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Abstract 

Background:  Cryptosporidium baileyi is an economically important zoonotic pathogen that causes serious respira‑
tory symptoms in chickens for which no effective control measures are currently available. An accumulating body 
of evidence indicates the potential and usefulness of metabolomics to further our understanding of the interaction 
between pathogens and hosts, and to search for new diagnostic or pharmacological biomarkers of complex microor‑
ganisms. The aim of this study was to identify the impact of C. baileyi infection on the serum metabolism of chickens 
and to assess several metabolites as potential diagnostic biomarkers for C. baileyi infection.

Methods:  Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) and subsequent multivariate 
statistical analysis were applied to investigate metabolomics profiles in the serum samples of chickens infected with 
C. baileyi, and to identify potential metabolites that can be used to distinguish chickens infected with C. baileyi from 
non-infected birds.

Results:  Multivariate statistical analysis identified 138 differential serum metabolites between mock- and C. baileyi-
infected chickens at 5 days post-infection (dpi), including 115 upregulated and 23 downregulated compounds. These 
metabolites were significantly enriched into six pathways, of which two pathways associated with energy and lipid 
metabolism, namely glycerophospholipid metabolism and sphingolipid metabolism, respectively, were the most 
enriched. Interestingly, some important immune-related pathways were also significantly enriched, including the 
intestinal immune network for IgA production, autophagy and cellular senescence. Nine potential C. baileyi-respon‑
sive metabolites were identified, including choline, sirolimus, all-trans retinoic acid, PC(14:0/22:1(13Z)), PC(15:0/22:6(4Z
,7Z,10Z,13Z,16Z,19Z)), PE(16:1(9Z)/24:1(15Z)), phosphocholine, SM(d18:0/16:1(9Z)(OH)) and sphinganine.

Conclusions:  This is the first report on serum metabolic profiling of chickens with early-stage C. baileyi infection. The 
results provide novel insights into the pathophysiological mechanisms of C. baileyi in chickens.
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Background
Cryptosporidium, an important zoonotic protozoan para-
site of humans and animals, has been reported in approx-
imately 30 avian species worldwide, with the prevalence 

ranging from 0.8 to 44.4% [1]. Among the Cryptosporid-
ium species reported in birds, C. baileyi is the dominant 
species across all continents, with the exception of Ant-
arctica, especially in chickens [2, 3]. C. baileyi infection 
can cause serious respiratory symptoms (e.g. coughing, 
sneezing and dyspnea), decrease in weight gain, higher 
morbidity and mortality in chickens [4, 5]. Notably, co-
infections of C. baileyi with other respiratory and gastro-
intestinal pathogens (e.g. Escherichia coli and infectious 
bronchitis virus) have also been reported in chickens [6, 
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7]. Further, an immunosuppressive effect of C. baileyi 
infection was also shown following vaccination against 
reoviruses, infectious bronchitis virus, Newcastle disease 
virus and avian influenza virus, resulting in significant 
economic losses to the poultry industry [7–9]. More sig-
nificantly, C. baileyi has been detected in immunodefi-
cient patients [10, 11], suggesting the potential zoonotic 
risk of this species. However, no effective preventive or 
treatment agents against C. baileyi infection have been 
developed to date [12].

The identification of C. baileyi infection is currently 
mainly based on the presence of oocysts in host feces or 
of other developmental stages (e.g. schizonts/merozoites, 
gametocytes/gametes) during histopathological observa-
tion [13, 14]. However, the performance of oocyst-based 
procedures to determine C. baileyi infection is often 
delayed due to their destructive effects on parasitized tis-
sues (e.g. trachea, bursa of Fabricius, and cloaca), thus 
relying on the numbers and depth of schizonts prior to 
oocyst formation [4, 13]. Invasive or injuring histopatho-
logical observation is an unattractive option for antemor-
tem diagnosis [14]. In recent decades, metabolomics, 
an increasingly recognized approach for identifying 
and quantifying multiple small chemical metabolites in 
complex biological samples, has been proved to be use-
ful in the search for new diagnostic or pharmacological 
biomarkers of complex microorganisms (e.g. Mycobacte-
rium tuberculosis, Toxoplasma gondii) [15, 16] as well as 
for improving our understanding of dormant and intri-
cate interactions between hosts and pathogens [17–22]. 
Many compartments have been used to profile chemical 
metabolites in humans and animals, such as feces, saliva, 
urine and blood [23]. Although urine would be the better 
choice of biofluid in terms of developing a non-invasive 
diagnostic marker [24], serum samples are more suitable 
for tracking metabolites with the aim to develop non-
invasive diagnostic markers for birds (e.g. chicken) since 
it’s difficult to purify urine from fecal mixtures due to the 
specific structural characteristics of the digestive system 
of birds [25, 26]. Numerous analytical platforms are also 
applied in metabolomic studies, including nuclear mag-
netic resonance (NMR) and gas or liquid chromatogra-
phy coupled to mass spectrometry (GC–MS/LC–MS) 
[27]. Compared with GC–MS and NMR, LC–MS cur-
rently represents the major instrumental and analytical 
technology used in the global profiling of metabolites 
[28], and it enables rapid quantification of multiple 
metabolites ranging from nanograms per liter to grams 
per liter in body fluids [29]. To further improve the reso-
lution and sensitivity of LC–MS, ultraperformance liquid 
chromatography-MS (UPLC-MS), one of the more versa-
tile techniques, has been established and used in metabo-
lomics studies [30–32]. Previous studies have reported 

metabolic alterations associated with intestinal perme-
ability in mouse feces following infection with C. parvum 
using GC–MS [33] and diarrheal aspects of the disease in 
the mouse gut and COLO-680 N cells during infections 
of C. parvum or C. hominis [34]. In the present study, we 
explored the serum metabolomic profiles of chickens in 
the early stages of C. baileyi infection.

Methods
Chemicals and reagents
All chemicals and solvents were analytical grade. Metha-
nol, acetonitrile and formic acid were purchased from 
CNW Technologies GmbH (Düsseldorf, Germany). 
2-Chloro-L-phenylalanine was obtained from Shanghai 
Hengchuang Bio-technology Co., Ltd. (Shanghai, China). 
1-Heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocho-
line [LysoPC(17:0)] was purchased from Avanti Polar 
Lipids (Alabaster, AL, USA).

Experimental design
A total of 18 newly hatched white cockerels (Hy-line 
variety) were purchased from the Giant Long Company 
(Shaanxi, China) and randomly divided into experimental 
(Case 1, E1–E9: C. baileyi-infected chickens) and mock 
(Con 1, N1–N9) groups with nine chickens per group. 
Animal care was according to the recommendations of 
the National Research Council (NRC) as published in 
the Guide for the Care and Use of Laboratory Animals 
[35]. All chickens had free access to clean feed and ster-
ile water throughout the whole experimental period. The 
base diet was also per the recommendation of the NRC, 
and the components and nutrient levels of the diets 
are listed in Additional file  1: Table  S1. Chickens in the 
experimental group were orally infected with 1 × 106 C. 
baileyi oocysts at 3 days after birth according to our pre-
vious study [36], while mock birds were orally inoculated 
with the same volume of phosphate buffer saline.

Sample collection
All chickens were in good nutritional status during the 
entire experimental period, and no birds died. The blood 
sample was collected from the heart of each chicken 
simultaneously into a separate Eppendorf tube to isolate 
the serum sample on the afternoon of day 5 post-infec-
tion (dpi). These samples were used for analyzing the 
profiles of early serum metabolites since C. baileyi oocyst 
shedding in chicken feces began at 5 dpi. The obtained 
serum sample was transferred into a new Eppendorf tube 
and stored immediately at −  80  °C for further analysis. 
All chickens in both groups were sacrificed by cervi-
cal dislocation, sterilized and stored in specific bags for 
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biological wastes and then later recovered for further 
processing by the Laboratory Animal Center of North-
west A&F University.

Confirmation of infection
Fecal samples of all chickens in both groups were exam-
ined daily using Sheather’s sucrose flotation technique 
[37] and 18S rRNA gene-based nested PCR as reported 
in [38] to confirm C. baileyi infection. Oocysts per gram 
feces (OPGs) were counted using the hemocytometer.

Sample preparation for UPLC‑MS analysis
For each blood collection, a 100-μl sample of serum was 
mixed with 10  μl of 2-chloro-L-phenylalanine (0.3  mg/
mL) (internal standard) and vortexed for 10  s, followed 
by the addition of 300 μl of an ice-cold mixture of meth-
anol and acetonitrile (2:1, v/v). The mixed solution was 
vortexed for 1  min, ultrasonicated in an ice-water bath 
for 10 min, kept at − 20  °C for 30 min and then centri-
fuged at 13,000 rpm for 10 min at 4 °C. The supernatant 
from each tube was then collected and filtered through 
a 22-μm organic phase pinhole microfilter. Finally, the 
filtrate was transferred into a UPLC vial and stored at 
− 80 °C for subsequent UPLC-MS analysis. All extraction 
reagents were precooled at −  20  °C in advance. Quality 
control (QC) samples were pooled by mixing all samples 
at an equal volume.

UPLC–MS analysis for untargeted metabolite profiling
The UPLC-MS analysis was performed on an ACQUITY 
UPLC I-Class system (Waters Corp., Milford, MA, USA) 
coupled with a Xevo G2-XS QTof mass spectrometer 
(Waters Corp.). A 2-μl aliquot of the filtrate described 
in the previous section was injected into an ACQUITY 
UPLC BEH C18 column (1.7  μm, 2.1  mm × 100  mm; 
Waters Corp.) at a flow rate of 0.4 ml/min and a column 
oven of 45 °C. Mobile phases A and B were water/formic 
acid (99.9:0.1, v/v) and acetonitrile/formic acid (99.9:0.1, 
v/v), respectively. Metabolite elution was conducted at 
the following linear gradient: 0  min, 1% (B); 1  min, 5% 
(B); 2 min, 30% (B); 3.5 min, 60% (B); 7.5 min, 90% (B); 
9.5–12.5 min, 100% (B); 12.7–16 min, 1% (B). All samples 
were kept at 4 °C during the analysis.

The MS data were acquired in a centroid mean square 
error (MSE) mode with an electrospray ionization (ESI) 
source operating in either positive or negative ion mode. 
The capillary voltage was set to 3 and 2  kV for positive 
and negative ions, respectively; the sampling cone voltage 
was set to 40 V. The time-of-flight (TOF) mass range was 
set from 50 to 1000 m/z, and the scan time was 0.1 s. The 
QCs were injected at regular intervals (every 9 samples) 
throughout the analytical run to assess repeatability of 

the data. All procedures were carried out in the labora-
tory of Shanghai Luming Biotechnology Co., Ltd. (Shang-
hai, China).

Data processing and statistical analysis
Raw data were collected from the UPLC-MS analysis 
platform and preprocessed using the software progenesis 
QI v2.3 (Nonlinear Dynamics, Newcastle, UK), includ-
ing baseline filtering, peak picking, integration, retention 
time (RT) alignment, peak alignment and normaliza-
tion. The main parameters were set as follows: precursor 
tolerance, 5  ppm; product tolerance, 10  ppm; product 
ion threshold, 5%. The metabolites were qualitatively 
identified by alignment with the Human Metabolome 
Database (HMDB), Lipidmaps (v2.3) and METLIN Data-
base. Three-dimensional data sets were integrated into 
an Excel file (Microsoft Corp., Redmond, WA, USA), 
including the mass-to-charge ratio ( m/z), peak RT and 
peak intensities, and each ion was identified by using 
RT–m/z pairs. Any peak with missing values (ion inten-
sity = 0) in > 50% of samples was removed to generate 
the final matrix. The internal standard was used for QC 
data (reproducibility). Data for both positive and nega-
tive ions were combined into a matrix table and imported 
into SIMCA software package (v14.0; Umetrics, Umeå, 
Sweden) for multivariate statistical analysis. Unsuper-
vised principal component analysis (PCA) was utilized 
to visualize systemic variations and general clustering 
among all groups, and supervised partial least squares-
discriminant analysis (PLS-DA) and orthogonal PLS-DA 
(OPLS-DA) were used to identify differential metabolites 
between the mock and experimental groups. The Vari-
able Importance in Projection (VIP) scores in the OPLS-
DA model were calculated to select potential differential 
metabolites, and the variables with a VIP value > 1 were 
considered relevant for group discrimination. Model 
overfitting was monitored by using the default seven-fold 
cross validation and 200-times response permutation 
testing (RPT). The differential metabolites between two 
groups were further screened by using the Benjamini–
Hochberg adjusted Student’s t-test and fold-change anal-
ysis. The log2 fold change (log2FC) represented the ratio 
of the abundance of the average ion intensities in sera of 
infected chickens compared to that of mock birds. The 
P value adjusted by the Benjamini–Hochberg method, 
also known as the false discovery rate (FDR), was used 
to identify differentially expressed metabolites and met-
abolic pathways affected by C. baileyi infection [39]. 
Metabolites with a VIP value > 1 and FDR (q-value) < 0.05 
were identified as significantly differential metabolites. 
Additionally, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG; http://​www.​genome.​jp/​kegg/) was 

http://www.genome.jp/kegg/
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used to identify important pathways related to metabolic 
phenotypes following C. baileyi infection.

Biomarker characterization and identification
To identify potential biomarkers for the early diagnosis of 
C. baileyi infection in chickens, we performed univariate 
receiver operating characteristic  (ROC) curve analyses 
to quantify the predictive performance of the differential 
metabolites of interest, and the accuracy (including sen-
sitivity and specificity) was evaluated for each selected 
metabolite using the area under the ROC curves (AUC), 
with AUC > 0.7 as the threshold.

Results
Confirmation of C. baileyi infection in chickens
Morphological observation of chicken feces under a 
microscope (ECLIPSE 80i; Nikon Corp., Tokyo, Japan) 
found Cryptosporidium oocysts in the feces of the experi-
mental group by using Sheather’s sucrose flotation tech-
nique without dye, but no oocysts were detected in the 
mock group (Additional file 2: Figure S1a). The 18S rRNA 
gene of Cryptosporidium was amplified and sequenced 
in fecal samples of chickens in the experimental group 
(Additional file 2: Figure S1b), and the sequence identity 
was 100% to a C. baileyi isolate from a farmed chicken in 
Hubei Province, China (MG969393). Oocyst shedding in 
infected chickens was found from 5 to 28 dpi, with two 
OPG peaks at 10 and 16 dpi, respectively (Additional 
file 2: Figure S1c).

Metabolite profiling of chicken serum samples
A total of 4235 metabolites were identified by UPLC-
MS (1945 and 2290 for negative and positive ion modes, 
respectively) in serum samples from the mock and 
infected chicken groups at 5 dpi, of which 2807, 1147 
and 281 were matched against HMDB, Lipidmaps (v2.3) 
and METLIN Database, respectively (Additional file  3: 
Table S2). Of these 4235 metabolites, 3865 were clustered 
into 24 classified super classes, including lipids and lipid-
like molecules (2164), organoheterocyclic compounds 
(437), organic acids and derivatives (396), benzenoids 
(215), organic oxygen compounds (189), phenylpro-
panoids and polyketides (189), organic nitrogen com-
pounds (58), alkaloids and derivatives (44), organosulfur 
compounds (40), organooxygen compounds (37), nucleo-
sides, nucleotides and analogues (27), hydrocarbons (19), 
homogeneous non-metal compounds (14), organoh-
alogen compounds (13), organometallic compounds (4), 
lignans, neolignans and related compounds (3), mixed 
metal/non-metal compounds (3), organic compounds 
(3), organonitrogen compounds (3), hydrocarbon deriva-
tives (2), organic 1,3-dipolar compounds (2), inorganic 
compound (1), miscellaneous inorganic compound (1) 

and organophosphorus compound (1). The good stabil-
ity and repeatability of the analysis were revealed by the 
sufficiently close positioning of the QC samples in a PCA 
score plot (Fig. 1a). Clear separations between the mock 
and C. baileyi-infected chicken sera were also shown on 
score plots of PCA, PLS-DA and OPLS-DA (Fig. 1b, c), 
indicating that the two experimental groups had distinct 
metabolic profiles. Seven-fold cross validation R2Y (0.95) 
and Q2 (0.86) showed good fitness and predictability, and 
the negative  Q2 in the 200-times response permutation 
testing revealed no overfitting in OPLA-DA (Table  1; 
Fig. 1d). 

Effect of C. baileyi infection on metabolite profiles 
in chicken sera
To explore the impact of C. baileyi infection on serum 
metabolism in chickens, the metabolic profiles in both 
groups of chickens were analyzed at 5 dpi. Using the cri-
teria of VIP value > 1 in the OPLS-DA analysis and FDR 
(q-value) < 0.05 in the Benjamini–Hochberg method, we 
selected a total of 138 significantly differential metabo-
lites (including 115 upregulated and 23 downregulated 
metabolites) (Fig.  2; Additional file  4: Table  S3) follow-
ing C. baileyi infection, corresponding to 1945 and 2290 
for negative and positive ion modes, respectively. The 
top 20 significantly altered metabolites based on the VIP 
values are listed in Table 2. Further analysis showed that 
these metabolites could be grouped into 11 classified 
super classes (Additional file 4: Table S3), with lipids and 
lipid-like molecules being the most altered compounds 
in terms of metabolite numbers. Within this latter super 
class, 92 metabolites belonging to seven classes were 
identified, including glycerophospholipids (45), fatty 
acyls (20), sphingolipids (10), prenol lipids (7), steroids 
and steroid derivatives (4), sterol lipids (4) and glycerolip-
ids (2). 

The secondary super classes in metabolite numbers 
were organoheterocyclic compounds and organoo-
xygen compounds, and 7 compounds were identified 
in both super classes. The former super class included 
azaspirodecane derivative (1), azoline (1), benzoxazine 
(1), diazanaphthalene (1), heteroaromatic compound 
(1), naphthofuran (1), and pyridines and derivative (1), 
and the latter super class only contained carbonyl com-
pounds (7). Metabolites in other super classes were less 
than 7. Notably, 12 of differential metabolites could not 
be matched to any known super classes or classes (Addi-
tional file 4: Table S3).

Metabolic pathway affected by C. baileyi
To understand potential functional significance of bio-
logical metabolisms during C. baileyi infection, all 138 
differential metabolites identified in the present study 
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were submitted into KEGG database for metabolic 
pathway enrichment analysis. Of 15 pathways detected, 
Six were found to be significantly different with FDR 
(q-value) < 0.05 by using the Benjamini–Hochberg 
method in infected chickens compared to mock birds 
(Fig. 3a, Additional file 5: Table S4). A total of 9 up-reg-
ulated metabolites were included into these significantly 
altered pathways (Fig. 3b, Additional file 6: Table S5).

Two most enriched pathways associated with energy 
and lipid metabolism were predicted following C. baileyi 

infection, namely glycerophospholipid metabolism (4 
metabolites) and sphingolipid metabolism (2 metabo-
lites). In addition, 3 metabolisms were also enriched 
into pathways involved into host immune response and 
defense against pathogenic agents, namely intestinal 
immune network for IgA production, autophagy, and cel-
lular senescence.

Fig. 1  Score plots of multivariate statistical analysis. a Principal component analysis (PCA) score plots for all samples. Case 1 Cryptosporidium 
baileyi-infected chickens, Con 1 phosphate buffer saline-inoculated chickens, QC quality control. b Partial least squares-discriminant analysis 
(PLS-DA) score plots for Case 1 and Con 1 samples, c orthogonal partial least squares-discriminant analysis (OPLS-DA) score plots for Case 1 and 
Con 1 samples, d results of 200-times response permutation testing of OPLS-DA. Q2 and R2 represent the intercepts of the regression curve and 
y-axis generated by the linear regression between the R2 and Q2 values of "permuted” model and the R2Y and Q2Y values of the "real" OPLS-DA 
model, respectively

Table 1  Each parameter of the multivariate statistical analysis

R2Y metric describing the percentage of Y matric explained by the model, Q2 (cumulative) metric describing the predictive ability of the model, Q2 metric 
representing a parameter that describes whether the OPLS-DA opls-da model is over-fitted, PCA principal component analysis, PLS-DA partial least squares-
discriminant analysis, OPLS-DA orthogonal partial least squares-discriminant analysis, 
a Case 1: experimental group (Cryptosporidium baileyi-infected chickens); Con 1: mock-inoculated (with phosphate buffered saline) group

Samples Models R2X (cumulative) R2Y (cumulative) Q2(cumulative) Q2

All PCA-X 0.34 0.036

Case 1–Con 1a PLS-DA 0.37 0.95 0.81

OPLS-DA 0.37 0.95 0.86 − 0.61
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Fig. 2  Expression levels of metabolites between the experimental (Case 1, E1–E9) and mock (Con 1, N1–N9) samples. a Volcano plot for all 
differential metabolites. Each dot represents one metabolite with detectable expression in both conditions, with the colored dots marking the 
threshold [false discovery rate (FDR) < 0.05] for defining a metabolite as differentially expressed. Red and blue points represent the significantly 
upregulated and significantly downregulated metabolites, respectively; gray points indicate non-significant differential metabolites. b Hierarchical 
cluster analysis of all differential metabolites (FDR < 0.05). Each sample is visualized in a single column and each metabolite is represented by a 
single row. Red coloration indicates significantly increased metabolite levels, while green coloration indicates low expression (see color scale on 
figure)

Table 2  Top 20 serum metabolites following C. baileyi infection in chickens

m/z mass-to-charge ratio, VIP variable importance in projection, FDR false discovery rate, log2(FC)  log2 fold change

Super class Class Metabolites m/z Ion mode VIP score FDR (q-value) log2(FC)

Lipids and 
lipid-like 
molecules

Glycerophospholipids PS(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) 758.4397 Positive 7.1635 0.03205 0.6911

PI(O-16:0/12:0) 758.5170 Positive 19.2165 0.002712 0.7590

PI(18:1(11Z)/18:3(6Z,9Z,12Z)) 857.5210 Negative 15.6296 4.986E−05 2.3144

PI(16:2(9Z,12Z)/18:0) 833.5219 Negative 8.0607 4.986E−05 2.1052

PI(16:0/20:4(5Z,8Z,11Z,14Z)) 857.5225 Negative 7.2948 0.0005773 1.9798

PI(16:0/18:2(9Z,12Z)) 833.5214 Negative 12.2832 1.376E−05 1.6260

PE-NMe2(16:0/18:2(9Z,12Z)) 742.5401 Negative 7.3283 0.008647 0.3866

PE(18:1(11Z)/16:0) 762.5106 Negative 8.4451 0.01716 0.3871

PC(18:0/20:4(5Z,8Z,10E,14Z)(12OH[S])) 808.5876 Positive 11.4803 0.004282 0.3151

PC(18:0/18:2(9Z,12Z)) 830.5920 Negative 12.2456 0.005834 0.6030

1-(8-[5]-ladderane-octanyl)-2-(8-[3] -ladderane-
octanyl)-sn-glycerophosphoethanolamine

740.5361 Positive 6.8453 0.007720 0.4890

Sphingolipids Sphingosine 1-phosphate (d19:1-P) 808.5930 Positive 9.3068 0.0006339 0.4496

Sterol lipids 3alpha,12alpha,15alpha-Trihydroxy-5beta-cholan-
24-oic Acid

834.6075 Positive 8.1554 0.03314 0.3403

Fatty acyls Linoleamide 280.2623 Positive 11.4190 0.03024 0.2028

Oleamide 563.5523 Positive 6.9537 0.004440 0.2195

8E-Heneicosene 312.3620 Positive 7.4827 0.003657 0.2100

Unclassified Unclassified PC(14:0/22:1(13Z)) 788.6176 Positive 19.1918 0.02364 1.3638

GlcCer(t18:1(8Z)/18:0(2OH[S])) 782.5746 Positive 13.5588 0.01607 0.3220

GlcCer(t18:1(8Z)/22:0(2OH[S])) 838.6411 Positive 11.4627 0.03009 0.4810

Farnesyl acetone 263.2360 Positive 7.6243 0.009272 0.2245
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Identification of potential biomarkers
To identify the metabolic biomarkers related with C. bai-
leyi early infection in chickens, all 9 metabolites enriched 
into significantly altered pathways, namely choline, siroli-
mus, all-trans-Retinoic acid, PC(14:0/22:1(13Z)), PC(15:0
/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(16:1(9Z)/24:1(15Z)), 
phosphocholine, SM(d18:0/16:1(9Z)(OH)) and sphinga-
nine, were selected for ROC analysis by using plotROC 
package [40]. We found all these metabolites with the 
AUC > 0.7 (Table  3), including 8 in ESI + mode (Fig.  4a) 
and 1 in ESI-mode (Fig. 4b).

Discussion
Cryptosporidium baileyi is a potential zoonotic Crypto-
sporidium species with specific parasitic sites (e.g. epi-
thelial cells of the respiratory tract) that is distinct from 

gastrointestinal C. parvum and C. hominis and which 
can cause serious respiratory diseases in humans and 
birds [2, 11, 36]. It has been suggested that this protozoan 
parasite can be used as a model to characterize crypto-
sporidia due to its distinct morphological and biological 
features and large oocyst production in chickens [36, 41]. 
However, effective methods to prevent and control this 
parasite are currently lacking. Increasing evidence shows 
that metabolomics is an emerging “omics” technique that 
can provide a functional readout of cellular biochemis-
try for identifying significant metabolic pathways related 
to disease processes and potential biomarkers [42, 43], 
including metabolic diseases (e.g. diabetes, adiposity, 
metabolic syndrome), cancers (e.g. breast cancer, liver 
cancer) and microbial diseases (e.g. hepatitis B, tuber-
culosis) [15, 17, 19, 21, 22, 34, 44, 45]. In 2012, Ng et al. 

Fig. 3  KEGG pathway enrichment analysis of differential serum metabolites following C. baileyi infection. a Significantly enrichments pathways with 
FDR (q-value) < 0.05. b Relationships between metabolic pathways and differential serum metabolites enriched. Each oval denotes one metabolic 
pathway. Triangles denote differentially abundant metabolites, with red representing upregulated metabolites

Table 3  Potential serum biomarkers response to C. baileyi infection in chickens based on receiver operating characteristic curve 
analysis

KEGG Kyoto Encyclopedia of Genes and Genomes, AUC​ area under the curve

Metabolites KEGG ID Ion mode AUC​ VIP FDR (q-value) log2(FC) Pathways (FDR < 0.05)

All-trans-retinoic acid C00777 Positive 1.000 1.542 0.002763 0.2638 Intestinal immune network for IgA production

PE(16:1(9Z)/24:1(15Z)) C00350 Positive 0.9012 1.184 0.01051 0.8962 Glycerophospholipid metabolism, 
Autophagy–other, Autophagy–animal

Sphinganine C00836 Positive 0.9383 5.258 0.01546 0.2760 Sphingolipid metabolism

PC(15:0/22:6(4Z,7Z,10Z,13
Z,16Z,19Z))

C00157 Positive 0.8642 1.155 0.02174 0.4605 Glycerophospholipid metabolism

Phosphocholine C00588 Positive 0.9012 1.660 0.02200 0.3740 Glycerophospholipid metabolism

PC(14:0/22:1(13Z)) C00157 Positive 0.9383 19.19 0.02364 1.364 Glycerophospholipid metabolism

SM(d18:0/16:1(9Z)(OH)) C00550 Positive 0.9259 5.159 0.02786 0.3067 Sphingolipid metabolism

Choline C00114 Positive 0.8765 1.257 0.04110 0.4412 Glycerophospholipid metabolism

Sirolimus C07909 Negative 0.8765 2.448 0.04846 0.1805 Cellular senescence
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developed an untargeted metabolomics method using 
GC–MS to compare differences in metabolites present 
in fecal extractions from Cryptosporidium-positive and 
Cryptosporidium-negative patients [46], ultimately iden-
tifying 30 possible compounds that contributed most 
to the differences between two groups. Subsequently, 
metabolome changes following infections by zoonotic 
C. parvum and C. hominis were investigated in in  vivo 
mouse models (pregnant female BALB/c mouse or neo-
natal Swiss mouse fecal sample extractions; neonatal ICR 
mice small intestinal luminal flush samples and cecal 
contents; protein-deficient diet C67BL/6 mouse urines) 
and in in vitro COLO-680 N cell culture using NMR [34], 
GC-TOF MS [47] or GC–MS [33], with the results show-
ing that the host metabolic profile patterns response to 
Cryptosporidium infections were significantly affected by 
Cryptosporidium species (C. parvum or C. hominis) and 

isolates (C. parvum Iowa II or Weru), infection models, 
sample compartments (fece, urine, intestinal contents) 
and analytical platforms (NMR, GC–MS). In the pre-
sent study, we used the UPLC-MS technique to explore 
the impact of C. baileyi infection on the serum metabo-
lism of chickens at an early stage of infection. A total of 
138 significantly differential serum metabolites were 
found following C. baileyi infection, most (115 differen-
tial metabolites) of which were upregulated. Of these, 
two upregulated organic nitrogen compounds, namely 
phosphocholine and choline, had previously been found 
to also be increased in the urine of C67BL/6 mice on a 
protein-deficient diet that were infected with C. parvum 
Iowa strain oocysts, at 7 dpi [47], and the up-regulation of 
choline was also detected in COLO-680 N cells infected 
with zoonotic Cryptosporidium spp. by using NMR [34]. 
Choline, an essential substrate in phosphatidylcholine 

Fig. 4  Identification of potential biomarkers response to C. baileyi infection. a Potential biomarker metabolites detected in ESI+ mode based on 
receiver operating characteristic curve analysis, b potential biomarker metabolites detected in ESI− mode based on ROC analysis. ESI Electrospray 
ionization
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and acetylcholine synthesis, is usually obtained from the 
diet or the disintegration of membrane phospholipids 
[48, 49]. Previous studies showed that choline played a 
significant role in signal transduction, neurotransmitter 
synthesis and regulation of lipid metabolism in human 
and animals (e.g. rodents, pigs and chickens) and that 
it was negatively correlated with weight gain in chick-
ens [50–52]. Although few studies have reported the 
potential actions of host serum phosphocholine during 
pathogenic infection, the significance of microbial phos-
phocholine molecules has been demonstrated in host 
antibacterial immune response and diagnosis of bacterial 
infections [53–56].

Previous genomic and biochemical findings indicated 
that Cryptosporidium survival is highly dependent on 
host-derived biosynthetic pathways due to the unavail-
ability of some key metabolic pathways and incapability 
to de novo synthesize nucleosides, fatty acids and amino 
acids [57, 58]. Significant alterations in metabolites of 
amino acid biosynthesis pathways have been revealed 
during Cryptosporidium infection [33, 34, 46, 47]. In the 
present study, we also detected two significantly differen-
tial amino acids, peptides or analogues in serum samples 
of chickens infected with C. baileyi, and N2-fructopyra-
nosylarginine was upregulated. In addition, one fatty 
acid or conjugate and one carbohydrate or carbohydrate 
conjugate were found to be significantly decreased (Addi-
tional file 4: Table S3).

The KEGG pathway analysis identified three signifi-
cantly altered metabolites enriched into four important 
immunity-associated signal pathways, including intesti-
nal immune network for IgA production, autophagy and 
cellular senescence. Among these, the intestinal immune 
network for IgA production, which was the enriched 
metabolic pathway in this study, was also identified previ-
ously in the C. baileyi transcriptomic analysis of chicken 
tracheal tissues [36]. Specific serum IgA production was 
detected in patients infected with C. parvum, irrespective 
of human immunodeficiency virus/immune status [59], 
and specific IgA antibody response to the coproantigens 
of C. parvum was also found in serum samples in natural 
and experimentally infected calves [60, 61]. Serum IgA 
was also demonstrated in hens infected with C. baileyi 
[62]. In one study, although Cryptosporidium-induced 
autophagy-associated molecules were not investigated in 
host sera, autophagy occurred in intestinal epithelial cells 
following C. parvum infection [63]. Cellular senescence 
has been reported in enteroids isolated from neonatal 
mice and immunocompetent adults following ex vivo 
C. parvum infection, and senescent cells can communi-
cate with immune cells to invoke an immune response 
against C. parvum by upregulation of the inflammatory 
genes Mip-2, Nos2, Dkk1, Icam-1 and IL-6 [64]. Notably, 

the significance of interplay between metabolic processes 
and immunity has been reported in several biologi-
cal processes, including infectious diseases [65, 66]. For 
example, type I interferon signaling disrupted the hepatic 
urea cycle and altered systemic metabolism to suppress 
T-cell function in mice infected with chronic lympho-
cytic choriomeningitis virus (LCMV) [67]. A combina-
tion using genetics and metabolic profiling showed that 
nine of 12 compounds generated by the gut symbiont 
Clostridium sporogenes accumulated in host sera and 
that modulation of serum levels of these metabolites in 
gnotobiotic mice affected intestinal permeability and 
systemic immunity [68]. Of three significantly enriched 
metabolites in immunity-associated pathways during C. 
baileyi infection, PE(16:1(9Z)/24:1(15Z)), in addition to 
participating in glycerophospholipid metabolism, could 
initiate autophagy by covalently binding ATG8 during 
infections of foreign pathogens and homeostasis mainte-
nance [69]. Rapamycin can inhibit the activity of mecha-
nistic target of rapamycin (mTOR), decrease proliferation 
of T lymphocytes to reduce adipogenesis and enhance 
lipogenesis and induce tumor immune evasion [70, 71]. 
These findings indicate the potential roles of these dif-
ferential metabolites and that the latter are involved in 
host immunity or immunopathogenesis during C. baileyi 
infection.

In recent years, metabolomics has been increasingly rec-
ognized as a novel promising tool for developing biomark-
ers for the early diagnosis of disease [72–74]. In our study, 
ROC analysis of significantly differential metabolites 
between two groups showed nine C. baileyi-responsive 
metabolites with AUC > 0.7, including choline, sirolimus, 
all-trans-retinoic acid, PC(14:0/22:1(13Z)), PC(15:0/22:6(
4Z,7Z,10Z,13Z,16Z,19Z)), PE(16:1(9Z)/24:1(15Z)), phos-
phocholine, SM(d18:0/16:1(9Z)(OH)) and sphinganine. 
As an essential nutrient, choline can modulate immune 
response through one-carbon metabolism [75], and cir-
culating choline together with its metabolites have been 
reported to be potential cardiometabolic biomarkers [76]. 
Sirolimus has been reported to be able to enrich several 
circulating pro-inflammatory factors, such as interleukin 
(IL)-12, IL-6 and IL-1β [77]. All-trans-retinoic acid has 
been found to play an important role in the differentia-
tion of T cells and maintenance of homeostasis [78–83], 
and sphinganine has been identified to be required in pro-
grammed cell death, which is recognized as an effective 
strategy by which plants and animals can defend them-
selves against infections of pathogens [84]. Consequently, 
these differential compounds would be potential biomark-
ers for the early detection of C. baileyi in chickens and 
also could be used to reveal the suggested interactions 
between C. baileyi and its host (including chickens).
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This study has a number of limitations. First, although 
several interesting metabolites were found to be respon-
sive to infection by C. baileyi, the small number of chick-
ens in the metabolomic analysis in our study was an 
unavoidable limitation. More experimental animals are 
needed to be included in future studies to further confirm 
our findings. Secondly, only one time point was selected 
in our study; as such, the dynamic metabolic process dur-
ing the whole progression of infection can not be per-
fectly reflected, and limited metabolites of interest were 
obtained. Last but not the least, future studies should be 
conducted by integrated application of more available 
omics technologies (e.g. genomics, transcriptomics, pro-
teomics) to analyze novel interesting findings in serum 
metabolic processes of chickens infected with C. baileyi. 
Solving these problems will advance our knowledge in 
the intricate interactions between Cryptosporidium and 
hosts.

Conclusion
We have analyzed the serum metabolomics in chickens 
following Cryptosporidium infection at an early stage of 
infection for the first time and found differences in cer-
tain metabolites between infected birds and healthy ones. 
These differential compounds were mainly significantly 
enriched into energy and lipid metabolism and important 
immunity-associated signal pathways. Nine significantly 
metabolites were identified as compounds potentially 
responding to infection of C. baileyi, and these may be 
used to diagnose chicken cryptosporidiosis at an early 
stage. The findings in this study suggest that metabo-
lomics profiling provides new insights that will deepen 
our understanding of the interplay between the host and 
Cryptosporidium and assist in the development of poten-
tial biomarkers for the early detection of Cryptosporid-
ium infections in animals as well as humans.
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