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The design of novel inhibitors to target BACE1 with reduced cytotoxicity effects is
a promising approach to treat Alzheimer’s disease (AD). Multiple clinical drugs and
antibodies such as AZD3293 and Solanezumab are being tested to investigate their
therapeutical potential against AD. The current study explores the binding pattern of
AZD3293 and Solanezumab against their target proteins such as β-secretase (BACE1)
and mid-region amyloid-beta (Aβ) (PDBIDs: 2ZHV & 4XXD), respectively using molecular
docking and dynamic simulation (MD) approaches. The molecular docking results show
that AZD3293 binds within the active region of BACE1 by forming hydrogen bonds
against Asp32 and Lys107 with distances 2.95 and 2.68 Å, respectively. However, the
heavy chain of Solanezumab interacts with Lys16 and Asp23 of amyloid beta having
bond length 2.82, 2.78, and 3.00 Å, respectively. The dynamic cross correlations and
normal mode analyses show that BACE1 depicted good residual correlated motions and
fluctuations, as compared to Solanezumab. Using MD, the Root Mean Square Deviation
and Fluctuation (RMSD/F) graphs show that AZD3293 residual fluctuations and RMSD
value (0.2 nm) was much better compared to Solanezumab (0.7 nm). Moreover, the
radius of gyration (Rg) results also depicts the significance of AZD3293 docked complex
compared to Solanezumab through residual compactness. Our comparative results
show that AZD3293 is a better therapeutic agent for treating AD than Solanezumab.

Keywords: Alzheimer’s disease, computational modeling, dynamic simulation, AZD3293, solanezumab

INTRODUCTION

The β-site APP cleaving enzyme 1 (BACE1) is among the most significant targets for novel drugs to
treat Alzheimer’s disease (AD) (Huang et al., 2014). The thinning of lipid bilayer has been observed
due to protein amyloid-Aβ (Aβ) accumulation and oxidative stress in AD. One study showed that
pathologically thin bilayers may play in Aβ aggregation on neuronal bilayers and pathological lipid
oxidation may contribute to Aβ misfolding (Korshavn et al., 2017). The aggregation of Aβ peptides
results in cellular toxicities due to the formation of polymorphic oligomers, protofibrils, and fibrils
(Kotler et al., 2014; Rajasekhar et al., 2016).
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Metals accumulation has also deep effect on brain activity
and causes neurodegenerations. For example, copper and zinc
are associated with the prevalence of AD. In the brains of
AD patients, the copper homeostasis is changed with elevated
extracellular and low intracellular copper levels. Animals and cell
culture studies reported that increasing intracellular copper can
cause AD like symptoms through the accumulation of amyloid
plaques and tau phosphorylation. Therefore, by changing the
copper homeostasis may results in improved cognitive function
in animal models of AD (Filiz et al., 2008).

The first generation of BACE1 inhibitors are peptide-based
transition state analogs synthesized on the basis of residual
sequence of amyloid precursor protein (APP) cleaved by β-
secretase (Sinha et al., 1999; Hong et al., 2002; Vassar, 2014).
Multiple drugs and antibodies are under different phases of
clinical trials to treat AD such as Astra Zenica BACE1 inhibitor
(AZD3293) and Solanezumab. AZD3293 is a potent inhibitor
against AD and mostly administered orally. AZD3293 prevents
the accumulation of β-amyloid and helps slow or cure AD
symptoms (Cebers et al., 2017). Clinical studies showed that
in both Phase I and II AZD3293 showed good therapeutical
potential against AD. Some reports showed that first-generation
BACE1 inhibitors were hampered by blood brain barrier (BBB)
penetration (Butini et al., 2013; Oehlrich et al., 2014), whereas
AZD3293 remarkably has a good penetration against BBB in
humans (Cebers et al., 2017).

AZD3293 targets BACE1 and helps reduce Aβ peptide
generation (Vassar, 2014). One study showed that AZD3293
has direct effects on plasma and CSF Aβ levels in healthy
young and elderly individuals having age 18–55 and 55–80 years,
respectively (Alexander et al., 2014). Phase 1 results showed
that AZD3293 is well tolerated with no serious adverse effects
observed up to the 750mg in single ascending dose (SAD)
study (Alexander et al., 2014). Moreover, a multiple ascending
dose (MAD) study reports showed that AZD3293 reduces the
CSF Aβ40 and Aβ42 concentrations up to 50 to 75% at 15 or
50mg doses (Hoglund et al., 2014). Presently, Phase 1 studies
of AZD3293 in healthy subjects and in AD patients have been
completed, and combined Phase 2/3 trials in 1,551 mild cognitive
impairment (MCI) and mild AD patients are planned at different
doses from 20 to 50mg, for 104 weeks duration. Recently, Astra
Zenica and Lilly entered into a partnership to jointly develop
AZD3293 to treat AD.

Solanezumab (Eli Lilly) is the leading clinical antibody
targeting amyloid peptides. Presently, it has been under Phase
III clinical trials for the prevention of AD. Solanezumab, a
monoclonal antibody IgG1 binds with amyloid-β peptides that
aggregate and form plaques in the brain which are considered
as basic pathological feature of AD (Villemagne et al., 2013).
Solanezumab binds specifically at the monomeric amyloid-β,
motif KLVFFAD (Crespi et al., 2015) with pico-molar affinity
(Watt et al., 2014). The biding epitope of amyloid-β is known
as the nucleation site for Aβ oligomerization, and it is these
oligomers of Aβ that are thought to be toxic to neurons.
Solanezumab is thought to act as an amyloid beta sink that is
“facilitating flux of amyloid beta from a central to peripheral
compartment” (DeMattos et al., 2001). Amyloid β-plaquesmostly

consist of amyloid β-42. Solanezumab binds to free amyloid
beta which causes amyloid β-42 to solubilize to re-establish the
equilibrium in the cerebrospinal fluid (Farlow et al., 2012). Phase
1–3 results of Solanezumab showed good results against mild to
moderate AD.

In the present study, we use docking and dynamic simulation
approaches to study the potential of both drugs to cure
AD. Research data showed the significance of our proposed
methodology in the prediction of drug designing by target
various enzymes (Hassan et al., 2017, 2018a,b). We selected 79
drugs and antibodies collectively from clinical drug database
(https://clinicaltrials.gov/) and classified them on the basis
of active clinical phases. AZD3293 and Solanezumab were
selected and further analyzed using various computational tools
to calculate their pharmacokinetic properties. Structure-based
analyses were performed to evaluate the Root Mean Square
Deviation and Fluctuations (RMSD/F), Radius of gyration (Rg)
and Solvent Accessible Surface Area (SASA) through dynamic
simulation.

METHODOLOGY

Repossession of Target Proteins Structure
The human crystal structure of beta-secretase (BACE1) and
mid-region amyloid-beta (Aβ) in complex with Solanezumab
(PDBIDs: 2ZHV & 4XXD), respectively were retrieved form
the Protein Data Bank (PDB) (http://www.rcsb.org). The energy
minimization of target proteins was conducted by using online
tool Chiron to resolve the steric clashes from protein structures
(Ramachandran et al., 2011). The stereo-chemical properties,
Ramachandran graph and values (Lovell et al., 2003) of targeted
proteins were assessed by MolProbity server (Chen et al.,
2010), whereas the hydrophobicity graphs were generated by
Discovery Studio 4.1 Client (StudioDiscovery, 2008). The protein
architecture and statistical percentage values of helices, β-sheets,
coils and turns were accessed by using the online server VADAR
1.8 (Willard et al., 2003).

Candidate Structure
The AZD3293 and Solanezumab were selected as clinical
drugs for present study. The AZD3293 drug was sketched in
drawing ACD/ChemSketch tool. 79 drugs and antibodies were
selected from clinical drug database (https://clinicaltrials.gov/)
and classified on the basis of active clinical phases (Table
S1). The selected drug molecule further minimized by UCSF
Chimera 1.10.1 (Pettersen et al., 2004). Multiple online drug
assessment computational tools such as Molinspiration (http://
www.molinspiration.com/) and Molsoft (http://www.molsoft.
com/) were used to predict the drug-likeness and biological
properties of AZD3293 molecule. Lipinski’s rule of five was
analyzed using Molsoft and Molinspiraion tools. Furthermore,
their predicted Absorption, Distribution, Metabolism, Excretion
and Toxicity (ADMET) properties were evaluated by pkCSM
online tool (Pires et al., 2015). Solanezumab is a monoclonal
IgG1 antibody which is directed against Aβ peptide. The three
dimensional (3D) structure of Solanezumab was also accessed
from protein data bank as mentioned above.
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Molecular Docking Simulation
Molecular docking of AZD3293 drug against BACE1 was carried
out using diverse AutoDock 4.2 tool according to the specified
instructions (Morris et al., 2009). In brief, for receptor protein,
the polar hydrogen atoms and Kollman charges were assigned.
For ligand, Gasteiger partial charges were designated and non-
polar hydrogen atoms were merged. All the torsion angles for
AZD3293 were set free to rotate through docking experiment.
A grid map of 80 × 80 × 80 Å was adjusted on whole
protein structure to generate the grid map and to get the best
conformational state of docking. The 100 number of runs were
adjusted using docking experiments. The Lamarckian genetic
algorithm (LGA) and empirical free energy function were applied
by taking docking parameters default. All the docked complexes
were further evaluated on lowest binding energy (Kcal/mol)
values and hydrogen and hydrophobic interactions analysis using
Discovery Studio (2.1.0) and UCSF Chimera 1.10.1. The two
dimensional graphical depiction of best docked complexes were
accessed by LIGPLOT tool (Wallace et al., 1995).

Molecular Dynamics Simulations
Based on docking results, we performed structural dynamic
analysis studies on the selected lowest energy valued and
best posed docking complex. The MD simulations were
carried out by Groningen Machine for Chemicals Simulations
(GROMACS) 4.5.4 package (Pronk et al., 2013) with GROMOS
96 force field (Chiu et al., 2009). The PRODRG Server was
employed to generate ligands topology files (Schüttelkopf and
van Aalten, 2004). Before minimization, the overall system
charge was neutralized by adding ions. The energy minimization
(nsteps = 50,000) was conducted using the steepest descent
approach (1,000 ps) for each protein-ligand complex. The
Particle Mesh Ewald (PME) method was employed for energy
calculation and for electrostatic and Van der Waals interactions;
cut-off distance for the short-range VdW (rvdw) was set to 14
Å, where Coulomb cut-off (r coulomb) and neighbor list (rlist)
were fixed at 9 Å (Wang et al., 2010). It permits the use of the
Ewald summation at a computational cost comparable with that
of a simple truncation method of 10 Å or less, and the linear
constraint solver (LINCS) (Amiri et al., 2007) algorithm was used
for covalent bond constraints and the time step was set to 0.002
ps. Finally, 20 ns molecular dynamics simulation was carried
out for all the complexes with nsteps 1,000,000. The Root Mean
Square Deviation and fluctuation (RMSD/F), Soluble Accessible
Surface Area (SASA) and Radius of gyration (Rg) analysis were
carried out using Xmgrace (http://plasma-gate.weizmann.ac.il/
Grace/) and UCSF Chimera 1.10.1 software.

RESULTS AND DISCUSSION

Structural Assessment of BACE1, Aβ, and
Solanezumab
BACE1 is a class of hydrolase protein comprises having single
chain and 411 amino acids. The structural architecture of BACE1
showed that it consists of 9% helices, 49% β sheets, 41% coil, and
21% turns. The X-Ray diffraction study confirmed its resolution
1.85 Å, R-value 0.290 and unit cell crystal dimensions like length

and angles of coordinates for a = 102.33, b = 102.33, and
c = 170.52 with angles 90, 90, and 120◦ and for all α, β, and
γ dimensions respectively. The Ramachandran plots and values
indicated that 98% of residues were in favored regions and
>99.8% residues were present in allowed regions. Ramachandran
graph and values showed the good accuracy of phi (φ) and psi (ψ)
angles among the coordinates of receptor molecules and most
of residues plummeted in acceptable region. The Aβ is clump of
multiple chains (A, B, C, D, and E) which contain 42 amino acids.

The 3D crystal structure of Solanezumab showed that it
consists of two Fab light chains (A, D) and two Fab heavy chains
(B, E) having 219 and 223 amino acids, respectively. The X-Ray
diffraction study indicated its resolution 2.41Å and R-value 0.290.
The unit cell crystal dimensions such as length and angles of
coordinates for a = 38.80, b = 73.56, and c = 92.12 with angles
α = 109.91◦, β = 93.64◦, and γ = 93.31◦ for all dimensions
respectively. Moreover, the VADAR 1.8 analysis showed that
Solanezumab contain 1% helices, 59% β sheets, 38% coil, and
4% turns. Furthermore, Ramachandran analysis depicts the 98%
residues are present in favored region while 9.8% amino acids are
lie in allowed region. The graphical depiction of Ramachandran
plots of BACE1 and Solanezumab are mentioned in detail in
Supplementary Data (Figures S2, S3), respectively. The detailed
structural analysis of BACE1, Aβ and Solanezumab are discussed
in Table S4.

Computational Evaluation of AZD3293
Chemoinformatics Properties and Lipinski’s Rule

(RO5) Validation of AZD3293
Multiple computational approaches were employed to predict
basic chemoinformatics and basic molecular properties of
AZD3293 (Figure 1). The predicted properties such as molecular
weight (g/mol) polar surface area (PSA, A2), molar volume (cm3),
density (cm3), molar refractivity (cm3) and RO5 were evaluated
to justify their drug likeness behavior (Prerana et al., 2015).
One study revealed that PSA is a significant parameter for drug
absorption prediction in drug discovery (Ertl et al., 2000). The
molar refractivity and molecular lipophilicity properties of drug
molecules are also important for receptor binding, bioavailability
and cellular uptake within the body. One report justifies
the standard values for molar refractivity (40–130 cm3) and
molecular weight (160 to 480 g/mol) and PSA (<89 Å2) (Ghose
et al., 2012). Moreover, the qualifying range for total number
of atoms in the drug molecule is between 20 and 70 atoms.
Table 1 results showed that molar refractivity and PSA predicted
values were comparable with standard values. AZD3293 showed
higher molar refractivity and logP value (122.60 cm3 and 4.82)
respectively, compared to standard values. Comparative results
showed that AZD3293 confirm its significant and good candidate
molecule.

Furthermore, AZD3293 was validated by RO5 and contains
no more and < 10 hydrogen bond acceptors (HBA) and 5
(hydrogen bond acceptors) HBD, respectively. Moreover, the
logP and molecular mass value also be <5 and 500 (g/mol),
respectively. Literature study revealed that the exceed values of
HBA and HBD results in poor permeation (Kadam and Roy,
2007). The hydrogen bonding ability has been considered a
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FIGURE 1 | Chemical structure of AZD3293.

TABLE 1 | Chemoinformatic properties of AZD3293.

AZD3293 Properties

Molecular Formula C26H28N4O

Molecular Weight (g/mol) 412.52672

Hydrogen Bond Acceptor 4

Hydrogen Bond Donor 2

Rotatable Bonds 2

LogP 4.82

No of atoms 31

Polar Surface Area (A2) 54.70

Molar Refractivity (cm3) 122.60

Density (cm3) 1.23

Molar Volume (cm3) 333.7

Drug likeness 0.40

Lipinski validation Yes

GPCR ligand 0.51

Ion channel modulator 0.49

Kinase inhibitor 0.30

Nuclear receptor ligand 0.46

Protease inhibitor 0.53

Enzyme inhibitor 0.56

significant parameter for drug permeability. Our results justified
that the AZD3293 possess < 10 HBA, < 5 HBD, < 500 (g/mol)
molecular weight and <5 logP values which were comparable
with standard values. The reported study showed that molecules
with poor absorption are more likely to be observed upon
Lipinski violation. However, multiple examples are available for
RO5 violation amongst the existing drugs (Bakht et al., 2010; Tian
et al., 2015). The predicted drug score (0.40) and bioactivity score
values are also significant for further analysis. The predicted score
values of G-protein couple receptor (GPCR) (0.51), protease and
enzymes inhibition score (0.53 and 0.56), respectively showed
their good lead like behavior.

Pharmacokinetic Properties of AZD3293
The designing of novel drugs require a high attention rate with
good pharmacokinetic properties. The Absorption, Distribution,
Metabolism, Excretion, and Toxicity (ADMET) properties
were assessed to confirm the efficacy of candidate molecules.
In ADMET evaluation, absorption like water and intestinal

solubility (log mol/L & % absorbed) and skin permeability
(logKp) predicted values justified the strong therapeutic potential
of chemical compounds. One report justified that compounds
with good absorption values have potency to cross gut barrier
by passive penetration to reach the target molecule (Selick
et al., 2002). The water solubility results justified that AZD3293
showed good absorption value (−4.956 log mol/L). Moreover,
the intestinal solubility prediction value (96.90) also justified
its good efficacy compared to a standard value (>30% abs).
Any chemical lead like structure with <30% absorbance value
is considered as poorly absorbed compound (Pires et al.,
2015). The predicted skin permeability value (−2.902 log Kp)
of AZD3293 was also comparable with standard value (−2.5
logKp) which showed their significance as a good lead structures
and justified their drug likeness behavior. The p-glycoprotein
inhibition behavior was also confirmed for AZD3293. Moreover,
in distribution properties, the Blood Brain Barrier (BBB) and
Central Nervous System (CNS) permeability values of AZD3293
were also evaluated and compared with the standard values (>0.3
to< −1 log BB and> −2 to< −3 logPS) respectively. It has been
observed that compounds with a>0.3 log BB value have potential
to cross BBB, while with<−1 value are poor distributed to brain.
The predicted results showed that AZD3293 have poor BBB value
(−0.164 log BB). However, the CNS permeability value (−1.72
log PS) is quite comparable with standard value. Similarly, the
compounds have > −2 logPS value are considered to penetrate
the CNS, while with < −3 are difficult to move in the CNS.

Moreover, metabolic behavior of AZD3293 was confirmed by
CYP3A4, which is isoform of cytochrome P450. The excretion
and toxicity predicted values were also justified the drug likeness
behavior of AZD3293 on the basis of total clearance (log
ml/min/kg), AMES toxicity, maximum tolerated dose (MTD)
and LD50 values. The AMES toxicity prediction for AZD3293
also confirmed there is non-mutagenic and non-toxic behavior.
The hepatotoxicity positive effect showed its lethal behavior
while skin sensitivity negative behavior presents their non-toxic
and less sensitive effects. Disruption of normal liver function is
commonly associated with hepatotoxicity (Table 2).

Molecular Docking Analysis
AZD3293 Binding Energy Analysis Against BACE1
The AZD3293-BACE1 docked complexes were analyzed on
the basis of lowest binding energy values (Kcal/mol) and
hydrogen/hydrophobic interaction analyses. The best pose
selection from all the docking complexes was also conducted on
the basis of lowest binding energy values and bonding interaction
pattern within the active region of target protein. Results showed
that AZD3293 with pose 8 was the most active conformational
position and predicts the best energy values (−5.33 kcal/mol) as
compared to others docking complexes (Table 3). Furthermore,
the intermolecular energy value (−7.42 Kcal/mol) was also good
compared to other docking pose conformations. The Autodock
energy calculation was conducted by using equation 1. However,
the standard energy error for Autodock is 2.5 Kcal/mol (Morris
et al., 2013). In all docking complexes poses the binding energy
difference was less 2.5 Kcal/mol.
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TABLE 2 | Pharmacokinetic assessment of AZD3293.

Property Model name Predicted value

Absorption Water solubility −4.956 (log mol/L)

Intestinal absorption (human) 96.901 (% Absorbed)

Skin Permeability −2.902 (log Kp)

P-glycoprotein substrate Yes

P-glycoprotein I inhibitor Yes

P-glycoprotein II inhibitor Yes

Distribution VDss (human) 0.772 (log L/kg)

Fraction unbound (human) 0.057 (Fu)

BBB permeability −0.164 (log BB)

CNS permeability −1.72 (log PS)

Metabolism CYP2D6 substrate No

CYP3A4 substrate Yes

CYP1A2 inhibitior No

CYP2C19 inhibitior Yes

CYP2C9 inhibitior Yes

CYP2D6 inhibitior No

CYP3A4 inhibitior Yes

Excretion Total Clearance 0.469 (log ml)

Renal OCT2 substrate Yes

Toxicity AMES toxicity No

Max. tolerated dose (human) −0.497 (log mg)

hERG I inhibitor No

hERG II inhibitor Yes

Oral Rat Acute Toxicity (LD50) 2.864 (mol/kg)

Oral Rat Chronic Toxicity 1.06 (log mg/kg)

Hepatotoxicity Yes

Skin Sensitisation No

T. Pyriformis toxicity 0.727 (log ug/L)

Minnow toxicity 0.045 (log mM)

1Gbinding = 1Ggauss + 1Grepulsion + 1Ghbond +

1Ghydrophobic+ 1Gtors. . . ..(i)
Here, 1G gauss: attractive term for dispersion of two gaussian
functions, 1Grepulsion: square of the distance if closer than
a threshold value, 1Ghbond: ramp function-also used for
interactions with metal ions, 1Ghydrophobic: ramp function,
1Gtors: proportional to the number of rotatable bonds.

Binding Conformational Analysis
The best docked energy complexes were further deep analyzed
on the basis of hydrogen and hydrophobic interactions pattern
between ligand and target protein. The active binding region of
BACE1 was accessed through one study (Hernández-Rodríguez
et al., 2016). Results showed that AZD3293 perfectly binds within
the active region of target protein by forming couple of hydrogen
bonds. The graphical depiction of best docking complex along
with receptor and active binding pocket region is mentioned in
Figure 2.

The structure activity relationship (SAR) analysis shows
that AZD3293 forms two hydrogen bonds at specific residues
(Asp32 and Lys107) with target protein. The hydroxyl group of
benzene ring of AZD3293 interacts with Asp32 having bonds

length 2.95 Å. Similarly, amino group of other AZD3293 forms
another hydrogen bond with bond length 2.68 Å. One study
also justified that these interacted residues are significant in the
downstream signaling pathways (Hernández-Rodríguez et al.,
2016). The graphical representations of all other docking poses
are mentioned in Supplementary Data (Figures S5–S13).

Binding Analysis of Solanezumab With Aβ

Solanezumab is a monoclonal IgG1 antibody directed against Aβ

peptide. Solanezumab exerts its effect by sequestering Aβ, shifting
equilibria between different species of Aβ, and removing small
soluble species of Aβ that are directly toxic to synaptic function.
The binding interaction pattern was observed to residual
involvement of both proteins. The results showed that Fab region
of both light and heavy chains of Solanezumab collapse with Aβ

peptide. However, the observed interacted residue were present
at heavy chain. The residues of Aβ peptide such as Lys16 and
Asp23 are directly involved in hydrogen bonding with heavy
chain of Asp96 and Ser33 respectively. The Lys16 forms hydrogen
bond with Asp96 with distance 2.82 Å. While Ser33 forms two
hydrogen bonds with Asp23 with bond length 2.78 and 3.00 Å,
respectively (Figure 3). The Aβ peptide region is considered as
most active part and multiple hydrophobic interaction were also
observed against Solanezumab. Literature report also justified
that peptide region from Lys16 to Val24 is most significant in
the binding with Solanezumab and further downstream signaling
pathways (Crespi et al., 2015). The hydrophobic interacted
residues of Solanezumab are as follows: Phe27, Phe55, Phe36,
Ser94, Gly95, His34, Tyr32, Lys50, Asp28, Thr92, and Val94
which binds with Aβ peptide. The hydrophobic interacted
residues of both Solanezumab and Aβ peptide are mentioned in
Supplementary Data (Figure S14).

Dynamical Cross-Correlation Matrix (DCCM) of

BACE1 and Solanezumab
Bio3D-web is an online application to analyze the sequence,
structure and conformational heterogeneity of protein families
(Skjærven et al., 2016). The residual fluctuations of target protein
structures were analyzed using Bio3D server. The generated
dynamical cross-correlation graphs depicts positive and negative
correlation effect of amino acids. The pairwise correlated graphs
were generated between the function of residue indices i and
j. The predicted map results were analyzed on the basis of
colors such as dark cyan, white and pink, respectively. The
fully correlated pairs are represented by cyan color, while
the anti-correlated are justified as pink color. However, the
moderately and un-correlated regions are highlighted by yellow
and cyan, respectively. The comparative results showed that
BACE1 depicted good residual correlated motions as compared
Solanezumab complex (Figure 4).

Normal Mode Analysis (NMA) Fluctuations Analysis

BACE1 and Solanezumab
Bio-3D NMA web analysis displays the dynamic behavior of
various residues in the protein structures (Yao et al., 2016). The
predicted graphs results showed that BACE1 has less residual
fluctuations compared to Solanezumab antibody complex. The
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TABLE 3 | Docking energy of AZD3293 against BACE1.

Docking Poses Binding energy

(Kcal/mol)

Intermol. energy

(Kcal/mol)

Internal energy

(Kcal/mol)

Torsional energy

(Kcal/mol)

Unbound energy

(Kcal/mol)

Docking Pose-1 −4.41 −6.50 −0.69 2.09 −0.69

Docking Pose-2 −4.87 −6.96 −0.37 2.09 −0.37

Docking Pose-3 −3.58 −5.67 −0.7 2.09 −0.7

Docking Pose-4 −4.79 −6.88 −0.5 2.09 −0.5

Docking Pose-5 −4.03 −6.12 −0.67 2.09 −0.67

Docking Pose-6 −4.42 −6.51 −0.71 2.09 −0.71

Docking Pose-7 −4.08 −6.17 −0.71 2.09 −0.71

Docking Pose-8 −5.33 −7.42 −0.64 2.09 −0.64

Docking Pose-9 −4.49 −6.58 −0.54 2.09 −0.54

Docking Pose-10 −3.71 −5.80 −0.65 2.09 −0.65

FIGURE 2 | (A) The BACE1 3D structure in gray color with interior yellow color having surface format. (B) The close depiction of active region of target protein with
embedded AZD3293. The AZD3293 is mentioned in purple color while the functional groups such as amino and oxygen are highlighted with blue and red colors,
respectively. (C) Docking interaction between AZD3293 and target protein (BACE1). The target protein is highlighted in line ribbon format with gray color. The active
binding amino acids are highlighted in dark maroon color around the ligand. Two hydrogen bonds were observed between AZD3293 and BACE1 amino acids at
Asp32 and Lys107 with distances 2.95 and 2.68 Å, respectively. The black dotted lines show the binding distance in angstrom (Å).

FIGURE 3 | The binding interaction of Solanezumab with Aβ. (A) The complex
structure of Solanezumab with Aβ. The light chain is represented in purple
color while heavy chain is highlighted in green color. Aβ is depicted in red color
at Fab region of Solanezumab. The whole structure is represented in surface
format. (B) The epitope region residues of Solanezumab of both light and
heavy chain are represented in purple and green colors, respectively. The Aβ

interacted residues are represented in red color while the black dotted lines are
for bonding distance in angstrom (Å).

comparative analysis reveals that BACE1 residual fluctuation
range start from 0 to 1.0, while Solanezumab has 0–2.5. The

N-terminus region of BACE1 has less amino acids fluctuations
compared to C-terminus. Whereas, in Solanezumab whole
structure is fluctuated (Figure 5).

Molecular Dynamic Simulations Analysis
Root Mean Square Deviation and Fluctuation of

Target Structures
To evaluate the flexibility and overall stability of docked
complexes, we conducted time dependent MD simulation
at 20 ns using Gromacs 4.5.4. The residual deviations and
fluctuation in the complexes were determined by using RMSD
and RMSF graphs generated by using Xmgrace software.
Figures 6, 7 exhibited the residual deviation and fluctuations
of AZD3293 and Solanezumab docked complexes, respectively.
The increasing trend was observed in both (AZD3293 and
Solanezumab) complexes having diverse RMSD values 0–0.25
and 0.5 nm at equilibrium state (starting) from 0 to 2,500
ps in the simulation period. Initially, the AZD3293 complex
shows little variations while Solanezumab depicted higher
fluctuations. From 2,500 to 5,000 ps, AZD3293 complex indicates
little fluctuations while Solanezumab exhibited more deviations
with increased value of RMSD value 0.6 nm. From 5,000 to
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FIGURE 4 | Dynamical cross-correlation analysis of both target structures. (A) The residual cross-correlation analysis of BACE1 (PDBID: 2ZHV). (B) The residual
cross-correlation analysis of solanezumab antibody (PDBID: 4XXD).

FIGURE 5 | Ensemble normal mode analysis. (A) The residual fluctuations analysis of BACE1 (PDBID: 2ZHV). (B) The residual fluctuations analysis of solanezumab
antibody (PDBID: 4XXD). The fluctuations peaks in both graphs less than <0.05 showed the accuracy of crystal structural behavior.

20,000 ps AZD3293 still remain static depiction with constant
RMSD value 0.25 nm while Solanezumab continuously increases
with enhanced RMSD value. The overall MD results showed
that AZD3293 fluctuations was much better as compared to
Solanezumab in the simulation time. The predicted graph
suggested that AZD3293 complex is much better and little
fluctuated throughout the simulation period. The RMSF results
of both AZD3293 and Solanezumab reflect the loops fluctuations
throughout the simulation period. The comparative analyses
showed that Solanezumab exhibited higher fluctuated peaks
as compared to AZD3293 which may depict the significance
of AZD3293 over Solanezumab. Insight from MD simulations
stable behaviors of AZD3293 docked complex throughout
MD trajectories thus increasing the efficacy of docking
results.

Radius of Gyration Analyses
The compactness of protein is measured by radius of gyration
(Rg). The predicted results showed that AZD3293 showed much
static depiction and constant Rg value at 2.05 nm throughout
the simulation time 0–20,000 ps. Whereas, Solanezumab depicts
variations at initiating while later shows stability with Rg

value 2.5 nm. The comparative results justified that the residual
backbone and proper conformation of AZD3293 docked receptor
is much batter compared to Solanezumab complex (Figure 8).

The comparative analyses showed that AZD3293 has
better therapeutical potential than Solanezumab. Our
analyses explore the residual fluctuations after binding
the drug with BACE1 receptors. The predicted results
depicted the significance of AZD3293 over Solanezumab in
treating AD. One limitation with MD simulations is that
the protein covalent bonds remain unbroken which may
disturb the rmsd and rmsf graph fluctuations. However, there
are few things that can done in future work to enhance
the accuracy and reliability of MD simulation, such as
improvement of simulation time, MD force field, and novel
algorithms.

In the future, a molecular dynamics simulation study may be
used as good computational approach to study the interactions
of Aβ40 and Aβ42 with model neuronal membranes. The higher
running time (i.e., 200–300 ns) scale with best force field (i.e.,
a collection of equations and associated constants designed to
reproduce molecular geometry and selected properties of tested
structures) simulation can help investigate the effect of Aβ
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FIGURE 6 | RMSD graphs of AZD3293 and Solanezumab at 20 ns. The graph lines with red and purple represents AZD3293 and Solanezumab complexes,
respectively.

FIGURE 7 | RMSF graphs of AZD3293 and Solanezumab at 20 ns. The graph lines with red and purple represents AZD3293 and Solanezumab complexes,
respectively.

peptides on neuronal membrane. Moreover, some key factors
should also be investigated such as surface area per lipid, bilayer
thickness and lipid order parameter to obtain the reliable results.
The advancement in computer hardware can further mature the
simulation method.

CONCLUSION

Computational interpretation of newly designed compounds and
their binding analysis in the active region of target proteins
allow pharmaceutical industries and labs to test the efficacy
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FIGURE 8 | Radius of gyration (Rg) graph of AZD3293 and Solanezumab at 20 ns. The graph lines with red and purple represents AZD3293 and Solanezumab
complexes, respectively.

of drugs before starting experimental lab work. In our in-
silico approach, we compared two clinical drugs (AZD3293 and
Solanezumab) are being testing against AD. Multiple online
drug analysis computational tools and server were employed to
predict the efficacy and possible lethality of selected compounds.
Molsoft and molinspiration results depict the validity of RO5 for
AZD3293. Our results show that AZD3293 may be considered
as a good therapeutic agent and have good drug like behavior.
Moreover, their pharmacokinetic properties such as ADMET
properties also justified their good lead like behavior and drug
potential. In all parameters such as Absorption, Distribution
and Excretion, AZD3293 gave positive results except little
lethality in Metabolism and Toxicity. AZD3293 depicts its
hepatotoxicity behavior which may cause serious effect in the
body. Furthermore, the docking based hydrogen binding and
structural analyses show the significance of both selected drugs
with proper conformation within the active region of target
proteins. The cross correlation and normal mode results depict
the structural stability of receptors molecules. The comparative
analyses showed that AZD3293-receptor complex has more
stable behavior compared to Solanezumab. Finally, a detail
simulation study was performed to get the deeper insight of
backbone fluctuations and structural stability through RMSD/F
results. The generated RMSD/F graphs results showed that
the AZD3293-BACE1 docked complex predicts stable behavior
compared to Solanezumab regarding the simulation time. The
comparative RMSD value (0.2 nm) of AZD3293 was more

significant compared to Solanezumab (0.7 nm). The radius
of gyration (Rg) results also represent the proper residual
conformation and compactness AZD3293 receptor compared
to Solanezumab. Based on our computational and comparative
results, we may conclude the significance of AZD3293 over
Solanezumab on the basis of good binding and structural stability
behavior against target proteins of AD.
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