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Abstract: Photocatalytic water splitting into hydrogen is regarded as one of the key solutions to
the deterioration of the global environment and energy. Due to the significantly reduced grain
boundaries, ZnO nanorods facilitate a fast electron transfer through their smooth tunnels and are
well suited as a photocatalyst. However, the photocatalytic hydrogen evolution performance of
pristine ZnO nanorods is still low due to the high recombination rate of photogenerated electron-hole
pairs and the less light absorption. Here, a novel structure about black ZnO nanorods (NRs)/TiO2-X

mesoporous spheres (MSs) heterojunction has been prepared and the photocatalytic hydrogen
evolution performance has been explored. The photocatalytic activity test results showed that
ZnO NRs/TiO2-X MSs exhibited higher catalytic activity than ZnO NRs for hydrogen production.
Compared to the pure ZnO NRs photoanode, the photocurrent of ZnO NRs/TiO2-X MSs heterojunction
photoanode could reach 0.41 mA/cm2 in view of the expanding spectral response region and effective
inhibition of e−/h+ recombination at the same condition. Using a relatively integrated experimental
investigation and mechanism analysis, we scrutinized that after being treated with NaBH4, TiO2 MSs
introduce oxygen vacancies expanding the photocatalytic activity of pure TiO2, and improving
conductivity and charge transport capabilities through coating on ZnO NRs. More importantly,
the results provide a promising approach in the NRs/MSs composite structure serving as photoanodes
for photocatalytic hydrogen production.

Keywords: ZnO NRs/TiO2-X MSs heterojunction; photocatalytic hydrogen production; oxygen vacancies;
efficiency; spectral response region
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1. Introduction

Currently, ZnO nanostructures-based photocatalysts have attracted great attention owing to their
non-toxicity, optical transparency, high photoconversion efficiency, low cost, etc. [1–7]. Due to the
significantly reduced grain boundaries, one-dimensional (1D) nanostructures especially nanorods
facilitate a fast electron transfer through their smooth tunnels [8–10]. Nevertheless, the photocatalytic
H2 evolution performance of pristine ZnO nanorods is still low due to the high recombination rate of
photogenerated e−/h+ pairs and the less light absorption (only in the ultraviolet region accounting
for 3–5% of solar energy) [11–15]. To overcome the above disadvantages, the heterojunction structure
based on ZnO nanorods provides a new insight for suppressing charge recombination and enhancing
light absorption.

Many studies on the coupling of ZnO and TiO2 have shown an improved photocatalytic
performance in dye degradation and hydrogen evolution [16–20]. Although the proper band edge
position of TiO2 relative to ZnO can assist the effective interfacial charge transfer, the fabrication of
the ZnO/TiO2 heterojunction cannot broaden the light absorption range, which is still too narrow
to improve the efficiency of the photocatalyst. Recently, Ti3+ self-doped black TiO2 got supreme
importance in the field of light harvesting, which can be formed from conventional white TiO2 to
regulate the electronic energy band structure of TiO2 with the expansion of its optical response from
ultraviolet light to a visible and infrared region [21–28]. It can be seen from previous reports that
TiO2 mesoporous microspheres have an ultrahigh specific surface area and strong light scattering
ability, which is achieved by combining the advantages of primary nanocrystalline composition and
sub-micron structure [29–32]. However, up to now, the investigation on the photocatalytic performance
of black TiO2-X mesoporous microspheres/ZnO nanorods nanostructure heterojunctions is very rare.

In this research, a novel structure about black TiO2-X mesoporous spheres/ZnO nanorods
heterojunction has been prepared and the photocatalytic hydrogen evolution performance was explored.
The light absorption region of the heterostructure covers the ultraviolet to infrared region nearly
over the entire spectral range and exhibits excellent photocatalytic hydrogen production performance
compared to the pure ZnO and ZnO/TiO2. Additionally, as confirmed from electrochemical, electronic,
and spectroscopy characterizations, the significantly improved hydrogen production performance
is found in the designed ZnO/TiO2-X heterojunction structure, which is rooted from the potential
difference generated on the ZnO-TiO2-X interface and increased light absorption from the reduction
of TiO2. The experimental results of the present work indicate a novel strategy for developing the ZnO
nanostructure-based composite materials with excellent photocatalytic properties.

2. Materials and Methods

2.1. Preparation of ZnO Nanorods (NRs)

The ZnO seed layer was deposited on FTO glass (15 Ω square) by the frequency (RF) magnetron
sputtering system. The FTO substrates were ultrasonically cleaned with acetone solutions, ethanol,
and deionized water in an ultrasound bath for 20 min, respectively. A high-purity ZnO target (99%)
with a 60.0 diameter was used for continuous sputtering at 20 W RF power for 5 min, and the working
pressure was maintained at 1.0 Pa with the flow ratio of oxygen to argon 18 to 42 sccm. Then, the ZnO
seed layer was annealed at 450 ◦C for 60 min in air.

The ZnO nanorods were grown onto the seed substrates by a simple hydrothermal method.
The ZnO seed layer was immersed in a mixed solution containing 30 mL of 0.03 mmol of Zn(NO3)2·6H2O,
0.06 mmol of HTM in the Teflon-lined stainless steel autoclave, and then the autoclave was heated in a
constant temperature electric oven at 90 ◦C for 6 h.

2.2. Preparation of ZnO Nanorods (NRs)/TiO2-x Mesoporous Spheres (MSs) Composites

The TiO2 MSs were synthesized under hydrothermal conditions as previously reported [33].
NaBH4 and TiO2 powders were mixed in an equal ratio, and the mixture was ground for 20 min
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completely. Then, the mixture was heated at 300 ◦C for 60 min under an argon atmosphere. The mixture
was repeatedly filtered and washed with water and ethanol to remove NaBH4. The prepared TiO2-X

MSs (1.0 g) was added to ethanol (80 mL) containing α-terpineol (4.34 mL) and ethyl cellulose (0.5 g)
and stirred vigorously for 1 h, and then the solvent was removed with a rotary evaporator at 10 h to
prepare the TiO2-X paste. The spin coating solution was obtained by repeatedly stirring the slurry
thirty times, and spin-coating on the ZnO nanorods at 3500 rpm for 20 s, followed by sintering at
450 ◦C for 30 min of preparation of the unreduced TiO2 and ZnO composite material followed by the
same pattern.

2.3. Characterizations

The morphology and crystallinity of the obtained material were performed by scanning electron
microscopy (SEM, Carl Zeiss, Merlin Compact, Jena, Germany). The transmission electron microscope
(TEM, FEI, Hillsboro, USA) and high-resolution TEM (HRTEM, FEI, Hillsboro, USA) observations
were performed with a TEI Tecnai G2 F30 (FEI, Hillsboro, USA) microscope operating at 300 KV,
while energy-dispersive X-ray spectroscopy (EDS) and elemental mapping were performed on the
transmission electron microscope. On the spectrometer (ESCALAB 250Xi, Thermo Scientific Escalab,
Waltham, USA), the X-ray photoelectron spectroscopy (XPS) measurement was carried out. The X-ray
power diffraction (XRD) analysis was characterized by an X-ray diffractometer (Empyrean, Panalytical,
Malvern, UK) equipped with Cu Kα radiation (λ = 1.5418 Å). Raman spectra were obtained using a
532.8 nm excitation laser on the LabRAM HR EV0 of Horiba Jobin Yvon, Langjoux, France. The optical
response of all the samples was obtained by photoluminescence (PL) measurements excited by a
325 nm He-Cd laser. At room temperature, the ultraviolet visible diffuse reflectance spectra (DRS) was
recorded on the Shimadzu UV1700-visible spectrophotometer.

2.4. Photoelectrochemical (PEC) Measurements

PEC measurements were conducted on the Metrohm electrochemical workstation (Autolab-PGSTAT302N)
in a three-electrode cell, the obtained sample, platinum foil, and Ag/AgCl electrode as the working,
counter, and reference electrodes, respectively. A 1 M KOH solution was used as an electrolyte without
the additive. A model LS1000-4S-AM1.5G-1000W solar simulator (Solar Light Company, Glenside, PA,
USA) equipped with a metal mesh was employed to give an irradiance of 100 mW/cm2. Under an
AM 1.5 G light source, linear sweep voltammetry (LSV) measurements were performed with a sweep
rate of 1 mV/s. The photocatalytic H2 evolution experiments were performed in the photocatalytic
system evaluation device (AuLight, Beijing, CEL-SPH2N) equipped with an online gas chromatograph
(SP7800, TCD, 5 molecular sieve, Beijing Keruida Limited), and nitrogen as the carrier gas. AM 1.5
was used as the light source to trigger the photocatalytic reaction. Under stirring conditions, a certain
0.05 g catalyst was dispersed into a mixed solution composed of 100-mL methanol aqueous solution
(15 vol%) and methanol as a sacrificial reagent. A certain amount of H2PtC16 solution was added
dropwise to load 1 wt% Pt on the surface of the catalyst by in situ photo deposition. A gaseous sample
was collected and analyzed every hour.

3. Results

Morphological and structural characterizations of the pure ZnO NRs and the ZnO-NRs/TiO2

MSs composite samples are presented in Figure 1. From the top view images of Figure 1a, it can be
found that the ZnO nanorods grow upward on the FTO substrate with a high diffracted intensity
and each ZnO nanorod has a typical hexagonal structure cross section. The average diameter of ZnO
nanorods is about 130 nm, as shown in Figure 1b. Compared with pure ZnO nanorods, no obvious
morphological changes are observed on the surface of the nanorods coated with TiO2 or TiO2-X.
Obviously, TiO2 and TiO2-X MSs are observed on the surface of the ZnO nanorods in Figure 1c–f. It is
proven that the TiO2 and TiO2-X coating solutions deposit MSs on the NRs surface after the spin-coating
process. The detailed nanostructures of ZnO-TiO2-X are further performed by transmission electron
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microscope (TEM) and high-resolution TEM (HRTEM). It can be clearly observed from Figure 2a that
the TiO2-X MSs adhere on the surface of the coarsened ZnO NRs and the TiO2-X MSs/ZnO NRs still
keep a three-dimensional morphology. The clear lattice fringes in the HRTEM image indicate that the
formation of a ZnO-TiO2-X heterostructure is well-crystallized. Two different types of lattice images
are obtained with d spaces of 0.350 and 0.260 nm, corresponding to the (101) plane of typical anatase
TiO2 and the (002) plane of hexagonal ZnO, respectively [34]. The hybrid photocatalyst has clear
and continuous stripes, indicating that there is an intense mutual attraction between ZnO NRs and
TiO2-X due to suitable lattice parameters [35]. Furthermore, this also proves that the reduced TiO2

nanocrystals are still highly crystalline, and the Ti3+ introduced by the reduction does not make the
crystal lattice disordered. The corresponding EDS elemental mapping images of the ZnO NRs coated
with TiO2-X MSs are presented in Figure S1 (Supplementary Materials) (ESI†).
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Figure 2. Structural characterizations of ZnO NRs/TiO2-X MSs: (a) TEM image of ZnO NRs/TiO2-X MSs;
(b) HRTEM image of ZnO NRs/TiO2-X MSs.

Figure 3 shows the X-ray diffraction (XRD) patterns of the fabricated ZnO, ZnO/TiO2, ZnO/TiO2-X,
and FTO substrate for comparison. The XRD pattern of pure ZnO nanorods displays diffraction peaks
around 31.77, 34.42, 36.25, and 47.54◦, which could be well indexed to the characteristic peaks (100),
(002), (101), and (102) planes of the hexagonal ZnO with a wurtzite structure (JCPDS file no. 36-1451).
In addition, the main peaks with a higher intensity depict the ZnO nanorods epitaxially with a very
uniform orientation grown along the C-axis on the ZnO seed layer. After spin coating TiO2 and TiO2-X,
the ZnO NRs also exhibit a strong wurtzite structure diffraction, but a close observation of the XRD
pattern in the range of 20 to 30◦ reveals a broad peak centered at 25.2◦ (inset of Figure 3). The peaks can
be assigned to the (101) of the TiO2 anatase phase (JCPDS 21-1272). Raman is also powerful to identify
the structural changes, including determination of the presence of heterojunction surface and oxygen
vacancies. Figure 4 shows the Raman spectra of the samples, where pure ZnO Raman modes that are
located at 98.32 and 435.72 cm−1 correspond to the two typical vibration modes E2 (low) and E2 (high)
of the hexagonal wurtzite structure zinc oxide crystals, respectively [36]. Obviously, four more peaks
are observed in the Raman spectrum of the ZnO nanorods coated with TiO2. The peaks appearing
at 398.94 cm−1, 518.31 cm−1 and 144.30 cm−1, 637.54 cm−1 are assigned respectively to the B1g mode,
a doublet of the A1g and B1g modes and Eg mode of anatase phase TiO2, which indicates that the
ZnO nanorods are coated with TiO2 and TiO2-X successfully [37–39]. This result is in agreement with
those from the XRD and SEM measurements. Nevertheless, the strongest Eg mode area at 144.30
amplified by TiO2 shows a slight shift accompanied by a larger linewidth by the NaBH4 reduction
treatment. This proves that local lattice defects related to surface oxygen vacancies will be introduced
after the reduction, and a blue shift will be caused due to phonon confinement or non-stoichiometry.
In addition, the broadening of the peak position is also related to the decrease of crystal quality [40–42].
To further perform the surface composition and chemical state of ZnO/TiO2-X, the XPS results are
shown in Figure S3 (Supplementary Materials), ESI†. Full elemental X-ray photo electron spectroscopy
proves the successful composite of ZnO with TiO2-X. A detailed analysis of the inner Ti 2p orbital
electrons shows the Ti4+ 2p3/2 and 2p1/2 spin-orbit splitting peaks at 457.89 and 463.59 eV, respectively.
The additional small peaks in the black TiO2 at 457.34 and 463.04 eV can be attributed to the 2p1/2 and
2p3/2 peaks of Ti3+.
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Figure 5 shows the absorption spectrum of the ZnO NRs, ZnO NRs/TiO2 MSs, and ZnO NRs/TiO2-X

MSs heterojunction thin films grown on glass. All samples show a strong absorption of ultraviolet
light, which can be attributed to the electronic transition from the valence band to the conduction band.
It is indicated that the absorption onset of the ZnO/TiO2-X is at ~400 nm, which has an obvious red
shift compared with the ZnO and ZnO/TiO2 composite material, which may be correlated with the
amount of Ti3+ in the shell. The optical band gaps of the samples can be determined according to
the Kubelka-Munk equation: (αhν) n = K (hν − Eg ), where “hν” and “α” are photonic energy and
the optical absorption coefficient, respectively. The bandgap of the ZnO NRs, ZnO NRs/TiO2 MSs,
and ZnO NRs/TiO2-X MSs can be assessed as ~3.21, ~3.10, ~3.02 eV, respectively by measuring the
linear extrapolation to the hν-axis (Figure S4 (Supplementary Materials), ESI†) [43]. More importantly,
the absorption of the sample combined with the TiO2-X mesoporous sphere is markedly increased at a
400–600 nm region, compared with pure ZnO the enhancement of sunlight harvesting can be attributed
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to the lattice disorder introduced in the formation of black TiO2 (the generation of mid gap energy
levels within the band gap) [44].
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To judge the quality of ZnO crystals and perform the mechanism of photoinduced charge carriers
and interfacial charge transfer over the ZnO/TiO2-X heterostructures, the room temperature PL spectra
of the three synthesized samples are shown in Figure 6. The pure ZnO nanorods show a strong and
sharp ultraviolet luminescence peak at ~372 nm, originating from the near band gap excitonic emission,
and the other is located at ~738 nm, which is attributed to the second-order diffraction peak emitted at
the ultraviolet band [45]. No obvious defect emission is seen in the yellow-green wavelength band
of visible light, indicating that the ZnO nanorods prepared in this way have good crystallinity and
fewer surface defects [46,47]. After coating with TiO2, the emission intensity is significantly reduced,
which indicated that the composite materials reduce the recombination probability of photogenerated
e−/h+ pair. It is worth noting that the black TiO2-X mesoporous spheres/ZnO nanorods heterojunction
has the lowest electron-hole recombination rate. Therefore, the unique heterostructure photocatalyst
of the ZnO/TiO2-X has a positive effect on the effective separation of photogenerated carriers during
the photocatalytic reactions charge carriers. This considering the fact that the number of oxygen
vacancies in titanium dioxide is too low to be disclosed, it can be easily explained that the significantly
defect emission peak by oxygen vacancies in the PL was not observed. It is worth noting that the
emission peak of ZnO nanorods shifted to the right after coating with TiO2-X. This behavior may
be due to the quantum confinement stark effect [48–50]. Therefore, the type II band structure of
ZnO/TiO2-X promotes the excited carriers, which confines the electron-hole recombination, and results
in the emission intensity decreases. From the electron dynamics point of view, the observed lifetime
shortenings obviously indicate an improvement in the charge separation for the ZnO/TiO2-X, leading to
an increase in photocatalytic performance (as below).

To perform the effect of ZnO/TiO2-X heterojunction on photoelectrochemical properties, the linear
sweep voltammetry (LSV) behavior of these samples is recorded under a simulated AM 1.5 sunlight
illumination (Figure 7a). The photocurrent starting potential of ZnO/TiO2-X is −0.637 vs. Ag/AgCl,
which shows a slight shift compared with −0.618 vs. Ag/AgCl of ZnO/TiO2 and the fastest growth of
anodic current at a higher applied voltage. It is probably related to the best electron transportation
and improved charge transfer compared to the pure ZnO electrode and ZnO/TiO2. In addition, a set
of linear scans are collected in the dark, as shown in Figure S5 (Supplementary Materials), ESI†.
All three photoelectrodes show a very low dark current. The transient photocurrent response can
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also predict the photocatalytic activity of the electrode. The transient photocurrent response analysis
is employed under illumination with several 20 s light on/off cycles at 0 vs. Ag/AgCl in Figure 7b.
Transient photocurrent response experiments are explored to prove the enhancement in separation
and transport efficiency of charge carriers in ZnO/TiO2-X nanostructures. It can be observed that the
photocurrent signal can be repeatedly switched from the “on” state to the “off” state by periodically
turning the light source on and off for all electrodes, which shows that all electrodes have a good
stability. It is worth noting that after coating with TiO2-x the photocurrent has been significantly
enhanced compared with pure ZnO nanorods. Simultaneously, the photocurrent induced by the
simulated solar light irradiation of ZnO/TiO2-X (0.41 mA/cm2) at 0 vs. Ag/AgCl, is about eight times
larger than that of ZnO (0.05 mA/cm2). The pure ZnO exhibited a much lower photocurrent than
ZnO/TiO2-X, which may be attributed to the high recombination rate of photo-induced charges and
weak light absorption. Under light, the narrow band gap of TiO2-X can capture low-energy photons.
The narrow band gap of TiO2-X can increase the light absorption rate and the internal electrostatic field
in the ZnO/TiO2-X junction causes the recombination rate of photogenerated e−/h+ to decrease.

Using methanol as the electron donor and Pt as the co-catalyst, the photocatalytic hydrogen
evolution experiment is carried out under AM 1.5. Figure 8 shows the results of hydrogen evolution
experiments of ZnO and ZnO/TiO2-X materials. After 5 h of xenon lamp irradiation, ZnO/TiO2-X

nanocomposites exhibited significant photocatalytic activities towards H2 production performance,
and its hydrogen evolution amount reaches 243.4 µmol·g−1 better than the previous reports [51,52].
The addition of TiO2-X has a significant effect on the photocatalytic activity of ZnO, indicating that the
TiO2-X hollow structures could promote more effective photons absorption and prolong the lifetime of
the photo-induced electrons to a certain extent.
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As revealed in the above experimental results of ZnO/TiO2-X, the plausible photocatalytic
mechanism is proposed for the improved hydrogen production activity, as shown in Figure 9. Since the
valence bands (VB) positions of TiO2-X are lower than that of ZnO before TiO2-X is contacted with ZnO,
and the conduction band (CB) positions of pure ZnO are higher than that of TiO2-X. For this type-II
structure in our work, under the simulated solar light irradiation, electrons accumulate in the CB of
TiO2-X and the holes are transferred from TiO2 to ZnO (in VB), respectively. Moreover, black TiO2-X

nanostructures with oxygen vacancies enhance light absorption under full sunlight. On the other
hand, oxygen vacancies caused by the reduction can be considered as electron donors of TiO2-X,
which can further effectively separate and transport light-excited electron-hole pairs. This proper band
alignment can be applied to separate the active photogenerated electrons and holes, thus increasing
the photocatalytic H2 rate.
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4. Conclusions

In summary, a novel structure on black TiO2-X mesoporous spheres/ZnO nanorods heterojunction
has been prepared and the photocatalytic hydrogen evolution performance has been explored.
The morphology, composition, and crystallinity test results confirmed the formation of a clear
hybrid structure on the FTO substrate. The properties of the ZnO NRs/TiO2-X MSs hetero-junction
and the photocatalytic performance have been carefully performed through various experimental
methods. The photocurrent and hydrogen production performance of ZnO NRs/TiO2-X MSs have
been significantly enhanced compared with pure ZnO NRs. The solar-driven hydrogen evolution rate
of ZnO NRs/TiO2-X MSs is several times higher than that of ZnO. All these suggest that these novel
ZnO NRs/TiO2-X MSs are prospective, next-generation photocatalytic materials of low-cost, large area,
and energy-efficiency for practical applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/11/2096/s1,
Figure S1: EDS elemental mapping images of the ZnO NRs/TiO2-X MCs; Figure S2: Cross-section of pure ZnO
nanorods; Figure S3: XPS survey spectrum of the ZnO/TiO2-X. Inset: exact XPS analysis of the inner Ti 2p
orbital electrons(peak area Ti3+/Ti4+ = 0.0758); Figure S4: The plot of (ααhνν)1/2 versus the energy of light (hνν);
Figure S5: Linear sweep voltammogram under dark conditions; Figure S6: Temporal H2 evolution evolution of
the ZnO/TiO2.
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