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Often, in follow-up studies, patients experience intermediate events, such as
reinterventions or adverse events, which directly affect the shapes of their
longitudinal profiles. Our work is motivated by two studies in which such inter-
mediate events have been recorded during follow-up. In both studies, we are
interested in the change of the longitudinal evolutions after the occurrence of
the intermediate event and in utilizing this information to improve the accuracy
of dynamic prediction of their risk. To achieve so, we propose a flexible joint
modeling framework for longitudinal and time-to-event data, which includes
features of the intermediate event as time-varying covariates in both the longi-
tudinal and survival submodels. We consider a set of joint models that postulate
different effects of the intermediate event in the longitudinal profile and the risk
of the clinical endpoint, with different formulations for the association struc-
ture while allowing its functional form to change after the occurrence of the
intermediate event. Based on these models, we derive dynamic predictions of
conditional survival probabilities which are adaptive to different scenarios with
respect to the occurrence of the intermediate event. We evaluate the predictive
accuracy of these predictions with a simulation study using the time-dependent
area under the receiver operating characteristic curve and the expected predic-
tion error adjusted to our setting. The results suggest that accounting for the
changes in the longitudinal profiles and the instantaneous risk for the clinical
endpoint is important, and improves the accuracy of the dynamic predictions.
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1 INTRODUCTION

Nowadays, there is great interest in the medical field for predictive tools that facilitate precision medicine. In the context
of follow-up studies, in which patients are monitored with several longitudinally measured parameters and biomarkers,
physicians are interested in utilizing this information for predicting clinical endpoints. In this setting, joint models for
longitudinal and survival outcomes provide a flexible framework to study the association between these outcomes and
derive dynamic individualized predictions.1-3
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The evaluation of the accuracy of these predictions obtained from joint models has gathered a lot of attention lately.4-6

An important observation that has been made is that the accuracy of the derived predictions is influenced by the appropri-
ate modeling of the subject-specific longitudinal profiles. In that regard, often, in follow-up studies, intermediate events
occur in some patients that directly affect the shapes of their longitudinal evolutions. These may include events that are
either directly in the control of the investigators, such as additional reinterventions, or maybe not, such as adverse events
that the patients may experience. While such intermediate events are common, very little work has been done in the
direction of developing predictive tools that account for them and are adaptive to different scenarios with respect to their
occurrence. To our knowledge, only Sène et al7 and Taylor et al8 investigated this topic in the context of prostate cancer
recurrence and radiotherapy as an intermediate event. In their approach, however, they only considered the biomarker
trajectories up to the occurrence of the intermediate event assuming extrapolation of the longitudinal profile thereafter.
That is, changes in the shape of the longitudinal profile due to the occurrence of the intermediate event were not accounted
for. Our goal is to show that utilizing the whole longitudinal trajectory, while capturing the changes to its shape due to
the occurrence of intermediate events, can considerably improve the accuracy of such predictions.

In our work, we are motivated by two studies in which such intermediate events have been recorded during
follow-up. The first study concerns 467 congenital heart-diseased patients who underwent a right ventricular outflow
tract reconstruction with a pulmonary valve and were followed-up echocardiographically thereafter at the Department
of Cardio-Thoracic surgery of Erasmus University Medical Center. Death is considered as the study endpoint, while pul-
monary gradient is the biomarker of interest, which is believed to be related to the risk of death. During follow-up,
65(13.92%) were reoperated and received a pulmonary allograft. In Figure 1, the pulmonary gradient evolutions of four
randomly selected patients, one from each combination between the reoperation and event status, are shown and it can
be seen that when a patient is reoperated the pulmonary gradient drops. The interest in this study lies in the association
between the pulmonary gradient and the risk of death, but the main focus is to study the impact of reoperation on the
risk of death both directly and indirectly (ie, through its association with the pulmonary gradient) in order to develop
predictive tools that can quantify the potential benefit of reoperation for future patients. The second study concerns 9361
subjects who participated in the SPRINT study.9 Subjects with increased cardiovascular risk, systolic blood pressure of
130mm Hg or higher but without diabetes, were randomized to intensive or standard treatment. The composite primary
outcome was myocardial infarction, acute coronary syndromes, stroke, heart failure, or death from cardiovascular causes,
while systolic blood pressure is the biomarker of interest which was repeatedly measured. During follow-up, 3424(36.6%)
experienced serious adverse events (SAEs). In Figure 2, the systolic blood pressure evolutions over time of the subjects
who experienced SAEs and those who did not are depicted along with a loess curve for the average evolution over time

FIGURE 1 Pulmonary gradient profile of four randomly selected patients, one from each of the following categories: not reoperated and
censored, not reoperated and deceased, reoperated and censored, reoperated and deceased. The vertical red dashed lines depict the time of
reoperation. RVOT, right ventricular outflow tract [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 2 Individual evolutions and loess splines curves (solid thick lines) of systolic blood pressure for 80 randomly selected subjects
who experienced a serious adverse event and for 80 randomly selected subjects who did not experience a serious adverse event

for each group. The interest lies in assessing the impact of SAEs both in the systolic blood pressure evolution and the
risk for the event of interest and exploiting it to derive individualized dynamic predictions for future patients with differ-
ent scenarios with respect to the occurrence or not of SAEs. A more detailed description of the data sets is on the online
supplementary material Sections S1.1 and S1.2.

In both studies, physicians are interested in obtaining predictions of the respective clinical endpoints. However, to pro-
vide predictions of adequate accuracy, it will be required to carefully model the subject-specific longitudinal trajectories.
Borrowing ideas from piecewise regression models, we achieve this by explicitly introducing the occurrence of these inter-
mediate events as binary time-varying covariates in the specification of both the longitudinal and survival submodels of
the joint model. The regression coefficient associated with this covariate can then capture changes, due to the occurrence
of the intermediate event, in both the biomarker trajectory and the hazard for the event of interest. Furthermore, we allow
features of the biomarker trajectory, such as the rate of change to differ after the occurrence of the intermediate event.
This allows us to estimate the impact of intermediate events as well as their specific features, which then can be utilized in
deriving dynamic predictions for a future patient under different scenarios, eg, how the risk of a patient changes assuming
different treatment strategies, such as no reintervention, reintervention now, or reintervention at a later time point.

The rest of this paper is structured as follows. Section 2 describes the formulation of the joint model in the presence
of intermediate events. Section 3 presents the individualized dynamic predictions under different scenarios with respect
to the occurrence of intermediate events and measures of predictive accuracy. In Section 4, we present the results of the
analyses of the two motivating studies, while in Section 5, we show the results of a simulation study. Finally, in Section 6,
we close with a discussion.

2 JOINT MODEL FOR LONGITUDINAL AND TIME-TO-EVENT DATA
WITH AN INTERMEDIATE EVENT

Assuming n individuals under study, let n = {Ti, 𝛿i, yi, 𝜌i; i = 1, … ,n} denote the sample from the target population,
where Ti = min(T∗

i ,Ci) denotes the observed event time, which is defined as the minimum value between the true event
time T∗

i and the censoring time Ci, and 𝛿i = I(T∗
i ≤ Ci) the event indicator with I(·) being the indicator function, which

is equal to 1 if T∗
i ≤ Ci and 0 otherwise. Moreover, let 𝜌i denote the time to the intermediate event with a corresponding

indicator Ri(t) = I(t ≥ 𝜌i) at any time t during follow-up, which takes the value 1 if a subject experienced the intermediate
event and 0 otherwise. Furthermore, let ti+ = max(0, ti𝑗−𝜌i; 𝑗 = 1, … ,ni) denote the time relative to the occurrence of the
intermediate event and yi be the vector of size ni × 1 of repeated measurements for the ith subject, with element yij being
the observed value of the longitudinal outcome at time point tij, j = 1, … ,ni. We assume yi to be a contaminated with
measurement error version of the true and unobserved value of the longitudinal outcome at any time t: yi(t) = 𝜼i(t)+ 𝝐i(t)
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with 𝜼i(t) denoting the true value of the longitudinal outcome at time t and measurement error 𝝐i(t) ∼  (0, 𝜎2Ini ). The
true level of the longitudinal outcome is then formulated as

𝜂i(t) =

{
x⊤

i (t)𝜷 + z⊤i (t)bi, 0 < t < 𝜌i

x⊤
i (t)𝜷 + z⊤i (t)bi + x̃⊤

i (t)�̃� + z̃⊤i (t)b̃i, t ≥ 𝜌i,
(1)

where x⊤
i (t) and z⊤i (t) are design vectors for the fixed-effects regression coefficients 𝜷 and the random-effects bi, respec-

tively. Design vectors x̃⊤
i (t) and z̃⊤i (t) include any function of the time-varying covariates Ri(t) and ti+, which describe the

changes of the longitudinal trajectory after the occurrence of the intermediate event. These changes are then captured
by the corresponding fixed-effects regression coefficients �̃� allowing for subject-specific variation via the random-effects
b̃i. The random-effects bi and b̃i are assumed to be normally distributed with mean zero and a q × q variance-covariance
matrix D.

Depending on how the trajectory of the biomarker changes after the occurrence of the intermediate event, the specifi-
cation of x̃⊤

i (t) and z̃⊤i (t) may vary. Let g{Ri(t), ti+} = x̃⊤
i (t)�̃� + z̃⊤i (t)b̃i denote the part of (1), which describes the changes

in the longitudinal profile after the occurrence of the intermediate event. Then, in a setting as the one illustrated in
Figure 1, for the pulmonary gradient data set, where the longitudinal trajectory is characterized by a seemingly linear
evolution before and after the occurrence of the intermediate event, a steep drop at the occurrence of the intermedi-
ate event, and a potential change in the slope after the occurrence of the intermediate event, function g{Ri(t), ti+} could
be specified as Ri(t)(𝛽1 + b̃i1) + ti+(𝛽2 + b̃i2). That is, the steep drop at the occurrence of the intermediate event will be
captured by (𝛽1 + b̃i1) and the change in the slope after the occurrence of the intermediate event will be captured by
(𝛽2 + b̃i2). On the other hand, in the setting of the SPRINT data where the longitudinal profiles show a nonlinear evolu-
tion over time without steep sudden changes, function g{Ri(t), ti+} could be specified as

∑Q
k=0(𝛽k + b̃ik)Bk(ti+,k), where

Bk(ti+,k) denotes the kth basis function of a B-spline with knots k1, … , kQ. In that case, the change in the shape of the
nonlinear longitudinal trajectory after the occurrence of the intermediate event will be captured by

∑Q
k=1(𝛽k + b̃ik) while

there is no need to include Ri(t). Generally, the functional form of g{Ri(t), ti+} may vary, allowing for a broad range of
mixed-effects models that can capture various types of changes in the longitudinal profile after the occurrence of the
intermediate event.

Let i(t, 𝜌i) = [𝜂i{s, 𝜌i(s)}, 0 ≤ s ≤ t] denote the history of the longitudinal outcome up to time t. Note that, in the
definition of the history of the longitudinal outcome, we explicitly indicate that the true underlying value of the longitu-
dinal outcome is also a function of the time to the intermediate event 𝜌i, ie, to highlight that the subject-specific trajectory,
𝜂i(t), differs from the occurrence of the intermediate event onwards. Then, the effects of the longitudinal outcome and
the intermediate event, while adjusting for other covariates, on the risk for an event are quantified by utilizing a relative
risk model of the form

hi{t|i(t, 𝜌i),wi} =
⎧⎪⎨⎪⎩

h0(t) exp
[
𝛾⊤wi + 𝑓t<𝜌i{i (t, 𝜌i) ,bi}⊤𝜶

]
, 0 < t < 𝜌i

h0(t) exp
[
𝛾⊤wi + 𝟏𝜁 + 𝑓t≥𝜌i{i (t, 𝜌i) ,bi}⊤𝜶

]
, t ≥ 𝜌i,

(2)

where h0(t) is the baseline risk function and wi is a vector of baseline covariates with a corresponding vector of regression
coefficients 𝛾 . The effect of the intermediate event on the risk is captured by the regression coefficient 𝜁 , which quanti-
fies the change in risk from the occurrence of the intermediate event onwards. Furthermore, the hazard of an event for
patient i at any time t is associated with the subject-specific trajectory, 𝜂i(t), through 𝑓{(i(t, 𝜌i),bi}, which is a function
of the history of the longitudinal outcome up to time i(t, 𝜌i) and/or the vector of subject-specific effects bi. Function
𝑓(t,𝜌i){(i(t, 𝜌i),bi} determines the association structure between the longitudinal and the time-to-event processes, while
the corresponding vector of regression coefficients𝜶 quantifies the magnitude of the association. Several functional forms
for the specification of the association structure have been used in the literature, such as the current value, current slope,
and the cumulative effect.10 The functional form of the association structure is an important feature of the joint model
formulation, especially with regard to the accuracy of the dynamic predictions.4,11,12 Hence, to allow for more flexibil-
ity, we explicitly allow for the functional form of the association structure to differ before and after the occurrence of the
intermediate event. In general, any functional form can be used for 𝑓t≥𝜌i{i(t, 𝜌i),bi} and 𝑓t<𝜌i{i(t, 𝜌i),bi} including, of
course, the case where the association structure remains the same and 𝑓t≥𝜌i{i(t, 𝜌i),bi} = 𝑓t<𝜌i{i(t, 𝜌i),bi}.
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The estimation of the parameters of the proposed joint model is achieved under the Bayesian framework using Markov
chain Monte Carlo algorithms. For more details regarding Bayesian estimation of joint models, the reader may refer to
other works.13-15

3 INDIVIDUALIZED DYNAMIC PREDICTIONS WITH TIME-VARYING
INTERMEDIATE EVENTS

3.1 Dynamic predictions
Based on the joint model fitted in the sample n = {Ti, 𝛿i, yi, 𝜌i; i = 1, … ,n} from the target population, dynamic pre-
dictions for a new subject j from the same population can be derived up to a future time of interest u > t given his/her
biomarker history 𝑗(t) = [𝜂𝑗{s,R𝑗(s)}, 0 ≤ s ≤ t]. Let 𝑗(t) = {𝑦𝑗(t𝑗l); 0 ≤ t𝑗l ≤ t, l = 1, … ,n𝑗} denote the history of
observed biomarker values taken up to time t for patient j, and then under the Bayesian joint model framework, these
predictions can be estimated using the corresponding posterior predictive distributions, namely,

𝜋𝑗 (u|t) = Pr
{

T∗
𝑗 ≥ u|T∗

𝑗 > t,𝑗(t),𝜽
}

= ∫
S𝑗

{
u|𝑗(u,b𝑗),𝜽

}
S𝑗{t|𝑗(t,b𝑗),𝜽}

p
{

b𝑗|T∗
𝑗 > t,𝑗(t),𝜽

}
db𝑗

= ∫ exp
[
−∫

u

t
h𝑗{s|𝑗(u,b𝑗)}ds

]
p
{

b𝑗|T∗
𝑗 > t,𝑗(t),𝜽

}
db𝑗 , t ≤ s ≤ u.

(3)

Note that, in Equation (3) and for the remainder of the text, covariates wj and xj are suppressed from notation for sim-
plicity and without loss of generality. Expressing the fraction term in (3) as exp{− ∫ u

t hi(s)ds}, t ≤ s ≤ u has two main
advantages. First, it reduces the computational time required, since the denominator part S𝑗{t|𝑗(t,b𝑗),𝜽} does not need
to be computed anymore. Second, it improves the precision of numerical integration. The latter benefit is due to the fact
that, by re-expressing the fraction term in (3) as such, an adaptive Gauss-Kronrod scheme can be deployed for the numer-
ical computation of smaller regions of the target interval. This improves the precision of Gaussian quadrature since the
quadrature points are spent for smaller regions of the interval.

Incorporating the time-varying covariate Ri(t) in both the longitudinal and relative risk submodels of the joint model
allows us to evaluate how the occurrence of the intermediate event of interest at a future time point will influence
the individualized risk predictions, for subjects who have not experienced the intermediate event by time t. The main
difference of our approach when compared with the approach of Sène et al7 is that we assume that both the instanta-
neous risk of the primary endpoint and the longitudinal profile change after the occurrence of the intermediate event,
whereas they assumed an extrapolated longitudinal profile instead. More specifically, by assuming an extrapolated lon-
gitudinal profile, Sène et al7 were more interested in assessing how predictions change with and without a second
treatment, whereas we are more interested in studying how individualized risk predictions are influenced by interme-
diate events, such as reintervention or adverse events, by explicitly allowing for changes in both the longitudinal and
survival submodels.

That is, different scenarios regarding the time of the intermediate event may lead to changes in the risk captured
via different individual dynamic predictions accordingly. More specifically, for a future time of interest u > t different
assumptions can be made. (1) The patient experiences an intermediate event immediately 𝜌i = t or at a time point within
the time interval of prediction t ≤ 𝜌i ≤ u. (2) The patient does not experience an intermediate event within the time
interval of prediction 𝜌i > u. The individualized dynamic predictions in (4) are then further dependent on the scenario
of choice

𝜋𝑗(u|t, 𝜌𝑗) = ⎧⎪⎨⎪⎩
∫ exp

{
− ∫ u

t h𝑗(s|b𝑗 , 𝜌𝑗 ≤ u)ds
}

p
{

b𝑗|T∗
𝑗
> t,𝑗(t, t ≤ 𝜌𝑗 ≤ u),𝜽

}
db𝑗 , t ≤ 𝜌𝑗 ≤ u

∫ exp
{
− ∫ u

t h𝑗(s|b𝑗 , 𝜌𝑗 > u)ds
}

p
{

b𝑗|T∗
𝑗
> t,𝑗(t, t ≤ u ≤ 𝜌𝑗),𝜽

}
db𝑗 , t ≤ u < 𝜌𝑗.

(4)

In Equation (4), the full conditional posterior density of the random effects can be analytically expressed as {p(T∗
𝑗
>

t|𝜌𝑗 ≤ u, b𝑗)}
∏

l{p(𝑦𝑗|𝜌𝑗 ≤ u, b𝑗)}p(b𝑗|𝜽) for t ≤ 𝜌j ≤ u and as {p(T∗
𝑗
> t|𝜌𝑗 ≤ u, b𝑗)}

∏
l{p(𝑦𝑗|𝜌𝑗 > u, b𝑗)}p(b𝑗|𝜽)
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for t ≤ u < 𝜌j, where
∏

l{p(𝑦𝑗|𝜌𝑗 ≤ u, b𝑗)} and
∏

l{p(𝑦𝑗|𝜌𝑗 > u, b𝑗)} are multivariate Gaussian joint densities for the
longitudinal responses with means x⊤

𝑗
(t)𝜷+R𝑗(t)𝛽R+t+𝛽t+ +z⊤

𝑗
(t)bj+R𝑗(t)b𝑗R+t+b𝑗t+ and x⊤

𝑗
(t)𝜷+z⊤

𝑗
(t)bj, respectively, and

variance-covariance matrix 𝜎2In𝑗
. p(bj|𝜽) is a multivariate Gaussian density function with mean 0 and variance covariance

matrix D.
To estimate 𝜋j(u|t, 𝜌j), a Monte Carlo scheme is employed, for the integration over the random effects, where a large

set of 𝜃m(m = 1, … ,M) and bm
𝑗
(m = 1, … ,M) are sampled from their posterior distributions and subsequently used to

compute 𝜋m
𝑗
(u|t, 𝜌𝑗). The median value of 𝜋m

𝑗
(u|t, 𝜌𝑗) is the point estimate and the 2.5% and 97.5% percentiles give a 95%

credible interval.

3.2 Evaluation of predictive performance
To assess the performance of the individualized dynamic predictions described in the previous section, we will work
under a similar framework as the one presented in the work of Rizopoulos et al.4 More specifically, we will use the
time-dependent area under the receiver operating characteristic curve (AUC) and the expected prediction error (PE)
adapted for the presence of intermediate events.

Under the framework presented in Sections 2 and 3.1, a rule can be defined using the individualized dynamic predic-
tions 𝜋j(u = t + Δt|t) while utilizing the available longitudinal measurements up to t, 𝑗(t). More specifically, a subject j
can be termed as either to experience the event 𝜋j(u = t+Δt|t) ≤ c or not 𝜋j(u = t+Δt|t) > c within a clinically relevant
time interval (t,Δt], with c ∈ [0, 1]. That is, for a pair of subjects which is randomly chosen {i, j} for both of which the
measurements up to t are provided, the AUC, which is calculated for varying values of c, is a measure of the discriminative
capability of the assumed model and is given by

AUC(t,Δt) = Pr
[
𝜋i(t + Δt|t) < 𝜋𝑗(t + Δt|t)| {T∗

i ∈ (t, t + Δt]
}
∩
{

T∗
𝑗 > t + Δt

}]
, (5)

which intuitively means that we expect the assumed model to give higher probability of surviving longer than the time
interval of interest (t + Δt] to the subject who did not experience the event (in this case, subject j).

However, in the presence of intermediate events, the dynamic predictions change depending on whether a subject
experienced the intermediate event or not. That is, the AUC in (5) changes to

AUC(t,Δt) =
⎧⎪⎨⎪⎩

Pr
[
𝜋i(t + Δt|t, 𝜌i > t) < 𝜋𝑗(t + Δt|t, 𝜌i > t)| {T∗

i ∈ (t, t + Δt]
}
∩
{

T∗
𝑗
> t + Δt

}]
, 0 < t < 𝜌i, 𝜌𝑗

Pr
[
𝜋i (t + Δt|t, 𝜌i ≤ t) < 𝜋𝑗 (t + Δt|t, 𝜌i ≤ t) | {T∗

i ∈ (t, t + Δt]
}
∩
{

T∗
𝑗
> t + Δt

}]
, t ≥ 𝜌i, 𝜌𝑗 .

Estimation of AUC(t,Δt) is based in counting the concordant pairs of subjects by appropriately distinguishing between
the comparable and the noncomparable (due to censoring) pairs of subjects at time t. More specifically, the following
decomposition is used:

̂AUC(t,Δt) = ̂AUC1(t,Δt) + ̂AUC2(t,Δt) + ̂AUC3(t,Δt) + ̂AUC4(t,Δt).

Term ̂AUC1(t,Δt) refers to the pairs of subjects who are comparable

Ω(1)
i𝑗 (t) =

⎧⎪⎨⎪⎩
[{Ti ∈ (t, t + Δt]} ∩ {𝛿i = 1} ∩ {0 < t < 𝜌i}] ∩

[
{T𝑗 > t + Δt} ∩ {0 < t < 𝜌𝑗}

]
, 0 < t < 𝜌i, 𝜌𝑗

[{Ti ∈ (t, t + Δt]} ∩ {𝛿i = 1} ∩ {t ≥ 𝜌i}] ∩
[
{T𝑗 > t + Δt} ∩ {t ≥ 𝜌𝑗}

]
, t ≥ 𝜌i, 𝜌𝑗 ,

where i, j = 1, … ,n with i ≠ j. We can then estimate and compare the survival probabilities 𝜋i(t + Δt|t, t ≥ 𝜌i) and
𝜋j(t + Δt|t, t ≥ 𝜌j) for subjects i and j who did not experience the intermediate event and 𝜋i(t + Δt|t, 0 < t < 𝜌i) and
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𝜋j(t + Δt|t, 0 < t < 𝜌j) for subjects who experienced the intermediate event. Then, ̂AUC1(t,Δt) is the proportion of
concordant subjects out of the set of comparable subjects at time t

̂AUC1 (t,Δt) =

∑
i∈

∑
𝑗≠i∈

I
{
�̂�i (t + Δt|t, t < 𝜌i) < �̂�𝑗(t + Δt|t, t < 𝜌𝑗)

}
× I{Ω(1)

i𝑗 (t)}∑
i∈

∑
𝑗≠i∈

I
{
Ω(1)

i𝑗 (t)
}

+

∑
i∈

∑
𝑗≠i∈

I
{
�̂�i (t + Δt|t, t ≥ 𝜌i) < �̂�𝑗(t + Δt|t, t ≥ 𝜌𝑗)

}
× I{Ω(1)

i𝑗 (t)}∑
i∈

∑
𝑗≠i∈

I
{
Ω(1)

i𝑗 (t)
} ,

where  = {i, 𝑗 ∶ t < 𝜌i; i, 𝑗 = 1, … ,n} and  = {i, 𝑗 ∶ t ≥ 𝜌i; i, 𝑗 = 1, … ,n}. The remaining terms, ̂AUC2(t,Δt),
̂AUC3(t,Δt), and ̂AUC4(t,Δt) refer to the pairs of subjects who due to censoring cannot be compared, namely,

Ω(2)
i𝑗 (t) =

{
[{Ti ∈ (t, t + Δt]} ∩ {𝛿i = 0} ∩ {0 < t < 𝜌i}] ∩

[
{T𝑗 > t + Δt} ∩ {0 < t < 𝜌𝑗}

]
, 0 < t < 𝜌i, 𝜌𝑗

[{Ti ∈ (t, t + Δt]} ∩ {𝛿i = 0} ∩ {t ≥ 𝜌i}] ∩
[
{T𝑗 > t + Δt} ∩ {t ≥ 𝜌𝑗}

]
, t ≥ 𝜌i, 𝜌𝑗 ,

Ω(3)
i𝑗 (t) =

{
[{Ti ∈ (t, t + Δt]} ∩ {𝛿i = 1} ∩ {0 < t < 𝜌i}] ∩

[
{Ti < T𝑗 ≤ t + Δt} ∩ {0 < t < 𝜌𝑗} ∩ {𝛿𝑗 = 0}

]
, 0 < t < 𝜌i, 𝜌𝑗

[{Ti ∈ (t, t + Δt]} ∩ {𝛿i = 1} ∩ {t ≥ 𝜌i}] ∩
[
{Ti < T𝑗 ≤ t + Δt} ∩ {t ≥ 𝜌𝑗} ∩ {𝛿𝑗 = 0}

]
, t ≥ 𝜌i, 𝜌𝑗 ,

Ω(4)
i𝑗 (t) =

{
[{Ti ∈ (t, t + Δt]} ∩ {𝛿i = 0} ∩ {0 < t < 𝜌i}] ∩

[
{Ti < T𝑗 ≤ t + Δt} ∩ {0 < t < 𝜌𝑗} ∩ {𝛿𝑗 = 0}

]
, 0 < t < 𝜌i, 𝜌𝑗

[{Ti ∈ (t, t + Δt]} ∩ {𝛿i = 0} ∩ {t ≥ 𝜌i}] ∩
[
{Ti < T𝑗 ≤ t + Δt} ∩ {t ≥ 𝜌𝑗} ∩ {𝛿𝑗 = 0}

]
, t ≥ 𝜌i, 𝜌𝑗 ,

which contribute to the overall AUC after being appropriately weighted with the probability that they would be
comparable

̂AUCm (t,Δt) =

∑
i∈

∑
𝑗≠i∈

I
{
�̂�i (t + Δt|t, t < 𝜌i) < �̂�𝑗(t + Δt|t, t < 𝜌𝑗)

}
× I

{
Ω(m)

i𝑗 (t)
}
× �̂�

(m)
i𝑗∑

i∈
∑

𝑗≠i∈
I
{
Ω(m)

i𝑗 (t)
}
× ̂
𝜈
(m)
i𝑗

+

∑
i∈

∑
𝑗≠i∈

I
{
�̂�i(t + Δt|t, t ≥ 𝜌i) < �̂�𝑗(t + Δt|t, t ≥ 𝜌𝑗)

}
× I

{
Ω(m)

i𝑗 (t)
}
× �̂�

(m)
i𝑗∑

i∈
∑

𝑗≠i∈
I
{
Ω(m)

i𝑗 (t)
}
× �̂�

(m)
i𝑗

,

with m = 2, 3, 4 and

�̂�
(2)
i𝑗 =

{
1 − �̂�i (t + Δt|Ti, t < 𝜌i) , i ∈ 
1 − �̂�i (t + Δt|Ti, t ≥ 𝜌i) , i ∈ ,

�̂�
(3)
i𝑗 =

{
�̂�𝑗(t + Δt|T𝑗 , t < 𝜌𝑗), 𝑗 ∈ 
�̂�𝑗(t + Δt|T𝑗 , t ≥ 𝜌𝑗), 𝑗 ∈ ,

�̂�
(4)
i𝑗 =

{
{1 − �̂�i(t + Δt|Ti, t < 𝜌i)} × �̂�𝑗(t + Δt|T𝑗 , t < 𝜌𝑗), i, 𝑗 ∈ 
{1 − �̂�i(t + Δt|Ti, t ≥ 𝜌i)} × �̂�𝑗(t + Δt|T𝑗 , t ≥ 𝜌𝑗), i, 𝑗 ∈ .

The expected error of predicting future events can be used to assess the accuracy of individualized dynamic predictions.
Similarly, as for the AUC, to account for the dynamic nature of the longitudinal outcome, we focus our interest in pre-
dicting events that occur at a time point u > t given the information available up to time t, 𝑗(t). Let N𝑗(t) = I(T∗

i > t)
denote the event status of subject j at time t. Using the square loss function, the expected PE is then

PE(u|t) = E
[
{N𝑗(u) − 𝜋𝑗(u|t)}2] , (6)
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where the expectation is taken with respect to the distribution of the event times. Adapting the above to the framework
of intermediate events, (6) can be re-expressed as

PE(u|t) = {
E
[
{N𝑗(u) − 𝜋𝑗(u|t, 𝜌i > t)}2] , 0 < t < 𝜌i

E
[
{N𝑗(u) − 𝜋𝑗(u|t, 𝜌i ≤ t)}2] , t ≥ 𝜌i,

where, for each case, the corresponding individualized dynamic predictions showed in (4) are used. The estimate of
PE(u|t) as proposed by Henderson et al16 and adjusted for the presence of intermediate events is given by

P̂E (u|t, 𝜌i) = {n (t, t < 𝜌i)}−1
∑

i∈,Ti≥t
I (Ti ≥ u) {1 − �̂�i (u|t, t < 𝜌i)}2 + 𝛿iI (Ti < u) {0 − �̂�i (u|t, t < 𝜌i)}2

+ (1 − 𝛿i) I (Ti < u)
[
�̂�i (u|Ti, t < 𝜌i) {1 − �̂�i (u|t, t < 𝜌i)}2{1 − �̂�i (u|Ti, t < 𝜌i)}

× {0 − �̂�i (u|t, t < 𝜌i)}2] + {n (t, t ≥ 𝜌i)}−1
∑

i∈,Ti≥t
I (Ti ≥ u) {1 − �̂�i (u|t, t ≥ 𝜌i)}2

+ 𝛿iI (Ti < u) {0 − �̂�i (u|t, t ≥ 𝜌i)}2 (1 − 𝛿i) I (Ti < u)
[
�̂�i (u|Ti, t ≥ 𝜌i) {1 − �̂�i (u|t, t ≥ 𝜌i)}2

× {1 − �̂�i (u|Ti, t ≥ 𝜌i)}{0 − �̂�i (u|t, t < 𝜌i)}2] ,
where n(t, t < 𝜌i) and n(t, t ≥ 𝜌i) denote the number of subjects still at risk at time t, who have not/have experienced the
intermediate event, respectively.

4 ANALYSIS OF PULMONARY GRADIENT AND SPRINT TRIAL DATA

4.1 Pulmonary gradient data set
The pulmonary gradient data set was introduced in Section 1. Our goal is to investigate the association between the pul-
monary gradient and the risk of death, how reoperation as an intermediate event changes the evolution of the pulmonary
gradient and the instantaneous risk for death, and then to utilize this information to derive individualized dynamic
predictions under different scenarios with respect to a future time of reoperation.

In Figure 1, the evolutions of pulmonary gradient for reoperated and non reoperated patients are depicted, where it is
shown that for the case of reoperated patients the profiles are characterized by a linear increasing trend, which drops at
the moment of reoperation and then continues to increase, whereas for the case of nonreoperated patients, the profiles
show a linear increasing trend. Therefore, for this outcome, we assumed a linear mixed-effects submodel including a
linear effect of time, a drop at the moment of reoperation, and a change in slope after the occurrence of reoperation in
both the fixed-effects parts and random-effects parts of the model while correcting for baseline differences in age and sex.
A preliminary analysis suggested that assuming nonlinear effects of time did not improve the fit of the model to the data.
Hence, we used the following specification for the mixed-effects model:

PGi(t) =
⎧⎪⎨⎪⎩
(𝛽0 + bi0) + (𝛽1 + bi1) × ti + 𝛽4Agei + 𝛽5Sexi + 𝜖i(t), 0 < t < 𝜌i

(𝛽0 + bi0) + (𝛽1 + bi1) × ti + (𝛽2 + b̃i2) × Ri(t) + (𝛽3 + b̃i3) × ti+ + 𝛽4Agei + 𝛽5Sexi + 𝜖i(t), t ≥ 𝜌i,

where PGi(t) are the measurements of pulmonary gradient, Ri(t) is a binary time-dependent indicator of reoperation, and
ti+ = max(0, ti𝑗 − 𝜌i𝑗 ; 𝑗 = 1, … ,ni) is the time relative to reoperation.

To investigate the association between the pulmonary gradient and the risk of death, we postulated relative risk sub-
models with different parametrizations for the pulmonary gradient. The baseline hazard was expressed as a B-splines
function. We also corrected for age and sex and assumed reoperation to have a direct effect on the hazard. Based on
a preliminary analysis, we assessed various formulations for the association structure. However, only functional forms
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Est. 95% CI
𝛽0 23.41 (20.677; 26.068)
𝛽1 0.99 (0.797; 1.178)
𝛽2 -12.83 (-18.735; -6.647)
𝛽3 -0.02 (-0.994; 1.198)
𝛽4 -0.13 (-0.226; -0.033)
𝛽5 -4.01 (-6.671; -1.306)
𝜎 10.52 (10.262; 10.8)

TABLE 1 Estimated coefficients and 95% credibility intervals for the parameters of the longitudinal
submodel fitted to the pulmonary gradient data set

Value Value + Slope Slope
HR 95% CI HR 95% CI HR 95% CI

𝛾1 1.05 (1.03; 1.078) 1.06 (1.03; 1.083) 1.06 (1.03; 1.08)
𝛾2 0.51 (0.223; 1.073) 0.52 (0.235; 1.099) 0.51 (0.25; 1.061)
𝜁 0.34 (0.056; 1.399) 0.32 (0.042; 1.406) 0.31 (0.042; 1.255)
𝛼1 1.01 (0.992; 1.031) 1.01 (0.983; 1.032) 1.32 (0.783; 1.919)
𝛼2 1.17 (0.624; 1.987)

TABLE 2 Estimated hazard ratios and 95% credibility
intervals for the parameters of the survival submodels based
on the three joint models fitted to the pulmonary gradient
data set. Age at baseline is measured in years; 𝛼1 and 𝛼2 are
measured in the units of the pulmonary gradient (mmHg)
when referring to the current value association and in
(mmHg/time) when referring to the current slope association

including the slope of the pulmonary gradient were found to be stronger. Assuming a different functional form after
the occurrence of reoperation did not improve the fit of the model to the data. Therefore, we present the joint mod-
els that include the slope of the pulmonary gradient along with the joint model that assumes an association with
the current value of the pulmonary gradient for the sake of comparison, since it is the most common form of the
association structure

M1 ∶ hi(t) = h0(t) exp{𝛾1Agei + 𝛾2Sexi + 𝜁Ri(t) + 𝛼1𝜂PGi(t)},

M2 ∶ hi(t) = h0(t) exp
{
𝛾1Agei + 𝛾2Sexi + 𝜁Ri(t) + 𝛼1𝜂PGi(t) + 𝛼2

d
dt
𝜂PGi(t)

}
,

M3 ∶ hi(t) = h0(t) exp
{
𝛾1Agei + 𝛾2Sexi + 𝜁Ri(t) + 𝛼2

d
dt
𝜂PGi(t)

}
.

Table 1 summarizes the parameter estimates and the 95% credibility intervals of the longitudinal submodel that was
used for the pulmonary gradient data set. Table 2 summarizes the parameter estimates and the 95% credibility intervals of
the survival submodels based on the three joint models fitted to the pulmonary gradient data set. As shown in Table 2, the
association of the pulmonary gradient with the instantaneous risk of death was weak regardless the functional form of
the association structure. The strongest association in magnitude was found when using the slope parametrization both
before and after the occurrence of the intermediate event.

Despite the weak magnitude of the association, reoperation was found to have a strong effect on the longitudinal
evolution of pulmonary gradient. The fitted joint models can be used to show how individualized dynamic predictions
can be derived for a new subject, under different scenarios with respect to the timing of reoperation in the future.
For this illustration, we will use model M3 since the slope parametrization was found to have a stronger effect on the
instantaneous risk of death. In Figure 3, the individual prediction of survival for a subject with seven measurements of
pulmonary gradient, so far, is shown under the assumptions of no reoperation in the future versus reoperation immedi-
ately and after four, years respectively. As shown in Figure 3, reoperation improves the survival probability for the new
subject regardless its timing. When the reoperation is not assumed to be immediate, the survival curves overlap up to
the point of reoperation and then separate, depicting the improvement on the survival probability for this subject due
to reoperation.

4.2 SPRINT data set
The SPRINT data set was also introduced in Section 1. Our goal is to investigate how SAEs during follow-up change the
evolution of the systolic blood pressure and the instantaneous risk for the composite endpoint, and then to utilize this
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FIGURE 3 Survival probabilities for a new subject under different scenarios with respect to the timing of reoperation. The vertical gray
dashed line depicts the time of reoperation [Colour figure can be viewed at wileyonlinelibrary.com]

information to derive individualized dynamic predictions under different scenarios with respect to the occurrence of SAEs
in the future.

In Figure 2, a random sample of the evolutions of systolic blood pressure for patients who experienced and who did
not experience SAEs is depicted. For both sets of patients, the profiles show diverse nonlinear trends, which we assume
to change after the occurrence of SAEs. Therefore, for this outcome, we assumed a nonlinear mixed-effects submodel
using natural cubic splines with three knots for the effect of time, and the effect of time relative to the occurrence of SAEs
in both the fixed-effects parts and random-effects parts of the model while adjusting for differences in treatment. More
specifically, the following specification for the mixed-effects model was used:

SBPi(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝛽0 + bi0) +
(∑3

k=0(𝛽(k+1) + bi(k+1))Bk(t,k)
)
+ 𝛽5Treatmenti +

(∑3
k=0 𝛽(k+6)Bk(t,k)

)
× Treatmenti + 𝜖i(t), 0 < t < 𝜌i

(𝛽0 + bi0) +
(∑3

k=0(𝛽(k+1) + bi(k+1))Bk(t,k)
)
+ 𝛽5Treatmenti +

(∑3
k=0 𝛽(k+6)Bk(t,k)

)
× Treatmenti +

(∑3
k=0(𝛽(k+10) + b̃i(k+10))Bk(t+,k)

)
+
(∑3

k=0 𝛽(k+14)Bk(t+,k)
)

× Treatmenti + 𝜖i(t), t ≥ 𝜌i,

where SBPi(t) are the measurements of systolic blood pressure and ti+ = max(0, ti𝑗 − 𝜌i𝑗 ; 𝑗 = 1, … ,ni) is the time relative
to the occurrence of SAE.

To investigate the association between the systolic blood pressure and the composite endpoint, we postulated relative
risk submodels with different parametrizations for the systolic blood pressure. The baseline hazard was expressed as a
B-splines function. We also corrected for treatment and assumed the occurrence of SAE to have a direct effect on the
hazard. The functional forms we used for the association structure were the current value, slope, area, both the current
value and slope, as well as more elaborate ones assuming that the value, slope, and area all have an effect on the hazard

http://wileyonlinelibrary.com
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and assuming that after the occurrence of the SAE the effect of the current slope on the hazard changes. The joint models
are given in detail as follows:

M4 ∶ hi(t) = h0(t) exp{𝛾1Treatmenti + 𝜁Ri(t) + 𝛼1𝜂SBPi(t)},

M5 ∶ hi(t) = h0(t) exp
{
𝛾1Treatmenti + 𝜁Ri(t) + 𝛼2

d
dt
𝜂SBPi(t)

}
,

M6 ∶ hi(t) = h0(t) exp
{
𝛾1Treatmenti + 𝜁Ri(t) + 𝛼1𝜂SBPi(t) + 𝛼2

d
dt
𝜂SBPi(t)

}
.

M7 ∶ hi(t) = h0(t) exp
{
𝛾1Treatmenti + 𝜁Ri(t) + 𝛼3 ∫

t

0
𝜂SBPi(s)ds

}
.

M8 ∶ hi(t) = h0(t) exp
{
𝛾1Treatmenti + 𝜁Ri(t) + 𝛼1𝜂SBPi(t) + 𝛼2

d
dt
𝜂SBPi(t) + 𝛼3 ∫

t

0
𝜂SBPi(s)ds

}
.

M9 ∶ hi(t) = h0(t) exp
{
𝛾1Treatmenti + 𝜁Ri(t) + 𝛼1𝜂SBPi(t) + 𝛼2

d
dt
𝜂SBPi(t) + 𝛼3Ri(t) ×

d
dt
𝜂SBPi(t)

}
.

Table 3 summarizes the parameter estimates and the 95% credibility intervals of the longitudinal submodel that were
used for the SPRINT data set. Table 4 summarizes the parameter estimates and the 95% credibility intervals of the survival
submodels based on the six joint models fitted to the SPRINT data set. As shown in Table 4, the association of the pul-
monary gradient with the instantaneous risk of composite endpoint was weak in magnitude but significant in the cases
of value and slope association and area association.

Similarly, as for the pulmonary gradient data set, in Figure 4, we illustrate how the individualized subject-specific
predictions for the composite endpoint of interest change under different scenarios for the timing of the occurrence of a
SAE. More specifically, we illustrate the cases of an immediate occurrence of the adverse event and an occurrence after a
year using the joint model that postulates effects of both the current value and current slope of the systolic blood pressure
trajectory on the instantaneous risk of the composite endpoint. In both cases, the occurrence of the SAE worsens the
survival probability considerably.

Finally, as an illustration of the use of the predictive performance measures, as they were presented in Section 3, we
refer the reader to the online Supplementary Material S2 where we present a comparison in terms of the AUC and the PE
for the SPRINT data where the extrapolation method (that is ignoring the longitudinal data observed after the occurrence
of the intermediate event) and the proposed model are compared.

Est. 95% CI
𝛽0 137.95 (137.549; 138.32)
𝛽1 -1.33 (-1.808; -0.851)
𝛽2 -0.40 (-0.873; 0.05)
𝛽3 -8.39 (-9.302; -7.505)
𝛽4 1.01 (0.574; 1.407)
𝛽5 -0.57 (-1.116; 0.021)
𝛽6 -13.45 (-14.125; -12.778)
𝛽7 -11.10 (-11.734; -10.456)
𝛽8 -25.93 (-27.184; -24.583)
𝛽9 -9.51 (-10.094; -8.938)
𝛽10 0.06 (-0.954; 1.088)
𝛽11 -0.06 (-1.282; 1.181)
𝛽12 -1.82 (-3.097; -0.389)
𝛽13 -0.62 (-2.402; 1.268)
𝛽14 1.84 (0.423; 3.333)
𝛽15 0.35 (-1.321; 2.107)
𝛽16 5.06 (2.983; 6.847)
𝛽17 1.48 (-1.028; 3.808)
𝜎 11.22 (11.164; 11.266)

TABLE 3 Estimated coefficients and 95% credibility intervals for the parameters of the
longitudinal submodel fitted to the SPRINT data set
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TABLE 4 Estimated hazard ratios and 95% credibility intervals for the parameters of the joint models fitted to the SPRINT data set. 𝛼1, 𝛼2,
and 𝛼3 are measured in the units of 20 times systolic blood pressure (20mmHg) when referring to the current value association, in
(10mmHg/time) when referring to the current slope association, and in (20mmHg×t) when referring to the area under the curve association

Value Slope Value + Slope Area Value + Slope + Area Value + Slope Int
HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI

𝛾1 0.91 (0.59; 0.859) 0.72 (0.59; 0.859) 0.9 (0.743; 1.093) 0.81 (0.69; 0.97) 0.9 (0.768; 1.054) 0.9 (0.737; 1.116)
𝜁 1.86 (1.592; 2.379) 1.93 (1.592; 2.379) 1.89 (1.536; 2.294) 1.88 (1.567; 2.236) 1.87 (1.649; 2.154) 1.58 (1.203; 2.065)
𝛼1 1.34 (0.940; 1.310) 1.11 (0.940; 1.310) 1.390 (1.166; 1.646) 1.07 (1.000; 1.143) 1.32 (1.173; 1.471) 1.37 (1.118; 1.671)
𝛼2 1.100 (1.012; 1.206) 1.09 (1.049; 1.130) 1.05 (0.964; 1.158)
𝛼3 1.02 (0.985; 1.059) 1.84 (0.985; 2.571)

FIGURE 4 Survival probabilities for a new subject under different scenarios with respect to the occurrence of serious adverse event (SAE).
The vertical gray dashed line depicts the time of SAE [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 Software
The R package JMbayes was extended to appropriately account for the occurrence of intermediate events and deriving
individualized dynamic predictions under different scenarios with respect to the occurrence of the intermediate event.
These changes are already integrated in the package both on CRAN and in the development version on GitHub. How-
ever, since the specification of such models can be very application-specific in terms of special features, which need
to be accounted for due to the occurrence of the intermediate event, the data sets need to be appropriately prepared
before their use with the functions of package JMbayes. The reader may refer to the online Supplementary Mate-
rial Section S3 for a step-by-step tutorial on how to fit joint models with the occurrence of intermediate events and
derive predictions thereafter. Finally, all the analyses presented in Section 4 were performed using R version 3.5.1 and
package JMbayes.

http://wileyonlinelibrary.com
https://github.com/drizopoulos/JMbayes
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5 SIMULATION STUDY

5.1 Design
To evaluate the performance of the proposed models and to compare, in terms of predictive accuracy, the dynamic predic-
tions that account for the whole biomarker trajectory against the cases where extrapolation or a simple time-dependent
Cox model without accounting for the longitudinal data are assumed, we performed a simulation study. The main goal
of the simulation study is to show the benefit in the accuracy of the individualized dynamic predictions when assuming
that the intermediate event changes both the risk for the event of interest and the longitudinal trajectory against the case
of assuming that the intermediate event only changes the risk for the event of interest while the longitudinal trajectory
is extrapolated and the case where the longitudinal data are not taken into account. We assumed 2000 patients and then
randomly selected follow-up visits. Each visit time tij was simulated from a uniform distribution between 0 and 30. We
assumed a total number of 20 measurements per subject. The final number of measurements, however, varies depending
on when a subject experienced the clinical event or was censored. To mimic a realistic situation, the timing of the inter-
mediate event was assumed to depend on the value of the biomarker trajectory. Specifically, if the biomarker exceeded a
specific value, then reintervention took place at the next visit. For the cases that this value was not reached, the patient
was assumed to never have experienced the intermediate event. For simplicity, we assumed a linear mixed-effects model
and a survival submodel without any baseline covariates.

For the continuous longitudinal outcome, we simulated the data from a linear mixed-effects models similar to the model
that we used for the pulmonary gradient data set

𝑦i(t) = 𝜂i(t) + 𝜖i(t) = (𝛽0 + bi0) + (𝛽1 + bi1)ti + (𝛽2 + b̃i2)Ri(t) + (𝛽3 + b̃i3)ti+ + 𝜖i(t),

where 𝜖i(t) ∼  (0, 𝜎2Ini ) and bi = (bi0, bi1, b̃i2, b̃i3)⊤ ∼  (0,D). More specifically, we adopted a linear effect for time, a
“drop” effect that occurs at the time of reoperation and an effect for the change in the slope from the time of reoperation
onwards for both the fixed and the random part. Time t was simulated from a uniform distribution between 0 and 30.
Based on this model for the continuous outcome, we assumed three different scenarios

• Scenario 1:𝛽1 = 20.7, 𝛽2 = 1.6, 𝛽3 = −15.5, 𝛽4 = −0.76,
• Scenario 2:𝛽1 = 20.7, 𝛽2 = 1.6, 𝛽3 = −15.5, 𝛽4 = 0,
• Scenario 3:𝛽1 = 20.7, 𝛽2 = 1.6, 𝛽3 = 0, 𝛽4 = −0.76.

The assumed longitudinal trajectories for each of the three scenarios are depicted in Figure 5.
More specifically, in the first scenario, we assume that the longitudinal profile drops at the occurrence of the interme-

diate, while the slope changes after its occurrence. In the second and third scenarios, the slope does not change after the
occurrence of the intermediate event and the longitudinal profile does not drop, respectively.

For the survival outcome, we assumed a relative risk model of the form

hi(t) = h0(t) exp{𝛾𝟏 + Ri(t)𝜁 + 𝛼1𝜂i(t)},

where 1 is a vector of ones for the intercept term with a corresponding regression coefficient 𝛾 , while the baseline risk
was simulated from a Weibull distribution h0(t) = 𝜉t𝜉−1 with 𝜉 = 20.4. The censoring process was assumed to follow an
exponential distribution with mean equal to 22.6. For the time-dependent Cox model, the following relative risk model
was used instead:

hi(t) = h0(t) exp{𝛾𝟏 + Ri(t)𝜁},

where no association with the longitudinal outcome is assumed.

5.2 Results
Under the settings described in the previous section, 500 data sets were simulated for each of the three scenarios. All the
data sets were split in half to a training and test part with 1000 subjects each. For all the scenarios, to account for the whole
trajectory of the biomarker, the joint model, which consists of the submodels shown in Section 5.1, was fitted to the part
of the simulated data sets that were kept for training. On the other hand, for the extrapolation method, the observations
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FIGURE 5 Assumed average longitudinal evolutions under the three simulation scenarios for subjects who experienced an intermediate
event and for subjects who did not. The vertical red dashed line depicts the occurrence of the intermediate event [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 6 Area under the receiver operating characteristic curves (AUCs) for the individualized dynamic predictions, evaluated using the
testing part of the 500 data sets for two different joint models. (1) Extrapolation: Assuming that the longitudinal profile does not change after
the occurrence of the intermediate event; (2) Whole trajectory (WT): Assuming that the longitudinal profile changes after the occurrence of
the intermediate event

http://wileyonlinelibrary.com


PAPAGEORGIOU ET AL. 5637

after reintervention were omitted from the analysis of the longitudinal outcome and the following mixed-effects model
was fitted to the data up to reintervention time:

𝑦i(t) = 𝜂i(t) + 𝜖i(t) = (𝛽0 + bi0) + (𝛽1 + bi1)ti + 𝜖i(t).

While for the survival process, the same model was used. For the time-dependent Cox model, no longitudinal model was
used and we only accounted for a change in the instantaneous hazard after the occurrence of the intermediate event as
discussed in the previous section.

To assess the performance of the three approaches, we used the models that were fitted on the training data to calculate
the time-dependent AUCs and the PEs based on the test data. Both the time-dependent AUCs and the PEs were calculated
at three different time intervals starting at t = 20, t = 22, and t = 24, respectively, and assuming a clinically relevant
time interval of 2 years, Δt = 2. The time intervals were selected on the basis of when the most events occur in the
simulated data.

In Figures 6 and 7, we present the results of the simulation study depicted by boxplots. Specifically, the boxplots in each
row represent different scenarios, ie, nonzero effects, zero change in slope, and zero “drop” at time of reintervention and
in each column a different time interval for prediction. In all the scenarios and time intervals, both the AUC and PE are
better when assuming that the intermediate event changes both the risk for the event of interest and the longitudinal
trajectory. The simple time-dependent Cox model performs considerably worse than the other approaches. Moreover,
there is a slight increase in the difference between the WT and extrapolation methods for both predictive measures as the
time interval is set at later time points. That is, the more information used, the greater the difference between the two
methods tends to become. Moreover, the relative performance of the two approaches does not differ between the three
scenarios as well as for the different follow-up times. Therefore, the results support the argument that accounting for the
changes in the longitudinal trajectories due to the occurrence of the intermediate event improve the predictive accuracy
when compared to the approach that the longitudinal profile remains unaffected by its occurrence.

FIGURE 7 Prediction errors (PEs) for the individualized dynamic predictions, evaluated using the testing part of the 500 data sets for two
different joint models. (1) Extrapolation: Assuming that the longitudinal profile does not change after the occurrence of the intermediate
event; (2) Whole trajectory (WT): Assuming that the longitudinal profile changes after the occurrence of the intermediate event
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6 DISCUSSION

Using the joint modeling framework, we developed tools for deriving individualized dynamic predictions that are adaptive
to different scenarios regarding intermediate events, such as treatment changes or the occurrence of adverse events. We
proposed a range of joint models for longitudinal and time-to-event data, which can accommodate special features due to
the occurrence of intermediate events in both the longitudinal and survival submodels. That is, by incorporating features,
such as the ones described in (1) and (2), a broad range of flexible joint models is sketched which accounts for the impact
of an intermediate event by allowing for (1) a direct effect of the intermediate event on the risk of the clinical endpoint
through the time-varying binary covariate Ri(t), (2) a direct effect of the intermediate event on the longitudinal trajectory
through g{Ri(t), ti+}, and (3) an indirect effect of the intermediate event on the risk of the clinical endpoint through the
association between the two outcomes, which is defined by 𝑓(t,𝜌i){(i(t, 𝜌i),bi} and is allowed to differ before and after
the intermediate event. All these features allow for great flexibility in the specification of the joint model, which, when
utilized accordingly, can lead to accurate predictions.

In the same line as recent observations with regard to dynamic predictions from joint models, we have seen that the
accuracy of the predictions is influenced by intermediate events occurring during follow-up. Such events will need to be
appropriately modeled as time-varying covariates in both the longitudinal and survival submodels. As illustrated in our
simulation study, doing so, improves the predictive accuracy of the individualized dynamic predictions.

The focus of the applications presented in this paper was to illustrate how joint models can be utilized to provide
individualized dynamic predictions under different scenarios with respect to the occurrence of intermediate events. It
should be noted, however, that in the analysis of the pulmonary gradient data set, presented in Section 4.1, models M1,
M2, and M3 assume that reoperation has a proportional effect on the hazard at any time point. This is a strong assumption
since clinically it would make sense to assume that reoperation increases the hazard shortly after its occurrence before its
beneficial effect takes place. However, model diagnostics based on Schoenfeld residuals did not point to a violation of this
assumption. Since the focus of this application was to illustrate the exploitation of joint models in deriving individualized
dynamic predictions, which are adaptive to different scenarios with respect to the occurrence of reoperation, we did not
further explore the impact of this assumption. We do believe, however, that a more flexible model, such as a joint model
that considers a multistate survival process with reoperation as a potential state would allow for such assumptions to be
incorporated, which sets a potential direction for further research. Furthermore, it should also be noted that potential
interaction effects between time and baseline characteristics such as age and sex were not explored in the modeling of the
pulmonary gradient for parsimony, but they could be added.

It is also essential to discuss to what extent the proposed models can be used to draw inference on potential outcomes
following different scenarios on the future occurrence of intermediate events. It is, therefore, crucial to note that the focus
of this paper was prognostic modeling and the development of a prediction tool that can quantify potential changes in the
outcome under different scenarios concerning the occurrence of future intermediate events. Consequently, the adaptive
individualized prediction tools we developed can be used to answer questions such as “what is the expected change in the
survival probability of a patient if he/she gets reoperated in a year from now given the information available on the patient
so far?”. Such questions should not be confused with inferential statements of causal nature such as “A reoperation on
this patient a year from now will cause his/her risk to change by this quantity.” For such statements to be possible, a set of
essential assumptions including positivity, consistency and exchangeability should be satisfied, similar to the assumptions
that any statistical model must fulfill to be used for causal inference. An informative reference on the topic, specifically
for the case of longitudinal data and time-varying treatments can be found in chapters 19 to 21 in the work of Hernán and
Robins.17

Another interesting point of discussion for such applications is whether the proposed models are susceptible to
time-dependent confounding. Indeed, in the framework of a randomized clinical trial, the target treatment effect would
no longer be protected if a specific selection of patients (eg, severe cases) experienced the intermediate event postran-
domization. This complicates the interpretation of the treatment effect coefficient. Therefore, it should be noted that, in
the applications presented, in this paper, we worked under the assumption that the intermediate event depends only on
previous measurements of the marker and does not carry any further information. Under this assumption, including the
intermediate event in the specification of both the mixed-effect submodel and the relative risk submodel is sufficient and
the process that generates the intermediate event does not have to be explicitly modeled.

The joint model formulation we presented allows to utilize the quantification of the effects the intermediate event
imposes on the risk for the clinical endpoint of interest. As such, it can be utilized to derive individualized dynamic pre-
dictions for new subjects who did not experience the intermediate event and quantify how its occurrence at any future
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time point will influence their risk predictions. Such a predictive tool can provide valuable information to the physi-
cians and assist in their decision-making process for potential treatment changes. Based on such predictions, further
prognostic tools can potentially be developed. For example, in settings where the timing of a future treatment is impor-
tant, having both benefits and disadvantages when applied either too late or too early, such dynamic predictions that
are adaptive to the timing of the intermediate event can become the basis for methodology that can be used to pre-
dict the optimal time for the future treatment. Unfortunately, the applications at hand did not allow for exploring such
a possibility, but this is a clear direction for future research. Moreover, in our paper, we only consider the joint anal-
ysis of one longitudinal and one survival outcome. While the extension of the proposed models to their multivariate
counterparts is straightforward, such multivariate joint models have not been explored in the literature in the context of
intermediate events that may occur during follow-up and alter the course of the disease for the patient. Therefore, indi-
vidualized dynamic predictions based on even more complex joint models, such as with multiple longitudinal biomarkers
or with multistate processes instead of a single time-to-event outcome might lead to improved accuracy depending on
the application.
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