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We discuss a flexible method for modeling survival data using penalized smoothing splines when the values of covariates change for
the duration of the study. The Cox proportional hazards model has been widely used for the analysis of treatment and prognostic
effects with censored survival data. However, a number of theoretical problems with respect to the baseline survival function
remain unsolved. We use the generalized additive models (GAMs) with B splines to estimate the survival function and select the
optimum smoothing parameters based on a variant multifold cross-validation (CV) method. The methods are compared with the
generalized cross-validation (GCV) method using data from a long-term study of patients with primary biliary cirrhosis (PBC).

1. Introduction

Several prognostic models for PBC data have been developed
using the Cox proportional hazards model, and the values of
all covariates were determined at the time when the patient
entered the study [1]. However, situations may exist in which
the values of covariates change for the duration of the study.
The time-dependent model uses follow-up data to estimate
the effect of the evolution of the covariates during the course
of the disease; see, for example, Cox [2], Altman and Stavola
[3] and Collett [4].

Let t be a continuous lifetime variable and x = (x1, . . . ,
xI) a vector of time-fixed covariates. The Cox’s proportional
hazards model postulates that the hazard at time t is the
product of two components [5, 6]

h(t; x) = h0(t) exp

⎡
⎣

I∑

i=1

bixi

⎤
⎦, (1)

where b = (b1, . . . , bI) is a vector of coefficients. The propor-
tional hazards assumption is that the baseline hazard h0(t) is

a function of t but does not involve the values of covariates x
which are measured at the beginning of an interval to predict
short-term survival.

We investigate PBC data for 312 patients who were seen
at the Mayo Clinic and were monitored for the duration of
the study, as described in Murtaugh et al. [7] and Therneau
and Grambsch [8]. The Cox proportional hazards model was
developed based on the relationship between survival and
the patient characteristics observed when the patient entered
the study. The precision of time-fixed models used in PBC
is rather low, partly because these models are based on data
for which the covariates were measured at the time when the
patient entered the study.

For the analysis of data with time-dependent covariates,
however, the survivor function for any individual depends
on time t and the baseline hazard function. This means that
the survivor function cannot be expressed as a power of the
baseline survivor function and is generally difficult to obtain
for any individual; see, for example, Kalbfleish and Prentice
[9] and Marubini and Valsecchi [10]. The Mayo updated mo-
del (e.g., [7]), and the European new version model (e.g., [3,
11, 12]) have been commonly used to improve the accuracy
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Table 1: Values of covariates for deceased patient #9.

Time interval l Midpoint day a〈9〉l Age (year) x〈9〉l1 Prothrombin time (sec) x〈9〉l2 Bilirubin (mg/dL) x〈9〉l3 δ〈9〉l

1 92.0 42.54 11.0 3.2 0

2 272.5 43.04 12.5 7.0 0

3 542.0 43.53 11.2 4.2 0

4 875.0 44.52 14.1 13.5 0

5 1211.5 45.35 11.5 12.0 0

6 1837.0 46.36 11.5 16.2 0

7 2339.0 48.78 13.0 14.8 1

of survival predictions as a function of covariates measured
at any time during the course of the disease. In the present
article, we propose the variant multifold CV method for
GAM when choosing the optimum smoothing parameters in
order to estimate the survival function and predict the short-
term survival (say, for the following six months) at any time
during the course of the disease.

Another useful idea in our analysis is the concept of com-
peting risk. There is “liver transplantation” in PBC data as
competing risk. Competing risk has been treated as censored
data. By adding the liver transplantation as one of time-
dependent covariate, one can test the significance of liver
transplantation.

2. Model Building

By extending the Cox proportional hazard model (1),
a flexible survival model has been examined

h(t; x) = h0(t) exp

⎡
⎣

I∑

i=1

si(xi)

⎤
⎦, (2)

where si(xi) is a spline function for the covariate xi [13–
15]. The proportional hazard model (2) used the time-fixed
values of covariates as shown in Dickson et al. [1]. The esti-
mates of hazard ratio by relative survival regression model
[16] with time-dependent covariates are compared with that
of Cox proportional hazard model. A new approach [17, 18]
is proposed with PBC data, aiming to capture nonlinear pat-
terns of bilirubin time courses and their relationship with
survival time of patients. However, because most patients
with PBC make repeated visits to the clinic, it is natural to ask
the optimum timing of liver transplantation by predicting
short-term survival at any time in the course of the disease.

The time-dependent covariates X〈d〉
l = (a〈d〉l , x〈d〉l1 , . . . ,

x〈d〉lI ) are provided for patient #d, where a〈d〉l is the midpoint

of time interval [t〈d〉l , t〈d〉l+1] for the lth clinic visit. The event
times may be subject to the usual random censoring. Then
only the minimum of survival and censoring time with cen-
soring indicator

δ〈d〉l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : patient #d died at time-interval

for the lth clinic visit

0 : otherwise

(3)

are observed. The relative hazard h(t)/h0(t) then depends on
time t, and thus the proportional hazards assumption is no
longer satisfied, as described in Altman and Stavola [3] and
Arjas [19].

For example, Table 1 shows the values of age, prothrombin
time, and bilirubin as time-dependent covariates for dead
patient #9; for details, see Table 4 in Murtaugh et al. [7]. Pa-
tients were scheduled to return for further observations at six
months, 12 months, and yearly. Thus, n = 312 patients gene-
rate 1945 observations in total. The covariates values for each
patient were allowed to vary with the time interval for the lth
clinic visit.

A grouped version of Cox’s proportional hazard model
with time-fixed covariates has been considered in the frame-
work of discrete grouped data for the feed-forward neural
network. Given the continuous survivor time, piecewise mo-
dels arise from the partition of the time axis into disjointed
intervals. Biganzoli et al. [20, 21] show that, by treating the
time interval as an input variable in a feed forward neural
network, it is possible to estimate smoothed discrete hazards
as conditional probabilities of failure. Biganzoli et al. [20]
also pointed out that an advantage of this kind of data struc-
ture is the possibility of straightforward use of time-depen-
dent covariates since each subject is represented, for each ob-
servation interval, by one input vector which can change
across intervals. In order to apply this neural network ap-
proach, which is called partial logistic regression models
[20], discretization of one-month or one-week intervals
must be applied for the continuous survivor time with time-
fixed covariates. We cannot determine which discretization,
one-month or one-week intervals, must be applied; that, is
the discretization is not originally unique. For the data in
Table 1, however, the choice of discretization of the time axis
for the partial logistic regression model is generally deter-
mined by clinical relevance, possibly according to the sche-
duled time intervals between follow-up visits.

The primary goal of the present study is to predict short-
term survival in patients on the basis of measurements of

several characteristics having time-dependent covariates X〈d〉
l

for the purpose of facilitating the decision as to when to un-
dertake liver transplantation. Based on partial logistic model
due to Cox [22] and Efron [23] for the grouped data,
Tsujitani and Sakon [24] have proposed a partial logistic
model with a discrete hazard rate h<d>l for ungrouped data
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having time-dependent covariates

ln

⎛
⎝ h〈d〉l

1− h〈d〉l

⎞
⎠ = β0 + γt〈d〉l + β1x

〈d〉
l1 + β2x

〈d〉
l2 + · · · + βIx

〈d〉
lI ,

d = 1, 2, . . . .,n,
(4)

where β = (β1, . . . ,βI) is a vector of coefficients. The modeled
response is the logit of hazard rate, and the logit is linear
in the covariates. However, this assumption is violated when
covariate effects are best represented by smooth, nonlinear
function. In recent years, a variety of powerful techniques
have been developed for exploring the function form of
effects. We examine here a flexible survival model GAM
that does not require linearity of the covariate function by
extending a generalized linear model (GLM); see, for exam-
ple, Hastie and Tibshirani [13] and McCullagh and Nelder
[25]. By identification of nonlinear covariate effects, we
can estimate more accurately a patient’s prognosis and thus
determine a liver transplant based on prediction of short-
term survival.

The linear predictor in (4) is specified as a sum of smooth
functions s(x) with twice continuous derivatives of some or
all of the covariates for the discrete hazard rate h<d>l of patient
#d at the time interval l

ln

⎛
⎝ h〈d〉l

1− h〈d〉l

⎞
⎠ = β0 + s0

(
t〈d〉l

)
+ s1

(
x〈d〉l1

)

+ s2

(
x〈d〉l2

)
+ · · · + sI

(
x〈d〉lI

)
.

(5)

The smooth functions in (5) can be represented as

s0(x) =
q0∑

j=1

βjb0 j(t),

s1(x) =
q1∑

j=1

βq0+ jb1 j(x),

. . .

sI(x) =
qI∑

j=1

βqI−1+ jbI j(x),

(6)

where q1, q2, . . . , qI are the numbers of knots, and

β =
(
β0,β1, . . . ,βq0 ,βq0+1,βq0+2, . . . ,βq0+q1 ,

. . . ,βq0+q1+···+qI−1+1,βq0+q1+···+qI−1+2,

. . . ,βq0+q1+···+qI
)

,

(7)

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 b01(x11) . . . b0q1 (x11) · bI−1,q0+q1+···+qI−1+1
(
xI−1,1

)
. . . bI ,q0+q1+···+qI (xI1)

1 b01(x12) . . . b0q1 (x12) · bI−1,q0+q1+···+qI−1+1
(
xI−1,2

)
. . . bI ,q0+q1+···+qI (xI2)

· · . . . · · . . . . . . ·
1 b01(x11) . . . b0q1 (x1n) · bI−1,q0+q1+···+qI−1+1

(
xI−1,n

)
. . . bI ,q0+q1+···+qI (xIn)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(8)

The functions bi j(xi j) in the matrix Z are B-spline basis func-
tions. Thus, (5) can be rewritten as

ln

⎛
⎝ h〈d〉l

1− h〈d〉l

⎞
⎠ = Z β

n×q q×1
; q =

I∑

i=0

qi, (9)

where B-splines with 10 interiors knots will be used for each
continuous covariate. The number of knots is arbitrary but
appears to have little effect on the results, provided that the
number is not too small, as described in Gray [15].

At the time interval for the lth clinic visit of patient #d,
we define

δ′〈d〉l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : patient #d was censored at

time-interval for the lth clinic visit

0 : otherwise,

v〈d〉l =
(
δ〈d〉1 , δ′〈d〉1 , δ〈d〉2 , δ′〈d〉2 , . . . , δ〈d〉l−1, δ′〈d〉l−1

)

= (0, 0, . . . , 0),

v′〈d〉l =
(

v〈d〉l , δ〈d〉l

)
=
(

0, 0, . . . , 0, δ〈d〉l

)
,

(10)

where v〈d〉l is the history of dead and censored of time inter-

vals for the first lth clinic visit of patient #d, and v′〈d〉l = (v〈d〉l ,

δ〈d〉l ) is the same history extended to include δ<d>l . Tsujitani
and Sakon [24] derived the full log likelihood for all patients

lnL = lnL
(
β
)

+
n∑

d=1

ld∑

l=1

ln p
(
δ′〈d〉l | v′〈d〉l

)
(11)

with partial log likelihood

lnL
(
β
) =

n∑

d=1

⎧⎨
⎩
ld−1∑

l=1

ln
(

1− h〈d〉l

)
+ δ〈d〉ld

lnh〈d〉ld

+
(

1− δ〈d〉ld

)
ln
(

1− h〈d〉ld

)
⎫⎬
⎭.

(12)
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The unknown parameters β in (9) can thus be estimated
by maximizing the partial log likelihood (12), which is the
log likelihood for the independent Bernoulli trial. Although
lnL(β) is not a log likelihood in the usual sense, it possesses
the usual asymptotic properties under fairly broad condi-
tions; see, for example, Andelsen and Gill [26].

To avoid overfitting, such models are estimated by penal-
ized maximum likelihood

lnL
(
β
) =

n∑

d=1

⎧⎨
⎩
ld−1∑

l=1

ln
(

1− h〈d〉l

)
+ δ〈d〉ld

lnh〈d〉ld

+
(

1− δ〈d〉ld

)
ln
(

1− h〈d〉ld

)
⎫⎬
⎭

+
1
2

I∑

i=1

λi

∫ {
s′′i (t)

}2
dt,

(13)

where λi are smoothing parameters that control the tradeoff
between the fit and the smoothness, and s′′i is the twice deri-
vative of si with respect to t. The advantage of penalized
estimates is enlightened in Wood ([27], Section 4.1).

Two model-fitting issues remain. The first concerns the
selection of smoothing parameter λi in (13). The careful
smoothing parameter choice is outweighed by the easy iden-
tification of a covariate’s functional form, and the applicabil-
ity of established inferential methods to short-term survival
prediction. In order to select the smoothing parameters, the
algorithm due to Wood [27–29] can be used by minimizing
GCV as an approximation to leaving-one-out CV. For exam-
ple, however, the dead patient #9 generated seven observa-
tions as shown in Table 1. Patients were scheduled to return
for further observations at six months, 12 months, and
yearly. It should be noted that this patient generated seven
observations. Thus, n = 312 patients generate 1945 observa-
tions in total.

We propose a natural extension of v-fold CV algorithm
by “leaving-one-out” CV based on each n = 312 patients.
The ordinal v-fold CV divides the data randomly in v groups
so that their sizes are as nearly equal as possible. The partition
should be made to avoid possible biases, as described in
Zhang [30]. In many problems, the ordinal v-fold CV is, thus,
unsatisfactory in several respects for time-dependent covari-
ates. Applying this kind of data structure to the CV algo-
rithm, we obtain insights into how the partition of data
should be done. A natural extension of v-fold CV algorithm
by setting v = n is to allow the deletion of the patient with
several observations. The variant v-fold CV is given as fol-
lows:

Step 1. Split the original sample X = {X〈1〉, . . . , X〈d〉, . . . ,
X〈n〉} into n parts X = {X〈1〉| . . . |X〈d〉| . . . |X〈n〉}, where
X〈d〉 = {X〈d〉

1 , . . . , X〈d〉
ld
}.

Step 2. Fit the model to X∗ = {X〈1〉| . . . |X〈d−1〉|X〈d+1〉| . . . |
X〈n〉} with the d-th subject (i.e., patient) deleted of the data,

and predict
∑ld−1

l=1 ln(1− ĥ〈d〉l ) + δ〈d〉ld
ln ĥ〈d〉ld

+ (1− δ〈d〉ld
) ln(1−

ĥ〈d〉ld
) for the deleted dth sample X〈d〉.

Step 3. Do the above for d = 1, 2, . . . ,n and combine the CV
estimates

CV =
n∑

d=1

⎧⎨
⎩
ld−1∑

l=1

ln
(

1− ĥ〈d〉l

)
+ δ〈d〉ld

ln ĥ〈d〉ld

+
(

1− δ〈d〉ld

)
ln
(

1− ĥ〈d〉ld

)
⎫⎬
⎭.

(14)

A second issue is the goodness-of-fit test of the model.
After choosing the optimum smoothing parameters via
v-fold CV algorithm, the deviance allows us to test the
goodness of fit

Dev = 2(lnLmax − lnLc), (15)

where lnLc denotes the maximized partial log likelihood
under some current GAM, and the log likelihood for the
maximum (full) model lnLmax is zero. The deviance given
by (15) is, however, not even approximately a χ2 distribution
for the case in which ungrouped binary responses are avai-
lable; see, for example, Landwehr et al. [31] and Tsujitani
and Koshimizu [32] and Collett [33]. The number of deg-
rees of freedom required for the test for significance using
the assumed χ2 distribution for the deviance is a contentious
issue. No adequate distribution theory exists for the devi-
ance. The reason for this is somewhat technical; for details,
see Section 3.8 in Collett [33]. Consequently, the deviance
on fitting a model to binary response data cannot be used as
a summary measure of the goodness-of-fit test of the model.

Based on the above discussion, we employ bootstrapping
to the deviance of (15) in order to obtain the goodness-of-fit
test due to Efron and Tibshirani [34].

Step 1. Generate B bootstrap samples X∗ = {X〈1〉∗
l , . . . ,

X〈n〉∗
l } from the original sample X. Let X∗(b) denote the bth

bootstrap sample.

Step 2. For the bootstrap sample X∗(b), the deviance of (15)

is computed by Dev(b) = 2[lnL f − ln(X∗(b); β̂
∗

(b))].
This process is repeated independently B times, and the

computed values are arranged in ascending order.

Step 3. The value of the jth order statistic Dev∗ of the B rep-
lications can be taken as an estimate of the quantile of order
j/(B + 1).

Step 4. The estimate of the 100(1− α)-th percentile (i.e., α%
critical point) of Dev∗ is used to test the goodness-of-fit of a
model having a specified significance level α = 1− j/(B + 1).
The value of deviance of (15) being greater than the estimate
of the percentile indicates that the model fits poorly.

3. Results

The survival function for our discretized situation is

S(tl) =
∏

1≤i≤l

(
1− h〈d〉i

)
. (16)
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Table 2: Optimum smoothing parameters.

Covariates Variant v-fold CV GCV

Time 0.1 0.00045

Age 10 0.000015

Prothrombin time 0.001 0.00039

Bilirubin 0.001 0.00000017

Table 3: Test of significance for the covariates (P values).

Covariates Variant v-fold CV GCV

Time 0.263 0.0028

Age <0.0001 <0.0001

Prothrombin time <0.0001 <0.0001

Bilirubin <0.0001 <0.0001

The conditional probability Pr(t, t + Δt) of survival over a
short-time interval Δt (say, six months) after time t can be
estimated as

P̂r(t,Δt) = Ŝ(t + Δt)

Ŝ(t)
. (17)

By using variant v-fold CV and GCV, the optimum
smoothing parameters for GAM are determined as shown in
Table 2. Table 3 summarizes the P values to test the nonpara-
metric effects of covariates for the model s(time) + s(age)
+ s(pro) + s(bili) with the optimum smoothing parameters
and GCV. From Table 3, all covariates are highly significant
for GCV; however, time is not significant for variant v-fold
CV. GCV is only the approximation of leaving-one-out CV.
Furthermore, the variant v-fold CV is leaving one-out CV
based on each n = 312 patients. So variant v-fold CV is better
than GCV. For the purpose of comparison, we included the
results in the case using GCV in Tables 2 and 3. Table 4 shows
the results of a number of models that were fit to the data.

The likelihood ratio (LR) statistic based on deviance can
be conducted to test whether the spline effect provides a sig-
nificantly better fit than a linear effect. Table 5 shows the
test of significance for spline effects based on the models in
Table 4. It is clear from Table 5 that the spline effects of pro-
thrombin time and bilirubin are strongly significant. No
spline provides a significantly better fit than a linear model
for age. Thus, we accept the final model: age + s(pro) + s(bili)
with the edf(effective degrees of freedom) 3.954 and 4.477 for
s(pro) and s(bili), respectively. We used likelihood ratio test
instead of information criteria as a valid alternative approach
for model selection. From Table 4, however, it is found that
the same final model is selected by using AIC.

Figure 1 shows the histogram of the bootstrapped Dev(b)
for the optimum model with B = 400. The bootstrap esti-
mate of the 95th percentile (i.e., 5% critical point) Dev∗

is Dev∗ = 734.59. Comparison to Dev = 663.65 of (15)
suggests that the model fits the data.

Figure 2 shows the prediction of the probability of sur-
viving beyond the next six months for dead patient #9. For
the purpose of comparison, the results obtained using partial
logistic regression, the Mayo updated, and the European new
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Figure 1: Histogram of the bootstrapped Dev(b) for B = 400.

version models are also provided. Figure 2 also indicates that
the six-month survival probability predicted by GAM are
lower than those predicted by the other models. Because the
patient #9 died, the lower predicted probabilities are better.
The conditional probability Pr(t,Δt) of survival over a short
time interval Δt (say, six months) after time t during the
course of the disease can be predicted from data collected for
censored and dead data.

For the graphical representation, the individual probabil-
ities for predicted survival are averaged in order to compare
the Mayo updated model, the European new version model,
the partial logistic regression model, and GAM. We can pre-
dict the probability of survival over the following six months
using the four models with respect to data and censored data
out of 312 patients. For the group (g = 1) and the censored
group (g = 2), the probability of surviving over the next Δt

months is denoted by Pr
[g]
d (l, l +Δt) for the l-th clinic visit of

patient #d. The average probability of survival over the next
Δt months for the l-th clinic visit of patient #d in group g can
be estimated as

Sg(l) = 1

n
[g]
l

n
[g]
l∑

d=1

Pr
[g]
d (l, l + Δt), g = 1, 2,

l = 1, 2, . . . ,L,

(18)

where n
[g]
l is the total number of patients for the l-th clinic

visit in group g, and Pr
[g]
d (l) is the survival function Pr(l) of

patient #d at the time interval l in group g; see, for exam-
ple, Markus et al. [35], Marubini and Valsecchi [10], and
Thomsen et al. [36].

Figure 3 shows a comparison of the probability of sur-
vival over the next six months using the four models with res-
pect to dead and censored data among all 312 patients. The
figure clarifies that

(i) for the case of dead data, the six-month survival pro-
babilities predicted by GAM are lower than those pre-
dicted by the other models, and,

(ii) for the case of censored data, the difference among
the four models is very small.
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Table 4: Ranks and F values for nonparametric effects.

No. Model Deviance d.f. CV (AIC)

I s(time) + s(age) + s(pro) + s(bili) 661.77 1933.16 691.99 (685.44)

II s(age) + s(pro) + s(bili) 663.65 1934.57 690.54 (684.52)

III s(time) + s(pro) + s(bili) 705.50 1933.93 739.03 (727.64)

IV Age + s(pro) + s(bili) 663.65 1934.57 690.51 (684.51)

V Age + s(pro) + bili 686.63 1937.58 708.44 (701.46)

VI Age + pro + s(bili) 675.80 1938.02 696.53 (689.77)

Table 5: Test of significance for spline effects.

Spline effect Δ d.f.

Age 0.0039 (Model IV-II) 0.005

Prothrombin time 12.15 (Model VI-IV) 3.45

Bilirubin 22.97 (Model V-IV) 3.01
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Figure 2: Probability of survival over the next six months using the
four models with respect to dead patient #9.

Figure 4 also shows the box and whisker plots of pro-
bability of survival over the next six months using GAM with
respect to dead data among all 312 patients. It should be
noted that the variance of probabilities of survival over the
next six months is much higher in the fourth clinic visits than
in other clinic visits. Another useful idea in our analysis is the
concept of competing risk. There is “liver transplantation” in
PBC data as competing risk. Competing risk has been treated
as censored data. By adding x〈d〉l4 as one of time-dependent
covariate for the liver transplantation, one can test the sig-
nificance of liver transplantation. The covariate for liver
transplantation is taken as a binary variable (codes 0 before
liver transplantation, 1 at liver transplantation) as shown in
Giorgi and Gouvernet [16] and Crowley [37]. Table 6 shows
the three types for the combination of “censored” and “liver
transplantation.” Table 7 shows the values of covariates for
liver-transplanted patient #5.
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Figure 3: Probability of survival over the next six months using the
four models with respect to dead and censored data among all 312
patients.
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Figure 4: Box and whisker plots of probability of survival over the
next six months using GAM with respect to dead data among all 312
patients.
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Table 6: Three types of “censored” and “liver transplantation.”

Dead patient Censored patient Liver-transplanted patient

δ〈d〉l Liver transplant δ〈d〉l Liver transplant δ〈d〉l Liver transplant

0 0 0 0 0 0

. . . . . .

. . . . . .

1 0 0 0 0 1

Table 7: Values of covariates for dead patient #5.

Time
interval l

Midpoint
day a〈9〉l

Age (year) x〈9〉l1
Prothrombin time

(sec) x〈9〉l2

Bilirubin
(mg/dL) x〈9〉l3

Liver
trans-plantation x〈9〉l4

1 99.5 38.11 10.9 3.4 0

2 295.0 38.65 10.7 1.9 0

3 580.0 39.18 10.5 2.5 0

4 933.5 40.21 11.4 5.7 0

5 1276.5 41.11 11.3 5.2 0

6 1480.0 42.09 13.9 19.0 1

Table 8: Test of significance for covariates using model (19).

Covariate P-value

Age <0.0001

Prothrombin time <0.0001

Bilirubin <0.0001

In order to test the significance of “liver transplantation,”
we consider two models:

Model IV: age + s(pro) + s(bili).
Model IV′: age + s(pro) + s(bili) + liver transplantation.

The values of deviance and d.f. are given in Table 8. The
reduction in the value of deviance is 10.657 = 663.65−653.00
on 0.973 d.f. This is significant at the 1% level.

For the purpose of the comparison, the hazard of the
cumulative incidence function (CIF) may be modeled in the
presence of competing risks. The model is based on

γ(t; x) = γ0(t) exp

⎡
⎣

I∑

i=1

βixi

⎤
⎦, (19)

where t is the time of the last observation (not the midpoint
at the time interval l), γ is the hazard of the subdistribution,
and γ0 is the baseline hazard of the subdistribution ([38],
Section 6.2). The P values are summarized in Table 8 to test
the significance for covariates using the model (19). From
Tables 3 and 8, there is little difference between our method
and the CIF.

4. Discussion

In this paper, we introduced the probabilistic interpretation
of GAM and constructed the maximum likelihood principle
of GAM for the analysis of survival data having time-de-
pendent covariates. We proposed the information criterion

Table 9: Deviance and d.f.

Model Deviance d.f.

IV 663.65 1934.57

IV′ 653.00 1934.00

based on the variant v-fold CV when choosing the opti-
mal smoothing parameters in application of GAM. Intro-
ducing the maximum likelihood principle into GAM, the
deviance allows us to test the goodness-of-fit of GAM. The
proposed methods were illustrated by comparing the prob-
ability of survival over the next six months using the Mayo-
updated model, the European new version model, the partial
logistic regression model, and GAM with respect to dead
and censored data among PBC data. We expect that flexible
methods for modeling survival data with time-dependent
covariates using machine learning theory such that support
vector machine will be very useful in this real-world contexts;
see, for example, Hastie et al. [39]. Furthermore, smoothing
spline ANOVA models by Gu [40] will enable us to include
the interactions between the covariates.

We assume that there is only one cause of failure; that
is, the event is allowed to occur only once for each patient.
However, there is increasing interest to apply survival data
sets with multiple events per patient [8, 41]. Wei et al. [42]
analyzed bladder cancer data by modeling marginal distri-
butions of multivariate failure time with proportional haz-
ards models. The model may violate the proportional haz-
ards assumption, even when the overall data set does not
(Table 9). By modifying such as

δ〈d〉l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 : recurrent event for patient #d

occurred at the time-interval l

0 : otherwise.

(20)
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Equation (11) becomes

lnL
(
β
) =

n∑

d=1

ld∑

l=1

{
δ〈d〉ld

lnh〈d〉ld
+
(

1− δ〈d〉ld

)
ln
(

1− h〈d〉ld

)}
.

(21)

Thus, the ideas presented in this paper can be extended to
identification of prognostic factors relative to survival time
in the case that the same event may recur during a follow-up
study, and covariates values change with time.
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