129]. As studies on environmental biofilms in extreme habitats
are rare, further investigation into the mechanisms regulating the biofilm formation of microorganisms,
especially those of the environmental isolates (and environmental isolates in situ) in response to
different stresses is important. Understanding the structure and protection mechanism of this versatile
and magical “protective clothing” in extreme environments is not only a scientific study, but also
benefits human life, since it will be a good way for production services.

4. Regulation of Biofilms in Extreme Environments

The emergence of biofilms in extreme environments is the result of a series of changes in gene
expression. It is a struggle for microbial survival to resist extreme environments by regulating the
expression of some genes. In extreme environments, the formation, composition, and function of
biofilms seem to be inseparable from a series of regulatory systems.

4.1. Quorum Sensing-Based Signaling

Quorum sensing (QS) is a group behavior in which microorganisms regulate their gene expression
profile according to the changes of cell density in a population. It is an induction phenomenon
that occurs when the number of microorganisms reaches a certain density threshold. The QS
system of microorganisms is mainly involved in the differentiation of microbial biofilms (Table 1),
and is considered to be an indispensable part of microbial transmission mechanisms in extreme
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environments [2]. In response to various extreme conditions, QS seems to play important roles in the
regulation of biofilm formation [130,131].

In extreme environmental responses, QS can regulate more than 10% of genes in Pseudomonas
aeruginosa that are primarily implicated in the production of virulence factors, biofilm formation,
resistances to antibiotics, mortality, and the amendment of metabolic pathways [132]. In fact, QS is
involved in the tolerance of Pseudomonas aeruginosa biofilms to kanamycin, tobramycin, and hydrogen
peroxide [133,134]. This data may be related to the role of QS in the eDNA production regulation,
which inhibits the penetration of some antibiotics into biofilm [135]. Vibrio cholerae can pass through
the acidic stomach alive before reaching the upper intestine, by developing a thick, glutinous biofilm
mediated by the QS [136]. The Vibrio cholerae mutant that is deficient in the QS regulator, HapR,
which inhibits the expression of the Vibrio polysaccharide biosynthesis operon, seems to exhibit a
thicker biofilm [136]. However, when the Vibrio cholerae comes out of the acidic environment of the
stomach, biofilm protection is not further required, and HapR instead facilitates the disruption of the
biofilm [137].

Table 1. Main affecting factors in biofilm formation.

Factor Brief Description Strain Reference

Environmental
parameter

Ultraviolet (UV)

Matrix of extracellular polymeric
substances (EPS) shows a
protective property by physical
shielding against UV radiation

Listeria monocytogenes,
Deinococcus geothermalis [51,53]

Temperature

Biofilm formation increases at
high temperature, and the
composition of biofilms change at
low temperature. They both
enhance microbial resistance

Thermolongibacillus,
Sulfolobus, etc. [17,54]

Extreme pH
At extreme pH, biofilms increase
bacterial resistance by altering
EPS content

Enterococcus faecalis,
Alishewanella, etc. [69,70]

Salinity
Bacteria can withstand high salt
damage by aggregating into
granular biofilm forms

Halomonas stenophila,
Kocuria flava AB402, etc. [76,77]

High pressure
High pressure yield an immediate
increase in the polysaccharide
band area of bacterial biofilms

Staphylococcus aureus [24]

Poor nutrient Under poor nutrient conditions,
the biofilm formation is enhanced

Listeria monocytogenes,
non-tuberculous
mycobacteria

[86,89]

Quorum
sensing (QS)

Autoinducer-1 (AI-1)
AI-1 system is related to biofilm
formation, and can adjust its
amount in extreme environments

Acinetobacter baumannii,
Pseudomonas aeruginosa [138]

Autoinducer-2 (AI-2) AI-2 regulates biofilm formation
against environmental stresses Bifidobacterium longum [139]

Messenger
molecule

cyclic dimeric guanosine
3’,5’-monophosphate (c-di-GMP)

c-di-GMP can control biofilm
formation in response to different
environments

Acidithiobacillus
thioooxidans [140]

cyclic adenosine
3’,5’-monophosphate (cAMP)

cAMP is crucial for the formation
of pellicle biofilm

Pseudomonas
aeruginosa,Vibrio cholerae [88,141]

In extremophiles, there are three primary QS systems: autoinducer-1 (AI-1), AI-2,
and peptide-based. The AI-1 system is found to be more prevalent (except in the thermophiles
that favor AI-2), while the peptide-based system was the least abundant in extremophiles. The AI-1
system uses N-acyl-homoserine lactones (AHLs) as signals [142], and is associated with the biofilm
formation in Acinetobacter baumannii and Pseudomonas aeruginosa [138]. AI-2, a furanosyl borate diester,
is shared by both Gram-positive and Gram-negative bacteria. For example, AI-2 regulates the biofilm
formation in Bifidobacterium longum [139]; meanwhile, AI-2 not only regulates biofilm formation,
but also enhances anti-oxidative stress in Deinococcus radiodurans [143]. In acidophiles, approximately
4.5% genes of Acidithiobacillus ferrooxidans ATCC 23270 T account for the genes involved in the QS
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network, of which 42.5% are used for biofilm formation regulation. Thus, one may presume that QS
regulates biofilm formation in this bacteria via a complex signal system [144].

4.2. Nucleotide Second Messenger-Based Signaling

Nucleotides such as cyclic dimeric guanosine 3′,5′-monophosphate (c-di-GMP), cyclic adenosine
3′,5′-monophosphate (cAMP), etc., are critical elements of the signal transduction networks,
which link perceptions of the environment to the specific cellular behaviors of prokaryotes (Table 1).
These molecular mechanisms are particularly crucial in microorganisms that are exposed to certain
types of extreme environments [145].

c-di-GMP is a novel and ubiquitous bacterial second messenger that was shown to control biofilm
formation in response to environmental influence [146–148]. It has been reported that EPS components
such as polysaccharides, flagella, pili, adhesins, and eDNA contribute to biofilm formation and are
regulated by c-di-GMP through specific receptors [149–151]. Generally, an increased concentration
of intracellular c-di-GMP promotes surface attachment and biofilm formation, while decreased
intracellular c-di-GMP concentration induces biofilm dispersal [152] (Table 1). In some acidophiles,
c-di-GMP signaling is related to biofilm formation [145]. For example, Acidithiobacillus can thrive in
extreme environments with poor nutrients, high concentrations of heavy metals, and extreme acidity.
Indeed, several PilZ-containing receptors of Acidithiobacillus are found to be related with Type IV
pilus formation and twitching motility, which are implicated in the irreversible attachment to surfaces,
microcolony grouping, and the structural development of biofilms [153,154]. The pel-like operon,
encoding the c-di-GMP receptor protein PelD, is also found in the Acidithiobacillus strains. A recent
report demonstrated that PelD and the c-di-GMP signal pathway are involved in the biofilm formation
and structure in Acidithiobacillus thioooxidans [140].

Another bacterial second messenger, cAMP, is also found in a variety of prokaryotes and seems
to be conserved among diverse bacteria. Huynh et al. demonstrated that cAMP is involved in the
dispersal of biofilms in Pseudomonas aeruginosa [141] (Table 1). Also, cAMP concentration can control
the biofilm production of Vibrio cholerae [88] (Table 1). In addition, Paytubi et al. demonstrated that
cAMP is involved in the spatial distribution to modulate biofilm locations [155]. In a rich medium
with low osmolarity at 25–28 ◦C and static incubation, Salmonella can form a biofilm at the air–liquid
interface, which is known as the pellicle, while in the minimal media, a solid–liquid interface biofilm
called bottom biofilm is observed [155].

As nucleotide second messengers, c-di-GMP and cAMP respond to various environmental signals
and regulate biofilm formation through various mechanisms [156]. The research on signal regulation
system can help reveal the mechanism of biofilm formation and provide a direct target for biofilm
prevention and control.

5. Conclusions

In extreme environments, microorganisms regulate the expression of a series of biofilm-forming
genes through QS, nucleotide second messenger-based signaling, etc., to endow microorganisms with
the capability of becoming resistant to various extreme environments such as UV radiation, extreme
temperature and pH, high salinity, high pressure, poor nutrients, antibiotics, etc.

Protection by microbial biofilms seems also to play an essential role in the production of
special enzyme preparations for the pharmaceutical industry, food industry, agricultural production,
environmental protection, energy utilization, and other fields of industry, as well as scientific research.
Biofilms have several protective advantages that may be physical, physiological, or genetic. An in-depth
study of the protective mechanism of biofilms to microorganisms in extreme environments is expected
to resolve contradictions between the extreme environments of industrial production and the limited
stability of enzyme proteins, allowing one to establish a high efficiency and low-cost bioprocessing
technology. Further, microorganisms in biofilms display different features to those in planktonic states,
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and this peculiar form of development endows associated microorganisms with a high tolerance to
extreme environments.

The current review provides comprehensive information on the biofilm formation, biofilms in
extreme environments, and biofilm regulation, which may provoke new strategies for the utilization
and treatment of biofilms in extreme environments.
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