FIOOOResearch

F1000Research 2017, 6(F1000 Faculty Rev):1241 Last updated: 27 JUL 2017

REVIEW

'.) Check for updates

Marine archaea and archaeal viruses under global change

[version 1; referees: 2 approved]

Roberto Danovaro
Michael Tangherlini2, Antonio Dell'Anno?

1Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy

12" Eugenio Rastelli:2", Cinzia Corinaldesi®,

2Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
3Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Ancona, ltaly

* Equal contributors

V1 First published: 27 Jul 2017, 6(F1000 Faculty Rev):1241 (doi:
10.12688/f1000research.11404.1)

Latest published: 27 Jul 2017, 6(F1000 Faculty Rev):1241 (doi:
10.12688/f1000research.11404.1)

Abstract

Global change is altering oceanic temperature, salinity, pH, and oxygen
concentration, directly and indirectly influencing marine microbial food web
structure and function. As microbes represent >90% of the ocean’s biomass
and are major drivers of biogeochemical cycles, understanding their responses
to such changes is fundamental for predicting the consequences of global
change on ecosystem functioning. Recent findings indicate that marine
archaea and archaeal viruses are active and relevant components of marine
microbial assemblages, far more abundant and diverse than was previously
thought. Further research is urgently needed to better understand the impacts
of global change on virus—archaea dynamics and how archaea and their
viruses can interactively influence the ocean’s feedbacks on global change.

Open Peer Review

Referee Status: +" +'

Invited Referees

1 2
version 1 v v
published
27 Jul 2017

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000
Faculty. In order to make these reviews as
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

1 Stéphan Jacquet, Institut National de la
Recherche Agronomique, UMR CARRTEL,

France

o Jed Fuhrman, University of Southern
California, USA

Discuss this article

Comments (0)

Page 1 of 8


http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/6-1241/v1
https://orcid.org/0000-0002-9025-9395
https://f1000research.com/articles/6-1241/v1
http://dx.doi.org/10.12688/f1000research.11404.1
http://dx.doi.org/10.12688/f1000research.11404.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.11404.1&domain=pdf&date_stamp=2017-07-27

FIOOOResearch F1000Research 2017, 6(F1000 Faculty Rev):1241 Last updated: 27 JUL 2017

Corresponding author: Roberto Danovaro (r.danovaro@univpm.it)
Competing interests: The authors declare that they have no competing interests.

How to cite this article: Danovaro R, Rastelli E, Corinaldesi C et al. Marine archaea and archaeal viruses under global change [version 1;
referees: 2 approved] F1000Research 2017, 6(F1000 Faculty Rev):1241 (doi: 10.12688/f1000research.11404.1)

Copyright: © 2017 Danovaro R et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: This work was conducted within the frame of the Flagship Project RITMARE (ltalian Research for the Sea) coordinated by the
Italian National Research Council and funded by the Italian Ministry of Education, Universities, and Research within the National Research
Program 2011-2013, the Project EXPLODIVE (FIRB2008, contract no. 131J10000060001, PICC), the EU Project MIDAS (Managing Impacts of
Deep-seA resource exploitation, grant agreement no. 603418), and the project MERCES (Marine Ecosystem Restoration in Changing European
Seas; European Union’s Horizon 2020 research and innovation program, grant agreement no. 689518).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 27 Jul 2017, 6(F1000 Faculty Rev):1241 (doi: 10.12688/f1000research.11404.1)

Page 2 of 8


http://dx.doi.org/10.12688/f1000research.11404.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.11404.1

Recent insights on marine archaea and their
respective viruses

Research on archaea has increased exponentially over the last few
years, but marine archaea and the viruses able to infect them have
received little attention despite their global relevance'= (Figure 1).
Moreover, most of the current knowledge on archaea and archaeal
viruses is based on culturable extremophiles inhabiting peculiar
high-temperature, high-salinity, or low-pH environments’’, while
the archaeal taxa most represented in the ocean remain almost
completely uncultured'’'%, as well as their viruses'’. Several new
archaeal phyla have been described in the last 15 years thanks to
gene surveys, metagenomics studies, and single-cell next-generation
sequencing projects'®'*?. While the earliest archaeal phyloge-
netic trees reported only two phyla (i.e. the Crenarchaeota and
Euryarchaeota), the current view of the taxonomic and functional
diversity of archaea has greatly expanded. Besides Euryarchaeota,
three additional archaeal clades have been recently proposed: the
TACK superphylum (including Crenarchaeota, Korarchaeota,
Thaumarchaeota, Aigarchaeota, and Bathyarchaeota), the DPANN
superphylum (including archaeal Richmond Mine acidophilic nano-
organism [ARMAN], Diapherotrites, Nanohaloarchaea, Parvar-
chaeota, Aenigmarchaeota, and Nanoarchaeota), and the ASGARD
superphylum (including Lokiarchaeota, Thorarchaeota, Odinar-
chaeota, and Heimdallarchaeota)'***=’. Moreover, findings based
on current culture-independent molecular approaches point out that
a large fraction of archaeal diversity is still awaiting discovery”*.

Marine ecosystems host 3.9x10% prokaryotic (i.e. bacterial and
archaeal) cells and 4.3x10°' viruses®. These components represent
~90% of the global microbial abundance and largely contribute
to organic matter cycling and biogeochemical processes on a glo-
bal scale’”. Most of such microbes live in deep-sea ecosystems
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(i.e. waters and sediments below 200 m water depth), which cover
more than 65% of the Earth’s surface and represent 95% of the bio-
sphere volume®'*”. Archaea are ubiquitous and abundant in marine
ecosystems. Although bacteria tend to outnumber archaea in the
world’s oceans, archaea make an important contribution to micro-
bial biomass in deep waters (with abundances equivalent to those of
bacteria at depths of >1000 m) and in surface and subsurface marine
sediments™'. Different archaeal taxa can be numerically dominant
in specific environmental conditions. In oxygenated waters and
sediments, four major groups of archaea prevail, including marine
group (MG)-I Thaumarchaeota and MG-II, MG-III, and MG-IV
Euryarchaeota'”, while novel archaeal taxa have been recently
identified in anoxic ecosystems including marine subsurface
sediments'®?’. MG-I Thaumarchaeota are among the most abundant
microbes in the deep ocean, and they play key roles in global C
and N cycles through CO, fixation coupled with ammonium/
ammonia oxidation, which can generate the greenhouse gas nitrous
oxide (N,0) as a by-product™'"'"***. MG-II Euryarchaeota gener-
ally prevail in surface waters"** and can display heterotrophic/
photoheterotrophic lifestyles*>*°, while the physiology and metabo-
lism of MG-III and MG-IV Euryarchaeota, preferentially inhab-
iting the ocean interior at relatively low abundances, still remain
poorly understood”””’. In subsurface and anoxic sediments, still
poorly resolved archaeal groups, such as anaerobic methano-
trophic archaea (ANME) and members of the deep sea archaeal
group (DSAG) and of the miscellaneous Crenarchaeota group
(MCG), can account for a large fraction of prokaryotic stand-
ing stocks™*** and are thought to significantly contribute to
biogeochemical cycles and global ecosystem functioning?'**"!.

Concerning archaeal viruses, a putative provirus has been identified
in a recently isolated MG-I thaumarchaeon’, and DNA sequences
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Figure 1. Number of publications regarding archaea, subdivided into publications on marine or non-marine archaea (left chart) and
publications on archaea or on viruses of archaea (right chart), as searched through the Web of Science database. The following
keywords were used in the searches for archaea: archaea or archaebacteria or archaeobacteria. The following keywords were used in the
searches for marine archaea: marine archaea or ocean archaea or sea archaea, also using the terms archaebacteria or archaeobacteria.
The following keywords were used in the searches for viruses of archaea: archaea virus or archaebacteria virus or archaeobacteria virus.
Research on archaea has increased over the past few decades, but relatively little focus has been directed towards marine archaea and
archaeal viruses, despite the current compelling evidence of their relevant role at the global level.
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of putative viruses infecting MG-I Thaumarchaeota are abundant
in seawater and sediments****=, Increasing evidence suggests that
marine viruses infecting members of other dominant archaeal taxa
are widespread and likely highly abundant both in the water col-
umn (e.g. putative viruses of pelagic MG-II Euryarchaeota)™® and
in sediments (e.g. putative viruses of anaerobic methane-oxidizing
euryarchaea’ and other still-unclassified archaeal viruses'’). All of
these viruses are still uncultured'’, and the virus—archaea interac-

tions occurring in marine ecosystems remain largely unknown™**,

Impacts of climate changes on marine archaea

Since the beginning of the industrial revolution, anthropogenic
activities have progressively enhanced terrestrial fluxes of green-
house gases, increasing atmospheric concentrations of CO,, CH,,
and N,O by 40%, 150%, and 20%, respectively*"". This process
has triggered climate changes causing warming, oxygen deple-
tion, and acidification of the oceans as well as altered precipitation
regimes, increased ice melting, and shifting patterns (generally, a
decrease) of global primary production and carbon export to the
ocean interior. All these changes have been reported to influence the
biodiversity and functioning of marine ecosystems’'>.

Marine archaea are key actors in the cycling of all the aforemen-
tioned greenhouse gases’®***%. Our knowledge on the potential
consequences of global climate changes on archaea is very limited
and almost entirely based on studies of MG-I Thaumarchaeota'"'*-*.
Indeed, the recent success in culturing several MG-I Thaumar-
chaeota as pure isolates or in enriched mixed cultures has provided
the first insights into their responses to changes in seawater tem-
perature, oxygen concentrations, and pH'"'***% The emerging
view suggests high functional diversity and metabolic plasticity
within the MG-I Thaumarchaeota, including members with dif-
ferent sensitivities to seawater warming, acidification, and oxygen
depletion'"'***, Thus, specific MG-I Thaumarchaeota more adapted
to such conditions could be competitively advantaged in future
scenarios of global change'*.

Global warming is expected to have a stronger impact on marine
ecosystems at high latitudes’'”, where pelagic and benthic MG-I
Thaumarchaeota are particularly abundant and highly metabolically

active®*>%! While primary production is expected to decrease
at tropical and mid-latitudes, an increase is expected at high
latitudes’**=**. If confirmed, these shifts will alter the quantity and

quality of food supply to the seafloor””, with downstream conse-
quences on organic matter remineralization and supply of ammonia
needed for sustaining the metabolism of nitrifying MG-I Thaumar-
chaeota. On one hand, such changes could have a differential impact
on MG-I Thaumarchaeota at different latitudes™. On the other hand,
inter-strain hallmarks of different members within MG-I Thaumar-
chaeota, including chemotaxis, motility, and versatility in organic
substrate utilization, might be factors able to influence their rela-
tive distribution under future scenarios of global change'’. Current
evidence suggests that the shifts in food supply caused by global
change’* could influence also the distribution and abundance of
MG-II Euryarchaeota, which are believed to be heterotrophs'*>-
and whose abundance in benthic deep-sea ecosystems can be con-
trolled by the availability of organic matter”. Nonetheless, the lack
of available culturable strains for this and other newly discovered
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archaeal taxa'>'° limits our ability to predict their metabolic/physi-
ological response to global changes.

Recent studies have provided the first insights into the possible
effects of temperature changes on archaeal assemblages. While
manipulative experiments have suggested no significant effects of
temperature shifts from 8 to 20°C on the rates of ammonia oxida-
tion by archaea®, temperature itself has been shown to be a signifi-
cant macroecological driver of the global patterns of distribution of
MG-I Thaumarchaeota in benthic deep-sea ecosystems®. In polar
ecosystems, the enhanced ice melting due to global warming has
the potential to influence the composition and relative abundance of
marine archaea by releasing ice-associated microbes®** and favor-
ing specific MG-I Thaumarchaeota pre-adapted to grow at lower
salinity''. Moreover, as nitrification in Thaumarchaeota is depend-
ent upon oxygen levels and is inhibited by anoxic conditions™, the
expansion of oxygen-depleted marine zones induced by warming
and eutrophication can contribute to influence on the composition
and functioning of archaeal assemblages®~’'. However, the impacts
of such changes, including the relative feedbacks of different
archaeal taxa and the consequences on carbon and nutrient cycling,
remain virtually unexplored’’.

Virus—archaea interactions in the oceans under
global change

Daily virus-induced mortalities of marine prokaryotes are in the
range of 0.1-40% of the standing stock®’>”, implying that every
year approximately 10*° to 10°? prokaryotic cells are infected and
killed by viruses in marine ecosystems”. However, the extent to
which viruses specifically impact archaea in the oceans is largely
unknown, and this represents a significant gap for a better compre-

hension of the functioning of the world’s oceans.

The relative contribution of archaea to the prokaryotic stock has
been reported to increase with increasing water column depth and
along the vertical profile of the sediment'>*. Also, viruses are sug-
gested to play more relevant roles delving deeper in the ocean
interior and in the subsurface, where the virus-to-prokaryote abun-
dance ratios and the representation of virus-related DNA sequences
in metagenomes is typically higher’*"”. Recent studies provide
evidence of a high virus-induced mortality on archaea (mainly on
MG-I Thaumarchaeota) in benthic deep-sea ecosystems, resulting
in the release of ~0.3 to 0.5 gigatons of carbon per year globally”.
MG-I Thaumarchaeota use CO, to produce biomass, while viruses
kill them, releasing their labile cellular content, thus enhancing
organic matter remineralization and respiration processes of unin-
fected heterotrophic microbial components®. In turn, the stimula-
tion of heterotrophic processes can enhance nitrogen regeneration
processes, supplying 30 to 60% of the ammonia required to sustain
archaeal chemoautotrophic C production in deep-sea sediments’.
Understanding the factors able to influence this complex network
of microbial CO,-consuming and CO,-producing processes will
provide insights into the ability of the oceans to act as source or
sink for this important greenhouse gas.

Since viral replication is linked with host metabolic state, impacts

of global changes on the physiology and metabolism of archaea
will likely influence also virus—archaea dynamics®. At the same
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time, the success of different archaeal taxa in the future, based on
their ability to adapt to the predicted scenarios of global change,
will likely influence the relative importance of their viruses. For
instance, the changes in the activity, diversity, and distribution of
marine bacteria and archaea due to the spreading of oxygen-depleted
pelagic and benthic zones*'” will likely determine also shifts in the
assemblages of viruses, whose role can be particularly relevant in
low-oxygen conditions’'*!. Similarly, the opposite effects of global
changes on primary production and carbon export at high versus
middle/tropical latitudes will likely influence in a different way the
activity, diversity, and distribution of archaeal viruses on the basis
of the different sensitivity to temperature and food availability of
their respective archaeal hosts.

Evidence at different latitudes suggests that viral responses
to increasing temperature (e.g. viral production rates) display
increasing or decreasing trends in polar and in temperate sys-
tems, respectively®. Further research is needed to understand the
role of viruses of archaea in explaining such trends, especially at
high latitudes, which host some of the most rapidly warming
oceanic regions, as well as large numbers of archaea®*>**¢!,

Recent studies carried out in marine ecosystems have pointed out
the importance of lysogenic viral infections, in which a provirus
coexists in its host until replication is induced, leading or not to
cell lysis mainly depending on environmental factors®. Tak-
ing into account lysogenic viral infections can be critical to pre-
dicting changes in bacterial dynamics under scenarios of global
change, while such information is currently lacking for archaea®.
Indeed, despite putative proviruses having been identified in
Thaumarchaeota®, the relative importance of lytic versus lysogenic
virus—archaea dynamics and their response to the environmental
changes brought on by global change are still largely unknown.

Considering that viruses can confer novel functions to their host
through lateral gene transfer and/or expression of virus-encoded
auxiliary metabolic genes**’, we should take into consideration
the possibility that such virus—host interactions could influence
hosts’ responses to global change. Recently, viral auxiliary meta-
bolic genes have been proposed to modulate ammonia oxidation in
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Thaumarchaeota’, suggesting that future studies on virus—archaea
interactions will contribute to clarifying ecological and biogeo-
chemical processes of global relevance.

Overall, global change will alter a wide variety of marine microbial-
mediated processes, including virus—archaea interactions, which
remain as-yet largely unknown despite their significant ecological
and biogeochemical implications. Deepening the knowledge on
marine virus—archaea dynamics can thus significantly contribute to
understanding the ocean’s feedbacks on global climate change. The
biology, ecology, and evolution of archaea and archaeal viruses is
one of the most intriguing and timely topics in microbial ecology,
and research perspectives on the marine realm can be extended to
freshwater and terrestrial ecosystems, in which archaea are also
widespread and diversified*~".
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