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Abstract: Ischemic stroke (IS) is a common neurological disorder associated with high disability rates
and mortality rates. At present, recombinant tissue plasminogen activator (r-tPA) is the only US(FDA)-
approved drug for IS. However, due to the narrow therapeutic window and risk of intracerebral
hemorrhage, r-tPA is currently used in less than 5% of stroke patients. Natural compounds have
been widely used in the treatment of IS in China and have a wide range of therapeutic effects on IS
by regulating multiple targets and signaling pathways. The keywords “ischemia stroke, traditional
Chinese Medicine, Chinese herbal medicine, natural compounds” were used to search the relevant
literature in PubMed and other databases over the past five years. The results showed that JAK/STAT,
NF-κB, MAPK, Notch, Nrf2, and PI3K/Akt are the key pathways, and SIRT1, MMP9, TLR4, HIF-α
are the key targets for the natural compounds from traditional Chinese medicine in treating IS. This
study aims to update and summarize the signaling pathways and targets of natural compounds in the
treatment of IS, and provide a base of information for the future development of effective treatments
for IS.

Keywords: ischemic stroke; natural compounds; traditional Chinese medicine; signaling
pathways; targets

1. Introduction

Stroke is associated with the second leading cause of death and the third leading
cause of disability among human diseases [1], and IS specifically accounts for over 80%
of all stroke cases [2]. Due to the rapidly growing and aging population, IS incidence
increases dramatically with age, As a result, this disease has a substantial impact on both
afflicted families and society at large [3]. IS is characterized by localized ischemic and
hypoxia necrosis of brain tissue caused by infarction and occlusion of cerebral arteries,
which is often accompanied by significant physical and cognitive impairment [4]. IS can
be treated by opening the occluded vessels as soon as possible to restore blood flow to the
ischemic areas [5]. Recombinant tissue plasminogen activator (r-tPA) is the only US(FDA)-
approved drug for IS treatment in the United States. The therapeutic time window for
r-tPA is extremely limited, because it must be injected intravenously within 4.5 h of stroke
onset. Furthermore, there is a substantial risk of hemorrhagic transformation, which may
lead to additional difficulties [6]. In addition, thrombolysis with r-tPA is limited by slow
reperfusion and is associated with significant bleeding risk, about 50% of patients who
received this treatment develop cerebral ischemia/reperfusion injury (CIRI) [7], which can
result in major consequences and long term disability for effective treatment of IS, new and
more reliable therapeutic approaches are urgently needed.
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IS is a complex pathological cascade reaction involving various pathological factors,
including oxidative stress, inflammation, apoptosis, autophagy, and BBB damage. Ox-
idative stress, inflammation, and apoptosis are the critical factors in cerebral ischemic
injury [8,9]. An imbalance in the amount of reactive oxygen species (ROS) is the cause
of oxidative stress [10]. Under normal physiological conditions, the body maintains a
dynamic ROS balance, during cerebral ischemia, a large accumulation of ROS leads to
intracellular damage as well as mitochondrial damage, and cell transduction pathways are
disrupted, inducing an apoptotic cascade reaction which in turn promotes the inflammatory
response and the occurrence of apoptosis, further aggravating the oxidative damage of the
organism [11], and finally leads to neuronal cell necrosis, senescence and apoptosis [9,12].
In the pathological process of IS, oxidative stress, inflammation, and apoptosis interact
with each other and form a complex signaling network that plays a key role in the cerebral
ischemic cascade [13]. The continuous exploration of intracellular signaling pathways leads
to neuronal cell necrosis, senescence, and apoptosis.

Traditional Chinese medicine (TCM) has been practiced in China for thousands of
years, and has gained wide clinical application [14], numerous clinical and laboratory
investigations have been conducted over the last decades to confirm the effectiveness of
TCM in the treatment of IS. According to the research, TCM demonstrated anti-IS activity
and was shown to be safe and well-tolerated, TCM has various neuroprotective and re-
pairing effects including maintaining blood–brain barrier (BBB) function, decreasing brain
edema, regulating energy metabolism, promoting antioxidation, anti-inflammatory, and
anti-apoptosis, reducing excitatory amino acid toxicity, enhancing neurogenesis, angiogene-
sis, and synaptogenesis [15]. The main advantage of TCM is that it often contains numerous
components and affects many targets capable of producing additive or synergistic effects
for treating IS. However, there is a lack of system review about the pathways and targets
for TCM treating IS. This paper summarizes signaling pathways and potential therapeutic
targets of natural compounds originated from TCM, to provide ideas for developing new
anti-IS drugs.

2. The Signaling Pathways of Active Compounds in the Treatment of IS
2.1. JAK/STAT Signaling Pathway

The JAK/STAT signaling pathway is involved in various physiological processes,
such as cell proliferation, differentiation, and apoptosis. The JAK protein tyrosine kinase
family consists of JAKl, JAK2, JAK3, and Tyk2. To date, seven members of the STAT family
have been ascertained: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6 [16].
Extracellular signals such as cytokines and growth factors bind to corresponding receptors
on the cell membrane, causing receptor dimerization and bringing receptor-coupled JAK
kinases closer together, thus activating them through interactive tyrosine phosphorylation,
which then phosphorylates STAT and transports it from the intracellular environment to
the nucleus. STAT binds to the promoter region of the gene containing the γ-activation
sequence, resulting in changes in the transcription and activity of DNA, which in turn
affects essential cellular functions including cell growth, differentiation, and death [17].
After cerebral ischemia, ischemia and hypoxia can directly damage neurons and tissue
cells in brain tissue, activate microglia and astrocytes in the ischemic area, and release
inflammatory factors (IL-1, IL-6, TNF-α, ICAM-1α) and growth factors (EPO, ECF, PDGF),
that can activate JAK/STAT signaling pathways [18]. It was shown that both JAK and
STAT expression were upregulated in brain tissue after ischemia and then activated JAK-
STAT phosphorylation, which significantly increased p-JAK and p-STAT protein expression
and induced brain injury with brain edema, infarct size expansion, and neurological
dysfunction. At the same time, downregulation of the JAK/STAT signaling pathway
could reduce ischemic brain infarction, restore blood-brain barrier integrity and promote
neurological recovery after cerebral ischemic injury [19,20].

Matrine, an alkaloid that is extracted from Sophora flavescens Aiton., has been shown to
reduce the expression of the p-JAK2 and p-STAT3 proteins and the number of apoptotic
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cells in the brain tissue of Middle Cerebral Artery Occlusion (MCAO) rats, and plays
a neuroprotective role by inhibiting the activation of JAK-STAT signaling pathway and
reducing the inflammatory response [21]. Hydroxy saffron yellow A is a flavonoid extracted
from Carthamus tinctorius L., it can significantly down-regulate the expression of JAK2-
mediated signaling due to ischemic injury, while significantly promoting the expression
of SOCS3, which is a negative regulator of STAT3. By modulating the cross between
JAK2/STAT3, Hydroxy saffron yellow A can confer neuroprotection against focal cerebral
ischemia [22]. Catalpol, a terpenoid extracted from Rehmannia glutinosa (Gaertn.) Libosch.
ex Fisch. & C. A. Mey., has multiple pharmacological activities, it can increase blood
flow in ischemic brain tissues of MCAO rats, upregulate EPO and EPOR expression,
promote STAT3 phosphorylation and inhibit VEGF mRNA expression, thus improving
blood supply to ischemic brain tissues, reducing vascular permeability and promoting
angiogenesis through the JAK2/STAT3 signaling pathway [23]. Nicotiflorin, a flavonoid
extracted from Carthamus tinctorius L., can increase the protein expression level of Bcl-2
and downregulate the expression of p-JAK2, p-STAT3, caspase-3 and Bax, and inhibit
the JAK2/STAT3 signaling pathway to alleviate apoptosis caused by cerebral ischemia-
reperfusion injury (CIRI) [24]. Additionally, in vivo and in vitro experiments showed
that Atractylenolide III and Stachydrine could exert antioxidant and anti-inflammatory
effects by inhibiting the JAK2/STAT3 signaling pathway, and thus play a neuroprotective
role [25,26]. The JAK/STAT signaling pathway and the chemical structure of natural
compounds are shown in Figure 1.
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2.2. NF-κB Signaling Pathway

The NF-κB signaling pathway is a classic signal transduction pathway mediated by
cytokines. It plays an important role in several physiological and pathological activities,
including inflammation, oxidative stress, endothelial cell injury, and cell death [27]. NF-κB
is a significant transcriptional regulatory factor, comprising NF-κB1 (p50), NF-κB2 (p52),
Rel A (p65), Rel B, and c-Rel [28]. Under normal conditions, NF-κB is inhibited and exists
in the cytoplasm as a dimer in a complex with its inhibitory protein IκB. IκB can obscure
the nuclear localization signal of NF-κB, making it inactivated. After the cerebral ischemic
injury, cells are stimulated by factors such as inflammation and oxidation, and IκB proteins
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are degraded by phosphorylation, resulting in the dissociation of NF-κB dimers from the
inactive complex to the activated state. Activated NF-κB migrates into the nucleus due to
nuclear localization signal exposure and exerts its transcriptional regulatory role to induce
the transcriptional synthesis and expression of relevant inflammatory factors, ultimately
aggravating the degree of brain injury [29,30].

Artesunate, a derivative of artemisinin, reduces tissue damage caused by traumatic
brain injury and protects MCAO mice from inflammatory injury by inhibiting NF-κB,
releasing the pro-inflammatory cytokines IL-1β and TNF-α, reducing neutrophil infil-
tration, and inhibiting microglia activation [31]. Skullcapflavone II, a flavonoid from
Scutellaria baicalensis Georgi, exerts protective effects against cerebral ischemia by inhibit-
ing TLR4/NF-kB signaling pathway and suppressing mitochondrial apoptosis, inflamma-
tion, and oxidative stress [32]. Syringin, a lignan isolated from Eleutherococcus senticosus
(Rupr. & Maxim.) Maxim., can promote FOXO3a phosphorylation and inhibit NF-κB
nuclear translocation, which in turn reduces the levels of pro-inflammatory cytokines
IL-1β, IL-6, TNF-α and MPO, and exerts a protective effect against ischemic brain injury by
reducing the inflammatory response through the FOXO3a/NF-κB signaling pathway [33].
Schisandrin B, a lignan derivative isolated from Schisandra chinensis (Turcz.) Baill., can
inhibit TLR4 expression and NF-κB activation and reduces TNF-α, IL-6 and IL-1β levels,
exerts protective effects against cerebral ischemia by inhibiting TLR4/NF-κB signaling
pathway [34]. Ephedrine, an alkaloid isolated from Ephedra sinica Stapf, has been shown
to decrease oxidative stress, prevent inflammation, increase immunological function, and
decrease CIRI, which may be due to their suppression of NF-κB-NLRP3 signaling [35].
Salvianolic acid D, a polyphenol component of Salvia miltiorrhiza Bunge, inhibits NF-κB
activation and inflammatory factor release mediated by HMGB1-TLR4 signaling and at-
tenuates HMGB1-mediated inflammatory response by inhibiting TLR4/MyD88/NF-κB
signaling pathway [36]. Furthormore, other natural compounds such as triptolide, β-
patchoulene, ginkgetin, tanshinone IIA, breviscapine, diosgenin, icariin, and berberine
can also exert a protective effect against ischemic brain injury by inhibiting the NF-κB
signaling pathway [37–44]. The NF-κB signaling pathway and the chemical structure of
natural compounds are shown in Figure 2.

2.3. MAPK Signaling Pathway

Recent research demonstrated that the MAPK pathway plays an essential role in the ini-
tiation and progression of IS [45]. The MAPK family comprises conserved serine/threonine
protein kinases in eukaryotes that function as crucial regulators of cell physiology and
immune responses. MAPK transmits signals from the cytoplasm to the nucleus and ac-
tivates various biological reactions, such as cell proliferation, differentiation, apoptosis,
oxidative stress, inflammation, and innate immunity [46–48]. First, extracellular stimu-
lation activates MAPK on the cell membrane via autophosphorylation. Once MAPK is
activated, MAPK3 phosphorylates and activates MAPK2. MAPK2 then phosphorylates
MAPK threonine/tyrosine residues, eventually activating and transferring MAPK into
the nucleus, interacting with transcription factors such as c-Jun and c-Fos. Finally, MAPK
upregulates the expression of target genes or acts on downstream kinases in the cytoplasm
and regulates cellular activity [49,50]. Numerous experiments have shown that the MAPK
signaling pathway is involved in multiple stages of cerebral ischemic and hypoxic injury.
MAPK3 phosphorylation is inhibited during cerebral ischemic injury, and the application
of MAPK pathway-specific inhibitors reduces phosphorylated MAPK3 expression and
increases the number of cells in the ischemic area, suggesting that MAPK signaling pathway
is involved in the protection of neurons after ischemia and plays an anti-modulatory role
in cerebral ischemia-reperfusion [51].

Nobiletin, a flavonoid extracted from Citrus reticulata Blanco, can reduce ischaemic/
reperfusion-induced brain apoptosis by upregulating Bcl-2 expression, downregulating
Bax and caspase-3 expression, and reducing the levels of pro-inflammatory factors TNF-α
and IL-6 and the expression of p-p38 and MAPAP-2 in MCAO rats. This mechanism is
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related to the MAPK signaling pathway [52]. Coriolus versicolor polysaccharides (CVP)
can inhibit the phosphorylation of p38 MAPK, up-regulate Bcl-2 expression, down-regulate
Bax and Caspase-3 activity, reduce the number of CIRI neuronal apoptosis; reduce the area
of cerebral infarction, through the regulation of MAPK signaling pathway to achieve the
role of protecting neuronal cells and restoring brain function [53]. Scrophularia ningpoensis
polysaccharides can regulate the brain injury of CIRI rats by improving the antioxidant
capacity of brain tissue, inhibiting the excessive production of inflammatory cytokines,
inhibiting the expression of the JNK, p38, ERK, and other MAPK pathway proteins [54].
Emodin, a quinone isolated from Rheum palmatum L., can induce the expression of Bcl-2
and GLT-1 through the ERK-1/2 signaling pathway, inhibits neuronal apoptosis and ROS
production, reduces glutamate toxicity, and alleviates nerve cell injury in a rat model of
MCAO [55]. Furthermore, ginsenoside Rg1, baicalin and curcumin also have significant
neuroprotective effects in IS by inhibiting the MAPK signaling pathway [56–58]. The MAPK
signaling pathway and the chemical structure of natural compounds are shown in Figure 3.
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2.4. Notch Signaling Pathway

Notch is a highly conservative signaling pathway that plays a critical role in cell
proliferation, differentiation, and apoptosis [59], it is activated by ischemia and hypoxia
in brain tissue during IS. The activated Notch pathway promotes the proliferation of
neural stem cells and recovers the neural function defect after ischemia and promotes the
neovascularization in the ischemic area, improves the ischemic and anoxic state of brain
tissue, and effectively protects the recovery of neural function [60]. The Notch signaling
pathway mostly comprises Notch receptors (Notch1~4), ligands (Jagged1/2 and Delta-
like-1/3/4), and intracellular effector molecules (CSL) and Notch effector. Notch signaling
is activated following Notch receptor-ligand binding on contacting cells [61]. The Notch
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receptor protein undergoes 3 cleavage and is released from the Notch intracellular domain
(NICD) into the cytoplasm to form the NICD/CSL transcription activation complex, which
enters the nucleus and binds to the transcription factor CSL, thereby activating the target
genes of the transcriptional repressor family such as HES, HEY, HERP, etc. to play a
biological role [62].
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Astragaloside IV, the main saponin isolated from roots of Astragalus penduliflorus subsp.
mongholicus (Bunge) X. Y. Zhu significantly reduced the infarct area in MCAO rats, and
promoted cell proliferation and duct formation, which in turn promoted angiogenesis
and had a protective effect against cerebral ischemic injury, which was closely related
to the upregulation of miRNA-210 expression, induction of HIF-VEGF-Notch signaling
pathway activation and inhibition of target gene ewitinA3 expression [63]. Osthole, a
coumarin derivative isolated from fruits of Cnidium monnieri (L.) Cusson., can significantly
reduce the volume of cerebral infarction, reduce apoptosis, increase the expression of target
proteins Notch1, Hes-5 and NICD by acting on the Notch pathway, and play a protective
role for neurons [64]. The Notch signaling pathway and the chemical structure of natural
compounds are shown in Figure 4.

2.5. Nrf2 Signaling Pathway

The Nrf2 signaling pathway plays a significant role in the occurrence and development
of IS, and it can regulate the ability of cells to resist oxidative stress and protect brain
tissue [65]. Nrf2 belongs to the CNC basic leucine zipper transcriptional activator family,
containing seven highly conserved functional structures. When stimulated by oxygen
radicals, each of these structural domains plays a role in regulating the activation of Nrf2
and initiating the transcription of downstream genes, thereby protecting the cell from
damage. In the resting state, Nrf2 can be coupled with its inhibitory factors, so that
the antioxidant capacity of the cell is at the most basic level. After ROS attack, Nrf2 is
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decoupled and released into the cytoplasm in large quantities. Moreover, Nrf2 can bind
to ARE and initiate the transcription of downstream endogenous protective genes and
phase II detoxifying enzymes, such as HO-1 and NQO1, and regulates antioxidant enzymes
including SOD, CAT, GSH-Px, and GST, which are key in cell self-protection [66–70].
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Biochanin A, the main flavonoid component of Trifolium pratense L., promotes the nu-
clear translocation of Nrf2 and induces the expression of HO-1 by regulating the Nrf2/HO-1
signaling pathway, it protects the rat brain from ischemic injury through antioxidant and
anti-inflammatory effects [71]. Rosmarinic acid, a water-soluble polyphenol compound
widely found in the plant species of Lamiaceae and Boraginaceae [72], can up-regulate
Bcl-2 and down-regulate the level of Bax and Caspase-3 to exert its anti-apoptotic effect.
This effect is related to activating the Nrf2/HO-1 pathway and inhibiting the p53 gene [73].
Adenosine monophosphate (AMPK) is an important intracellular metabolic and stress
receptor, and is a key regulatory protein of autophagy. Palmatine, the main alkaloid of
Coptis chinensis Franch., can reduce oxidative stress, inflammatory response, and neuronal
apoptosis in MCAO mice by activating the AMPK/ Nrf2 pathway [74]. Taraxasterol, the
main terpenoid ingredient of Taraxacum mongolicum Hand.-Mazz., can significantly inhibit
the generation of ROS and MDA in hippocampal neurons induced by OGD/R, leading
to a decrease in caspase-3 and Bcl-2 expression, and a concurrent increase in the expres-
sion of Bax, HO-1, NQO-1, and GPX-3. Taraxasterol can protect hippocampal neurons
from OGD/R-induced injury by activating the Nrf2 signaling pathway [75]. In addition,
senkyunolide I and ginkgolide B can also protect brain tissue from ischemic injury by in-
hibiting the Nrf2 signaling pathway [76,77]. The Nrf2 signaling pathway and the chemical
structure of natural compounds are shown in Figure 5.

2.6. PI3K/Akt Signaling Pathway

There are many experimental studies on the regulatory role of the PI3K/Akt signaling
pathway in IS [78–80]. The PI3K/Akt/mTOR signaling pathway plays a neuroprotective
role in ischemic reperfusion injury by upregulating the expression of PI3K, p-Akt, and
p-mTOR in brain tissue, which significantly reduces the brain infarct size in MCAO rats
and the pathological changes of brain tissue, thus alleviating CIRI [81]. PI3K can be
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further divided into PI3KI, PI3KII, and PI3KIII according to its structure and substrate
specificity [82]. Akt is an essential active signaling target downstream of PI3K and is a
serine/threonine protein kinase [83,84]. PI3K activation leads to the formation of PIP3 on
the plasma membrane, which induces a conformational change in Akt. As a result, Akt
transfers to the cell membrane and exposes its two major phosphorylation sites, Thr308
and Ser473. PDK1 phosphorylates Thr308 and PDK2 phosphorylates Ser473, resulting
in the full activation of Akt that then can regulate cell proliferation, differentiation, and
apoptosis by activating or inhibiting downstream signaling factors [85]. The activation
of the PI3K/Akt signaling pathway participates in the pathological process of cerebral
ischemia, promotes the proliferation and differentiation of neural stem cells, and protects
neural cells from ischemia-related injury and death [86].
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Resveratrol is a natural polyphenol isolated from plants such as Reynoutria japonica
Houtt. and Vitis vinifera L., it reduces the expression of IL-1β, COX-2 and TNF-α by stim-
ulating the PI3K/Akt signaling pathway as well as decreasing infiltration of neutrophils,
thereby reducing the inflammatory response in rats with ischemic stroke [87]. Ligustrazine,
the main alkaloid ingredient of Ligusticum chuanxiong Hort., can significantly increase the
levels of p-Akt and p-eNOS in the brain tissue of MCAO rats, and play a neuroprotec-
tive role on the brain of ischaemic/reperfusion injury rats by stimulating the PI3K/Akt
pathway [88]. Polygalasaponin F, the main terpenoid of Polygala tenuifolia Willd., can
downregulate the expression of Bcl-2/Bax and caspase-3 in PC12 cells and prevent OGD/R-
induced injury by stimulating the PI3K/Akt signaling pathway [89]. Puerarin, a flavonoid
isolated from Puerariae Lobata (Willd.) Ohwi, can significantly increase the expression of
Akt1, GSK-3β, and MCL-1 p62 as well as decrease caspase-3 expression levels in MCAO
rats. These findings indicate that puerarin can regulate the neuroprotective mechanism of
autophagy via the PI3K/Akt1/GSK-3β/MCL-1 signaling pathway [90]. In addition, Panax
notoginseng saponins and salidroside can also prevent ischemic injury by stimulating the
PI3K/Akt signaling pathway [91,92]. The PI3K/Akt signaling pathway and the chemical
structure of natural compounds are shown in Figure 6.
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3. The Target Protein of Natural Compounds in the Treatment of IS
3.1. SIRT1

SIRT1 is a nicotinamide adenine dinucleotide-dependent histone deacetylase with
deacetylation of various histones and non-histones [93], which can regulate pathologi-
cal processes such as oxidative stress, inflammatory response, and apoptosis by regulat-
ing FOXO, NF-κB PARP-1, PGC-1, PPAR-γ, and eNOS deacetylation, exerting a role
in regulating pathological processes such as oxidative stress, inflammatory response,
and apoptosis [94]. In SIRT1-deficient mice, CIRI is manifested by increased levels of
inflammation, oxidative stress, and apoptosis, suggesting that SIRT1 may play a neu-
roprotective role [95]. Ginsenosides activate SIRT1 protein expression in the ischemic
penumbra of MCAO rats, and SIRT1 can directly deacetylate the p65 subunit of NF-
κB and reduce its acetylation level, thereby inhibiting the transcriptional activity of NF-
κB and the expression of IL-1β, IL-6, and TNF-α, and reduce the ischemic injury and
neurological deficits in MCAO rats [96]. Magnolol (a phenolic compound derived from
Magnolia officinalis Rehd. Et Wils) and Salvianolic acid B (a phenolic compound derived
from Salvia miltiorrhiza Bunge.) can regulate brain injury induced by cerebral ischemia by
activating SIRT1, deacetylating to inhibit Ac-FOXO1 expression, and suppressing inflam-
matory cytokines and apoptosis [97,98]. Calycosin-7-O-β-D-glucoside, a flavonoid isolated
from Astragalus penduliflorus subsp. mongholicus var. dahuricus (Fisch. ex DC.) X. Y. Zhu, can
attenuate OGD/R-induced oxidative stress and neuronal apoptosis by activating SIRT1
and upregulating FOXO1 and PGC-1 α expression [99]. Moreover, the inhibitor of Sirt1 can
reverse these neuroprotective effects.

3.2. MMP9

MMP9 is a member of the zinc-dependent protein hydrolase family and can de-
grade extracellular matrix, including collagen IV, laminin, and fibronectin [100]. MMP9
expression increased during cerebral ischemia [101]. Up-regulated MMP9 destroys the
structural integrity of brain microvessels and the blood-brain barrier by degrading the
extracellular matrix, resulting in secondary brain edema and brain injury [102], while
knockout of MMP9 in mice or the use of MMP9 inhibitors can reduce brain edema [103].
Therefore, MMP9 is expected to be a target for treating ischemic brain injury. TIMP1 is
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an endogenous inhibitor that regulates the activity of MMP9 and can inhibit the activity
of MMP9 through non-covalent binding to the catalytic domain of MMP9. The imbal-
ance between MMP-9 and TIMP-1 can lead to secondary brain damage. Icariside II (a
flavonoid derived from Epimedium brevicornu Maxim.) and ursolic acid (a pentacyclic
triterpene derived from many plants, such as Scleromitrion diffusum (Willd.) R. J. Wang and
Actinidia chinensis Planch.) could further inhibit neuronal apoptosis by regulating the bal-
ance of MMP9/TIMP1, thereby significantly improving the ischemia-reperfusion induced
BBB disruption in MCAO rats, preventing cerebral ischemia-reperfusion injury [104,105].
Calycosin-7-O-β-D-glucoside (a flavonoid extracted from Astragalus penduliflorus subsp.
mongholicus var. dahuricus (Fisch. ex DC.) X. Y. Zhu) and oxymatrine (an alkaloid derived
from Sophora flavescens Aiton) can reduce the expression of MMP9 protein by downregulat-
ing the expression of CAV1, thereby improving the integrity of the BBB after CIRI [106,107].

3.3. TLR4

TLR4, also known as CD284, is a transmembrane protein in the Toll-like receptor fam-
ily [108]. During cerebral ischemia, damaged tissues and cells release damage-associated
molecular patterns (DAMPs), such as S100 protein and HMGB1, DAMPs can bind and
activate TLR4, TLR4 can activate NF-κB through MyD88 and TRIF pathways, thereby
activating inflammatory responses and aggravating brain tissue damage [109,110]. Com-
pared with wild-type mice, the infarct area and volume of TLR4 knockout mice after
ischemia/reperfusion are obviously smaller, and the neurological deficit is improved, indi-
cating TLR4 may be one of the targets for the treatment of cerebral ischemia injury [111].
Gentianine, an alkaloid isolated from Gentiana scabra Bunge., can inhibit and attenuate the
expression of TLR4, MyD88 mRNA, and nuclear translocation of NF-κB in brain tissue, as
well as the levels of IL-1β, TNF-α, and IL-6 in serum, suggesting that gentianine may reduce
brain tissue injury due to ischemia/reperfusion by inhibiting TLR4 pathway-mediated
inflammatory response [112]. Procyanidins, polyphenols extracted from grape seeds, sup-
press the activation of the NLRP3 inflammasome by inhibiting the expression of TLR4,
thereby reducing the inflammatory response and improving cerebral ischemia-reperfusion
injury [113].

3.4. HIF-α

HIF-1α is a transcription factor that is widely distributed in mammals under hypoxic
conditions and can activate a variety of hypoxia-response genes (HRGs) expression to
regulate the oxygen homeostasis and energy metabolism balance of cells and organism [114].
HIF-1α-induced gene expression can improve glucose transport and blood circulation in
the ischemic penumbra after cerebral infarction, mediating hypoxia tolerance after hypoxia,
regulating the immune response, and has a significant protective effect on ischemia-hypoxic
neurons [115]. In addition, HIF-1α can inhibit PTP by reducing ROS and Ca2+ generated
during cerebral ischemia-reperfusion, thereby reducing brain cell apoptosis [116], and
can also activate various brain protective signaling pathways, such as PI3K/AKT and
JAK2/STAT3 pathway to improve mitochondrial respiratory function to protect brain
tissue after ischemia-reperfusion [117]. Catalpol (an iridoid glycoside extracted from
Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C. A. Mey.) and Cardamonin (a
chalcone component extracted from the seeds of Amomum villosum Lour..) activates the
HIF-1α/VEGF signaling pathway in rats with ischemia-reperfusion injury, and upregulate
the protein expression of HIF-1α and VEGF, thereby increasing cerebral microvascular
density and promoting intracerebral revascularization, and promoting angiogenesis, neural
repair and functional recovery in MCAO rats [118,119].

4. Conclusions and Future Aspects

IS is a serious life-threatening disease associated with high rates of disability and mor-
tality. Due to the rapid onset of the disease, there are many delayed factors in the treatment
process, making early thrombolysis challenging to implement, thus affecting the outcome of
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neural health and functioning post-stroke. In recent years, a large amount of literature has
shown that TCM can significantly improve IS with few side effects, demonstrating TCM’s
potential benefits and significant potential for future development. TCM can regulate the
signaling pathways to treat IS, such as JAK/STAT, NF-κB, MAPK, Notch, Nrf2, PI3K/Akt,
which maintain BBB function, decrease brain edema, regulate energy metabolism, pro-
mote antioxidation, anti-inflammatory, and anti-apoptosis, reducing excitatory amino acid
toxicity, enhancing neurogenesis, angiogenesis, and synaptogenesis.

By summarizing and analyzing the natural compounds of traditional Chinese medicine
that treat IS, we found that there are mainly flavonoids, alkaloids, polysaccharides, saponins,
polyphenols, and terpenoids. The mechanism is mainly related to anti-oxidation, anti-
inflammation, anti-apoptosis, and improving the permeability of BBB. The regulation effect
of natural compounds from TCM on IS-related signaling pathways is shown in Table 1.
Flavonoids are a type of secondary metabolite produced in many plants and have beneficial
biological properties such as strong antioxidants and anti-inflammatory [120]. Flavonoids
often have higher free oxygen radical scavenging activity. The more hydroxyl substituents
in the parent nucleus of natural flavonoids, the stronger their free oxygen radical scaveng-
ing activity, especially the ortho hydroxyl substitution can greatly improve their activity.
the catechol structure on the benzene ring is an important active group [121]. Alkaloids
are an ubiquitous class of nitrogenous organic compounds in nature, most of which have
complex ring structures, and contained nitrogen elements. Studies show that alkaloids are
active ingredients in many Chinese herbal medicines and have biological properties such
as anti-tumor, anti-inflammatory, anti-bacterial, antiviral, and insecticidal properties [122].
The nitrogen-containing heterocycles are the key active group for alkaloids in the treatment
of IS. Polysaccharides are composed of more than 10 monosaccharide molecules connected
by α- or β-glycoside bonds [123]. Polysaccharides have many pharmacological properties
such as immunomodulatory, antioxidant, antiviral, anti-tumor, and anti-diabetic properties,
and they are significant to the prevention and treatment of various diseases [124–129].
Differences in the branching degree of polysaccharides, the type of glycosidic bonds and
the composition of glycosyl groups, and the substituent groups can affect the activity of
polysaccharides. As one of the basic components of polysaccharides, the content of uronic
acid is directly related to the ability to scavenge free radicals and antioxidant activity [130].
Saponins are a class of glycosides found commonly in plants. Recent studies have shown
that saponins have anti-tumor, anti-inflammatory, immunomodulatory, antiviral, and anti-
fungal properties. According to the chemical structure of saponins, they can be divided
into triterpenoid saponins and steroidal saponins [131,132]. The structure of glycosides,
the monosaccharide composition, and the structure of sugar chains have important effects
on the activity of saponins. Polyphenols are secondary metabolites of plants with strong
antioxidant capacity [133]. The carboxyl and carbonyl groups in their structure directly de-
termine their antioxidant activity. Terpenes are the largest secondary metabolites of plants.
Terpenoids can be divided into monoterpenes, sesquiterpenes, diterpenes, sesquiterpenes,
triterpenes, tetraterpenes, and polyterpenes according to the number of isoprene units
in the molecule [134]. Terpenoids have anti-inflammatory, antibacterial, antioxidant and
antitumor effects [135]. Iridoid terpenes are one of monoterpenes. The anti-inflammatory
group is the p-methoxy cinnamaldehyde group [136]. It is found that the physiological
activity of naturalcompounds is closely related to their chemical structure, and the distribu-
tion of the mother nucleus and substituent may affect their pharmacological activity. The
relationship between the structure and activity of natural compounds for the treatment of
cerebral ischemia is analyzed and summarized, which will play a good role in promoting
the activity prediction and structure optimization of natural compounds, and to provide a
research basis for the development of new drugs with higher activity for the treatment of
cerebral ischemia in the future.
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Table 1. Regulation effect of natural compounds from TCM on IS-related signaling pathways.

Natural Compounds Categories Plants
Experiments Model

Mechanisms Signaling
Pathways Ref.

In Vivo In Vitro

Matrine Alkaloid Sophora flavescens Aiton. MCAO rats – ↑: SOD,
↓: MDA, p-JAK2, p-STAT3 JAK2/STAT3 [21]

Hydroxy saffron yellow A Flavonoid Carthamus tinctorius L. MCAO rats – ↑: SOCS3
↓: p-JAK2, p-STAT3 JAK2/STAT3 [22]

Catalpol Terpenoid Rehmannia glutinosa (Gaertn.) Libosch. ex
Fisch. & C. A. Mey. MCAO rats – ↑: VEGF, EPO, EPOR

↓: p-JAK2, p-STAT3 JAK2/STAT3 [23]

Nicotiflorin Flavonoid Carthamus tinctorius L. MCAO rats – ↑: Bcl-2
↓: p-JAK2, p-STAT3, caspase-3, Bax JAK2/STAT3 [24]

Atractylenolide III Terpenoid Atractylodes macrocephala Koidz. MCAO rats OGD/R cells ↓: IL-1β, TNF-α, IL-6, Drp1, p-JAK2,
p-STAT3 JAK2/STAT3 [25]

Stachydrine Alkaloid Leonurus japonicus Houtt. MCAO rats OGD/R cells
↑: SOD
↓: p-65, p-iκB, p-JAK2, p-STAT3, MDA,
IL-1β, TNF-α

JAK2/STAT3 [26]

Artesunate Terpenoid Artemisia annua L. MCAO
mice – ↑: IκB

↓: IL-1β, TNF-α, NF-κB NF-κB [31]

Skullcapflavone II Flavonoid Scutellaria baicalensis Georgi MCAO rats –
↑: SOD, GSH, VEGF, Ang-1,Tie-2,
↓: MDA, IL-1β, TNF-α, IL-6, caspase-3 and
-9, NF-kb, TLR4

NF-κB [32]

Syringin Saponin Eleutherococcus senticosus (Rupr. & Maxim.)
Maxim. MCAO rats – ↑: p-FOXO3a

↓: NF-κB, IL-1β, IL-6, TNF-α, MPO NF-κB [33]

Schisandrin B Lignan Schisandra chinensis (Turcz.) Baill. MCAO rats – ↓: NF-κB, TLR4, IL-1β, IL-6, TNF-α NF-κB [34]
Ephedrine Alkaloid Ephedra sinica Stapf Ephedra sinica Stapf MCAO rats – ↑: Bcl-2

↓: IL-1β, TNF-α, IL-6, Bax, NO, p-NF-κB NF-κB [35]

Berberine Alkaloid Coptis chinensis Franch. MCAO rats –
↑: SOD, GSH-Px, CD4+, CD8
↓: NO, TNF-α, IFN-β, IL-6, NF-κB p65,
NLRP3, ASC, caspase-3

NF-κB [44]

Salvianolic acid D Polyphenol Salvia miltiorrhiza Bunge MCAO rats OGD/R cells
↑: Bcl-2
↓: Bax, Cyt c, caspase-3 and -9, TLR4,
MyD88, TRAF6, NF-κB, HMGB1

NF-κB [36]

Triptolide Terpenoid Tripterygium wilfordii Hook. f. MCAO rats – ↓: NF-κBp65, PUMA, caspase-3 NF-κB [37]

β-patchoulene Terpenoid Pogostemon cablin (Blanco) Benth. MCAO rats –
↑: IκBα,SOD, GSH-Px, Bcl-2
↓: NF-κBp65, TLR4, caspase-3, Bax, TNF-α,
IFN-β, IL-6

NF-κB [38]

Ginkgetin Flavonoid Ginkgo biloba L. MCAO rats –

↑: Bcl-2
↓: LC3-II/LC3-I, DRAM, Beclin 1, cathepsin
B, cathepsin D, DRAM, PUMA, Beclin 1, p53,
Bax

NF-κB [39]

Tanshinone IIA Terpenoid Salvia miltiorrhiza Bunge MCAO rats OGD/R cells ↑: SOD
↓: MDA, TNF-α, IL-1β, IL-6, p-iκB, p-p65 NF-κB [40]
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Table 1. Cont.

Natural Compounds Categories Plants
Experiments Model

Mechanisms Signaling
Pathways Ref.

In Vivo In Vitro

Breviscapine Flavonoid Erigeron breviscapus (Vant.) Hand.-Mazz. MCAO rats –
↑: SOD, GSH-Px
↓: MDA, IL-6, IL-1β, TNF-α, PARP-1, COX2,
iNOS, p65

NF-κB [41]

Diosgenin Saponin Dioscorea zingiberensis C. H. Wright MCAO rats OGD/R cells ↑: HIKESHI, HSP70, IκBα
↓: TNF-α, IL-1β, IL-6, NF-κB NF-κB [42]

Icariin Flavonoid Epimedium brevicornum Maxim. MCAO rats – ↑: PPARα,PPARγ, IκBα
↓: TNF-α, IL-1β, IL-6, NF-κB NF-κB [43]

Berberine Alkaloid Coptis chinensis Franch. MCAO rats –
↑: SOD, GSH-Px, CD4+, CD8
↓: NO, TNF-α, IFN-β, IL-6, NF-κB p65,
NLRP3, ASC, caspase-3

NF-κB [44]

Nobiletin Flavonoid Citrus reticulata Blanco MCAO rats –
↑: Bcl-2, IL-10,
↓: TNF-α, IL-6, caspase-3, Bax, p-p38,
MAPKAP-2

MAPK [52]

Coriolus versicolor
polysaccharides Polysaccharide Coriolus versicolor (L. ex Fr.) Quel MCAO rats – ↑: Bcl-2, IL-10,

↓: Bax, TNF-α, IL-1β, caspase-3, p38 MAPK MAPK [53]

Scrophularia ningpoensis
polysaccharides Polysaccharide Scrophularia ningpoensis Hemsl. MCAO rats –

↑: p-ERK, SOD
↓: p-JNK, p-p38, TNF-α, IL-1β, MDA, NO,
NOS

MAPK [54]

Emodin Quinone Rheum palmatum L. – OGD/R cells ↑: p-ERK-1/2, GLT-1, Bcl-2
↓: caspase-3 MAPK [55]

Ginsenoside Rg1 Terpenoid Panax ginseng C. A. Mey. MCAO rats – ↑: Bcl-2
↓: p-JNK, p-p38, caspase-3, Bax MAPK [56]

Baicalin Flavonoid Scutellaria baicalensis Georgi – OGD/R cells ↑: MAPK, ERK, MAP2, Bcl
↓: Bax, caspase-3 and -9 MAPK [57]

Curcumin Polyphenol Curcuma longa L. MCAO rats – ↓: LC3-II/LC3-I, IL-1, TLR4, p-38, p-p38 MAPK [58]
Astragaloside IV Saponin Astragalus penduliflorus subsp. mongholicus var.

dahuricus (Fisch. ex DC.) X. Y. Zhu MCAO rats – ↑: HIF-1α, VEGF, Notch, DLL4 Notch [63]

Osthole Coumarin Cnidium monnieri (L.) Cusson MCAO rats – ↑: Bcl-2, Notch, NICD, Hes 1
↓: Bax, caspase-3, Notch [64]

Biochanin A Flavonoid Trifolium pratense L. MCAO rats – ↑: SOD, GSH-Px, HO-1, Nrf2
↓: MDA Nrf2 [71]

Rosmarinic acid Polyphenol Rosmarinus officinalis L. MCAO rats – ↑: Bcl-2, HO-1, Nrf2, SOD
↓: MDA, Bax Nrf2 [73]

Palmatine Alkaloid Coptis chinensis Franch MCAO rats OGD/R cells ↑: Bcl-2, HO-1, Nrf2, SOD, CAT, p-AMPK
↓: MDA, Bax, TNF-α, IL-1β, IL-6 Nrf2 [74]

Taraxasterol Terpenoid Taraxacum mongolicum Hand.-Mazz. OGD/R cells ↑: HO-1, NQO-1, GPx-3, Nrf2, Bcl-2
↓: ROS, MDA, Bax Nrf2 [75]

Senkyunolide I Terpenoid Ligusticum chuanxiong Hort. MCAO rats – ↑: SOD, Erk1/2, Nrf2, NQO1, Bcl-2
↓: MDA, caspase-3, caspase-9, Bax Nrf2 [76]

Ginkgolide B Terpenoid Ginkgo biloba L. MCAO rats OGD/R cells ↑: SOD, p-Akt, HO-1, Nqo1p-Nrf2
↓: ROS Nrf2 [77]

Resveratrol Polyphenol Reynoutria japonica Houtt. MCAO rats – ↑: p-AKT
↓: IL-1β, TNFα, COX2, MPO PI3K/Akt [87]
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Table 1. Cont.

Natural Compounds Categories Plants
Experiments Model

Mechanisms Signaling
Pathways Ref.

In Vivo In Vitro

Ligustrazine Alkaloid Ligusticum chuanxiong Hort. MCAO rats OGD/R cells ↑: p-eNOS, p-AKT PI3K/Akt [88]

Polygalasaponin F Terpenoid Polygala tenuifolia Willd. OGD/R cells ↑: p-AKT, Nrf2, HO-1
↓: Bcl-2/Bax caspase-3 PI3K/Akt [89]

Puerarin Flavonoid Puerariae Lobata (Willd.) Ohwi
4-vessel
occlusion
rats

– ↑: p-GSK-3β, MCL-1, p-AKT
↓: caspase-3 PI3K/Akt [90]

Panax notoginseng
Saponins Saponin Panax notoginseng (Burkill) F. H. Chen ex C.

H. Chow – OGD/R cells ↑: p-AKT, Nrf2, HO-1
↓: ROS PI3K/Akt [91]

Salidroside Polyphenol Rhodiola rosea L. MCAO rats – ↑: p-Akt
↓: IL-6, IL-1β, TNF-α, CD14, CD44, iNOs PI3K/Akt [92]

↑: up regulation; ↓: down regulation.
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Despite the positive therapeutic effect of TCM on IS, there are still numerous chal-
lenges to overcome. Most of the research on TCM in IS models is still in the primary
experimental stage, with few clinically applicable products. Furthermore, only known
signaling pathways and related protein targets have been shown to play an important
role in IS. However, there may be other pathway targets that have not yet been discov-
ered. A comprehensive strategy combining metabolomics and network pharmacology is
an effective tool to discover the targets and signaling pathways of TCM against cerebral
ischemia-reperfusion. This strategy has been applied to TCM research, including drug
target discovery, efficacy evaluation and mechanism research [137–139]. Futhermore, the
efficacy and safety of TCM intervention on IS need to be verified through rigorous and
high-quality clinical trials.
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