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Abstract
Biomarkers from multiple modalities have been shown to correlate with cognition in Parkin-

son’s disease (PD) and in Alzheimer’s disease (AD). However, the relationships of these

markers with each other, and the use of multiple markers in concert to predict an outcome of

interest, are areas that are much less explored. Our objectives in this study were (1) to eval-

uate relationships among 17 biomarkers previously reported to associate with cognition in

PD or AD and (2) to test performance of a five-biomarker classifier trained to recognize AD

in identifying PD with dementia (PDD). To do this, we evaluated a cross-sectional cohort of

PD patients (n = 75) across a spectrum of cognitive abilities. All PD participants had 17

baseline biomarkers from clinical, genetic, biochemical, and imaging modalities measured,

and correlations among biomarkers were assessed by Spearman’s rho and by hierarchical

clustering. We found that internal correlation among all 17 candidate biomarkers was mod-

est, showing a maximum pairwise correlation coefficient of 0.51. However, a five-marker

subset panel derived from AD (CSF total tau, CSF phosphorylated tau, CSF amyloid beta

42, APOE genotype, and SPARE-AD imaging score) discriminated cognitively normal PD

patients vs. PDD patients with 80% accuracy, when employed in a classifier originally

trained to recognize AD. Thus, an AD-derived biomarker signature may identify PDD

patients with moderately high accuracy, suggesting mechanisms shared with AD in some

PDD patients. Based on five measures readily obtained during life, this AD-derived signa-

ture may prove useful in identifying PDD patients most likely to respond to AD-based cross-

over therapies.
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Introduction
Parkinson disease (PD) is the second most common adult-onset neurodegenerative disease,
affecting an estimated 1 million people in the United States alone [1,2]. PD is pathologically
characterized by the loss of dopaminergic neurons in the substantia nigra of the brain and the
presence of Lewy body inclusions containing alpha-synuclein [3].

In addition to the hallmark motor symptoms of bradykinesia, tremor, and rigidity, most PD
patients develop cognitive impairment (CI), with up to 83% progressing to dementia [4–7]. PD
patients who progress to dementia (PDD) have reduced quality of life and independence [6,8],
which adds to the cost of care [9], and results in additional stress for families and caregivers
[9].

The need to develop and to understand the role of various biomarkers for PD, and for endo-
phenotypes within PD, is increasingly recognized [10–13]. Defined by the National Institutes
of Health Biomarkers Definitions Working Group, a biomarker is “a characteristic that is
objectively measured and evaluated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic intervention” [14]. While common uses
of the term often refer to biochemical or imaging-based measures, in the most generic form,
biomarkers might originate from multiple types of data. For the purposes of this paper, we con-
sidered clinical, genetic, biochemical, and imaging-based biomarkers.

Although the field is still young, and far from consensus, various candidate biomarkers
from these disparate modalities have been reported to associate with cognitive performance in
PD (S1 Table). Clinical correlates of poorer cognition in PD include older age [4], greater
motor severity [15], male sex [16], a motor phenotype characterized by postural instability and
gait disorder (PIGD) [4], increased disease duration [17], and the presence of hallucinations
[18] or depression [15]. From the genetics literature, variation in APOE [19],MAPT [20],
COMT [20], and GBA [21] have been reported to moderate risk for CI in PD. Previously
reported biochemical correlates of cognitive decline in PD include lower levels of cerebrospinal
fluid (CSF) amyloid beta, specifically the disease-implicated form of amyloid beta known as
Aβ42 [22,23], and lower levels of plasma epidermal growth factor (EGF) [24,25], while higher
levels of CSF total tau (t-tau) and phosphorylated tau (p-tau) associate with poorer cognition
in Alzheimer disease (AD) [23]. Finally, many imaging-based measures have been reported to
associate with cognitive performance in PD [26]; as one example, a global pattern of brain atro-
phy known as the Spatial Pattern of Atrophy for Recognition of AD (SPARE-AD) has been
reported to associate with cognitive decline in both AD [27] and PD [28].

It is notable that many of the biochemical and imaging-based biomarkers for cognitive per-
formance in PD are “crossover” biomarkers from AD. No doubt this reflects in part the relative
paucity of available candidate PD biomarkers [29]. In addition, however, neuropathological
data suggest that CI in PD and in AD may in fact share some mechanistic underpinnings. Spe-
cifically, postmortem examinations demonstrate that 29–50% of PDD patients have Aβ plaques
and neurofibrillary tangles characteristic of AD [30–34] concurrent with PD-defining alpha-
synuclein pathology.

While there is an emerging literature on individual PD biomarkers, how biomarkers from
various modalities correlate with each other, and whether they represent the same vs. different
underlying biological processes, is not well understood. In the present study, we cross-section-
ally evaluated a panel of 17 biomarkers spanning multiple modalities in a densely-characterized
cohort of 75 PD patients across a spectrum of cognitive abilities. We sought to understand the
relationship of these 17 biomarkers to each other. Additionally, because 5/17 markers in our
panel have been strongly implicated in AD, we tested the hypothesis that an AD-derived bio-
marker signature might identify PDD as well.
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Methods
Please see S1 Methods for additional details.

Participants
UPenn Udall Cohort. The University of Pennsylvania Institutional Review Board approved

the protocols and consent procedures. Written informed consent was obtained from all partici-
pants in the study. In the case of individuals with limited capacity to consent, consent was obtained
from an authorized representative of the patient. Additional details may be found in S1Methods.

75 patients were prospectively enrolled into the present study from the UPenn subspecialty
movement disorders clinic, provided that they met the UK Brain Bank diagnostic criteria for PD
[35]. These individuals represent the first 75 subjects prospectively enrolled for the Intensive Assess-
ment Cohort of the UPenn Udall Center, which has a planned enrollment of 150 PD patients. All
patients first presented to clinical attention for PD symptoms; however, a subset developed demen-
tia over the course of disease, and these individuals already met criteria for PDD by the time of
enrollment into this study. For each patient, 17 candidate biomarkers (Table 1, S1 Table) were cap-
tured within one year, representing the baseline visit for each patient’s enrollment into the study.

Candidate biomarkers were nominated from the existing literature on cognitive biomarkers
in PD or AD, and they spanned multiple types of data: clinical, genetic, biochemical, and imag-
ing [36,37].

ADNI Cohort. Background information on the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) cohort was recently reviewed [36], and appears in the ADNI database (adni.loni.
usc.edu) and the S1 Methods.

For the current study, CSF Aβ42, CSF t-tau, CSF p-tau, SPARE-AD score, and APOE geno-
type were downloaded from the ADNI website for all cognitively normal (n = 109) and AD
(n = 101) patients with complete information available for all five biomarkers.

Neuropsychological Assessment
TheMattis Dementia Rating Scale-2 (DRS) was used to assess cognitive performance [38]. Age-
adjusted scores were used for all analyses. The 15-item Geriatric Depression Scale was used to
assess presence of depressive symptoms as previously described [39]. The presence and severity of
hallucinations was ascertained by the Thought Disorder item of the Unified PD Rating Scale
(UPDRS) Part I [40]. The Hopkins Verbal Learning Test-Revised (HVLT-R) [41,42] was used as a
second test of memory domain function, as previously described [43]. HVLT-R scores for total
immediate free recall and recognition discrimination [43], standardized from published norms
[42], were analyzed. For those patients for whom severity of dementia prevented completion of the
HVLT-R, a floor score of 20 (T-score of 20 = three standard deviations below the mean) was used.

Classification of PD patients as PD-CN, PD-MCI, or PDD
Cognitive status of our PD cohort, i.e. cognitively normal (PD-CN), mild cognitive impairment
(PD-MCI), or dementia (PDD) was determined by expert clinical consensus at the UPenn
Udall Center as previously described [44]. In brief, data considered for assignment of cognitive
category included treating clinician impression, clinical chart data, psychometric test data, and
measures of function in activities of daily living. Additional details are provided in S1 Methods.

Motor Assessment
Motor severity of PD symptoms was assessed by the UPDRS Part III (UPDRS-III) score [40]
and by the Modified Hoehn and Yahr (MODHY) score [45,46].
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Genetic Testing
Peripheral blood DNAwas genotyped forMAPT, COMT, and APOE variants using real-time alle-
lic discrimination with Applied Biosystem (ABI) TaqMan probes as previously described [19].

GBAmutation analysis was performed as previously described [47] using long-range PCR
followed by sequencing of all 11 GBA exons and intron-exon boundaries.

Additional details are provided in S1 Methods.

Biochemical Testing
CSF Aβ42, t-tau, and p-tau were measured as previously described, using the Innogenetics
(INNOBIA AlzBio3) reagent on the xMAP Luminex platform [23,48].

Plasma EGF was measured as previously described, using a commercially available enzyme-
linked immunosorbent assay (R&D Systems) [25].

Table 1. Comparison of biomarker data among PD-CN, PD-MCI, and PDD patients.

Biomarker Modality Features PD-CN PD-MCI PDD P-value

Clinical Sex 0.347a

Male (%) 35 (74%) 15 (75%) 8 (100%)

Female (%) 12 (26%) 5 (25%) 0 (0%)

Age at Plasma Median in yrs (IQR) 66 (61.5–71.0) 66 (63.0–70.3) 77.5 (71.8–79.0) 0.003b

Disease Duration Median in yrs (IQR) 6.7 (4.7–11.3) 6.9 (3.9–10.9) 10.5 (5.4–14.0) 0.696b

UPDRS III Median (IQR) 19 (13.3–25.0) 23 (18.0–32.5) 34.5 (30.0–41.5) <0.001b

MODHY Median (IQR) 2.0 (2.0–2.5) 2.5 (2.0–3.0) 2.75 (2.0–3.0) 0.009b

GDS Median (IQR) 2.0 (1.0–4.0) 3.0 (2.0–6.0) 3.0 (1.75–3.0) 0.179b

Tremor:PIGD Ratio Median (IQR) 0.8 (0.0–1.5) 0.5 (0.1–1.7) 0 (0–1.4) 0.676b

UPDRS Thought Disorder Median (IQR) 0.0 (0.0–1.0) 1.0 (0.0–1.0) 0.0 (0.0–1.0) 0.51b

Genetic APOE E4 Allele Count 0.534a

0 (%) 33 (70%) 14 (70%) 4 (50%)

1 (%) 14 (30%) 6 (30%) 4 (50%)

2 (%) 0 (0%) 0 (0%) 0 (0%)

MAPT H1/H1 0.592a

No (%) 15 (32%) 5 (25%) 1 (13%)

Yes (%) 32 (68%) 15 (75%) 7 (88%)

GBA Mutant 1a

No (%) 45 (96%) 19 (95%) 8 (100%)

Yes (%) 2 (4%) 1 (5%) 0 (0%)

COMT Met Allele Count 0.774a

0 (%) 14 (30%) 6 (30%) 2 (25%)

1 (%) 21 (45%) 11 (55%) 3 (38%)

2 (%) 12 (26%) 3 (15%) 3 (38%)

Biochemical CSF Aβ42 Median in pg/mL (IQR) 278.0 (232.0–303.7) 253.5 (210.5–281.0) 169.8 (149.4–217.3) 0.014b

CSF t-tau Median in pg/mL (IQR) 40 (33.5–50.0) 44 (35.5–64.3) 57.2 (20.2–97.5) 0.637b

CSF p-tau Median in pg/mL (IQR) 20 (14.0–25) 18 (15.75–28.5) 22.4 (14.8–24.6) 0.718b

Plasma EGF Median in pg/mL (IQR) 17.7 (10.6–52.1) 30 (13.4–76.74) 91 (62.6–196.4) 0.013b

Imaging SPARE-AD Median (IQR) -0.62 (-1.24–0.39) -0.15 (-0.68–0.23) 0.64 (0.39–0.82) 0.011b

a. Fisher-exact test

b. Kruskal-Wallis non-parametric one-way ANOVA

Bold indicates an uncorrected p-value <0.05.

doi:10.1371/journal.pone.0147319.t001
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Additional details of sample collection, measurement, and quality control are provided in
S1 Methods.

Imaging
A SPARE-AD score was assigned for each participant as previously described [28]. In brief, the
SPARE-AD score reflects the overall similarity between pattern of atrophy seen in a particular
individual and a generic pattern reflective of AD.

Statistical Analysis
All statistical analyses were performed in R (http://www.r-project.org). Additional details are
provided in the S1 Methods, and scripts are available in the S1 Scripts.

Multiple imputation. A panel of 17 biomarkers was assessed in all patients for a 98%
complete dataset (1251/1275 data points available). The 24 missing data points were multiply
imputed using the “mi” package in R [49].

Bivariate analyses. Bivariate comparisons of PD-CN vs. PDD for candidate biomarkers
were evaluated by the non-parametric Mann-Whitney U-test, with Bonferroni correction.

Spearman correlation, hierarchical clustering, and logistic regression classifier. Pair-
wise Spearman correlation coefficients were calculated for assessment of internal correlations
among continuous markers and markers with at least 5 categories, comprising 12 candidate
markers. Partial pairwise Spearman correlation coefficients, adjusted for cognition (age-
adjusted DRS score), were similarly calculated.

Patients and biomarkers were hierarchically clustered by Euclidean distance using average
linkage, and heatmaps generated for visualization. Prior to clustering, distributions for bio-
markers were tested for normality (Shapiro-Wilk test); biomarkers that were non-normally dis-
tributed were log-transformed (CSF t-tau, age, disease duration, plasma EGF), then
standardized by setting the mean of each variable to zero with a standard deviation of one.

For classification of AD vs. normal control samples, a five-marker logistic regression classi-
fier was trained on ADNI data and ten-fold cross-validated. The classifier was then evaluated
for performance in identifying PDD patients in the UPenn Udall cohort.

Results

Patient characteristics
Seventy-five PD patients were prospectively enrolled at the UPenn Udall Center. Of these 75
patients, 47 (63%) were classified as PD-CN, 20 (27%) as PD-MCI, and 8 (11%) as PDD
(Table 1, Fig 1A). Objective assessment with the DRS corroborated a range of cognitive perfor-
mance (Fig 1B).

Bivariate cross-sectional analysis of candidate biomarkers
demonstrates an association between cognition and two candidate
biomarkers
We first sought to replicate previously-reported findings [15,23,25,28] of differences between
PD-CN and PDD patients in our current cohort. Of 17 candidate biomarkers, eight
(UPDRS-III, MODHY, depression, CSF Aβ42, CSF t-tau, CSF p-tau, plasma EGF, SPARE-AD)
had been previously shown to associate cross-sectionally (vs. longitudinally) with baseline cog-
nition in either PD or AD [15,23,25,28].

After Bonferroni correction, significant associations were detected between PDD and two
candidate biomarkers. Specifically, PDD patients had greater motor severity as measured by
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the UPDRS-III (corrected p = 0.002) and exhibited a global brain atrophy pattern similar to
AD as captured by the SPARE-AD score [28] (corrected p = 0.031). In addition, PDD patients
trended towards lower levels of CSF Aβ42 (corrected p = 0.062). PD-MCI patients had values
intermediate to PD-CN and PDD for these three biomarkers (Table 1, Fig 1C–1F).

Fig 1. Cohort characteristics and bivariate cross-sectional analyses. (A) By consensus clinical determination, 47/75 patients were classified as PD-CN,
20/75 PD-MCI, and 8/75 as PDD. (B) Histogram and kernel density plot of age-adjusted DRS scores for the study cohort. Dashed vertical lines represent
separations between PDD vs. PD-MCI vs. PD-CN ranges for DRS performance. (C) A bivariate analysis of eight candidate markers previously reported to
associate cross-sectionally with cognition confirms associations between PDD and two candidate markers in the present study: Unified Parkinson’s Disease
Rating Scale Motor score (UPDRS III, corrected p = 0.002) and Spatial Pattern of Atrophy for Recognition of AD score (SPARE-AD, corrected p = 0.031). An
additional marker–CSFmeasures of Aβ42 –trended towards association with PDD (corrected p = 0.062). Vertical line indicates corrected p<0.05.
EGF = Epidermal Growth Factor. MODHY = Modified Hoehn and Yahr. The other nine candidate markers assessed in this study have previously been
reported to associate with longitudinal decline in cognition. (D)–(F) Boxplots of the distribution of UPDRS-III score, CSF Aβ42 levels, and SPARE-AD score
among the three cognitive classes. Median and interquartile range are shown.

doi:10.1371/journal.pone.0147319.g001
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17 candidate biomarkers do not demonstrate substantial internal
correlation
We next sought to understand the internal relationships of the 17 candidate biomarkers. As
expected, the two most closely correlated markers in our 75-subject cohort were MODHY and
UPDRS-III score, with a Spearman correlation coefficient of 0.51 (Fig 2A). On the whole, how-
ever, we did not find that our 17 candidate biomarkers were highly internally correlated, in
analyses performed with (S1 Fig) or without (Fig 2A, S2 Table) adjustment for cognition, sug-
gesting that they may be capturing different biological signals.

We performed hierarchical cluster analyses to further explore correlations among candidate
biomarkers, as well as among individuals in the cohort. As shown in Fig 2B, this cluster analysis
corroborated our finding that candidate biomarkers were not highly internally correlated.
Examining the patient dendrogram, however, we observed that at a high branchpoint, one clus-
ter captured all the PDD subjects, with PD-CN and PD-MCI individuals admixed.

A subset of five AD-derived biomarkers is highly correlated in AD but not
in PD
In AD, five of the 17 candidate biomarkers assessed here have been reported to demonstrate
substantial classification utility: CSF Aβ42, CSF t-tau, CSF p-tau, the SPARE-AD pattern of

Fig 2. Correlations among candidate biomarkers for cognition. (A) Pairwise Spearman correlation coefficients were calculated for the candidate
biomarkers for cognition in PD across the entire cohort. With a few exceptions (e.g. MODHY and UPDRS-III scores (ρ = 0.51), candidate biomarkers did not
show high correlations. Shades of red indicate a positive correlation coefficient, white indicates a correlation coefficient of zero, and shades of blue indicate a
negative correlation coefficient. The correlation coefficient for each pairwise comparison is reported in the corresponding box. Only 12 candidate biomarkers
are shown because five markers are categorical variables with relatively few categories. (B) Hierarchical clustering of biomarker candidates does not suggest
a high degree of internal correlation among the 17 markers assessed. Both patients and biomarkers were clustered by Euclidean distance using average
linkage, with the patient dendrogram shown to the left of the heatmap and the biomarker dendrogram shown above the heatmap. Each column represents
one of 17 biomarkers, and each row represents a patient, with PD-CN (white), PD-MCI (black), and PDD (red) individuals indicated by color. On the heatmap,
darker red indicates higher marker levels, and darker blue indicates lower marker levels relative to the mean. A branch that captured all the PDD subjects is
highlighted in yellow.

doi:10.1371/journal.pone.0147319.g002
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global brain atrophy, and genotype at the APOE locus [19,22,23,28]. We therefore investigated
these five AD-derived markers in 109 cognitively normal and 101 AD subjects from the ADNI
cohort.

CSF Aβ42, CSF t-tau, CSF p-tau, SPARE-AD score, and APOE genotype were strongly cor-
related in ADNI subjects (Fig 3A). Moreover, evaluating subjects by hierarchical cluster analy-
sis based on these five markers in the ADNI cohort resulted in a large cluster highly enriched
in AD patients.

When we performed a similar analysis using the five AD biomarkers in the UPenn Udall
cohort, however, we found that they were less internally correlated in PD patients (Fig 3B).
Omitting the PD-MCI group, in order to focus on the extremes of PDD and PD-CN, did not
change this result (Fig 3C).

An AD-derived classifier identifies PDD subjects with 80% accuracy
Although the five-marker panel of CSF p-tau, CSF t-tau, SPARE-AD score, APOE genotype,
and CSF Aβ42 shows less internal correlation in the PD cohort than in ADNI, these five mark-
ers might nevertheless prove useful in classifying PD-CN vs. PDD patients. Indeed, some have
argued that in at least some PD patients, dementia results from an “Alzheimer”-ization of the
brain concomitant with the development of Lewy body inclusions containing alpha-synuclein
[50].

To evaluate this hypothesis, we first trained a logistic regression classifier using these five
markers to classify cognitively normal vs. AD subjects from ADNI.

As expected based on the cluster analyses, a classifier using CSF p-tau, CSF t-tau, SPA-
RE-AD score, APOE genotype and CSF Aβ42 measures performed well in discriminating AD
from cognitively normal ADNI subjects. Indeed, in ten-fold cross-validation within the ADNI
cohort, our logistic regression classifier separated AD vs. normal subjects with an accuracy of
>96% (95% CI 0.93–0.98, area under the receiver operating curve (AUC) 0.99, sensitivity 0.96,
specificity 0.96, Fig 3D).

The logistic regression classifier was trained in the ADNI cohort to identify AD; we next
asked if this exact classifier could discriminate PD-CN vs. PDD patients from the UPenn Udall
cohort. Indeed, the five-marker AD-derived classifier distinguished PD-CN from PDD subjects
with 80% accuracy (95% CI 0.67–0.90, AUC 0.87, sensitivity 0.88, specificity 0.79, Fig 3D). Re-
running this analysis using the 74 PD individuals with no imputed data (one SPARE-AD score
for one PD patient was imputed) did not change the results (accuracy 0.80, AUC 0.86).

Because our cohort was prospectively enrolled, PD patients in different cognitive categories
were not age-matched, reflecting, instead, the innate distribution of ages found in PD patients
across a spectrum of cognitive performance. As a consequence, PDD patients were significantly
older than individuals in other cognitive categories. We therefore asked whether the older age
of the PDD individuals could be driving the ability of our AD-derived classifier to identify
them. As shown in Fig 4A, however, PD patients classified as AD-like by this five-marker clas-
sifier represent a range of ages, with two-thirds falling within the interquartile range of ages for
the PD-CN group.

We further asked whether each of the markers individually associated with cognitive cate-
gory and whether this association persisted after adjustment for age. Of the five markers com-
prising our AD-derived classifier, only two associated significantly with cognitive category in
bivariate logistic regressions–SPARE-AD score and CSF Aβ42. Notably, in the five-marker
AD-derived classifier, SPARE-AD score contributed most to classification, with the largest
coefficient. SPARE-AD score remained significantly associated with cognitive category after
adjustment for age, while the p-value for association of CSF Aβ42 levels with cognitive category
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increased from 0.005 to 0.088 after adjustment for age. In both cases, the addition of age as a
covariate did not change the direction and minimally affected the coefficient for the biomarker
of interest. Moreover, in both cases, the model containing both age and the biomarker of

Fig 3. An Alzheimer’s Disease-derived classifier for PDD. (A) Hierarchical clustering of five AD-derived biomarkers (CSF Aβ42, CSF t-tau, CSF p-tau,
SPARE-AD score, and APOE genotype) using data from AD and normal controls (NC) in the ADNI cohort. In AD, these five markers are highly correlated with
each other. Moreover, clustering of individuals using these five markers produces a branch highly enriched in AD (yellow highlight). (B) Hierarchical
clustering of the same five biomarkers using data from the full UPenn Udall cohort (n = 75). In PD, these five markers demonstrate less internal correlation.
(C) Hierarchical clustering of the five AD-derived biomarkers using data from only PD-CN and PDD patients (n = 55). Even when only the extreme ends of the
PD cognitive spectrum are included, less internal correlation is seen among these five markers in PD than in AD. (D) A logistic regression classifier (black
curve) using the five AD-derived biomarkers discriminates AD from NC in the ADNI cohort with high accuracy. Accuracy, area under the curve, sensitivity,
and specificity were assessed by ten-fold cross-validation, using the training cohort of ADNI subjects. Applying the exact same AD-derived classifier to the
UPenn Udall cohort discriminates PD-CN from PDD patients with 80% accuracy as well (red curve).

doi:10.1371/journal.pone.0147319.g003
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interest was more informative, as indicated by a lower Akaike Information Criterion value,
than a model in which cognitive category was predicted from age alone (S3 Table).

The memory domain is impaired in PD-MCI and PDD patients with an
AD-like biomarker profile
Having demonstrated that our AD-derived classifier is not simply selecting individuals with an
aged biomarker profile, we hypothesized that the PD patients deemed more AD-like might
exhibit memory impairment similar to that seen in AD. Among PDD and PD-MCI patients in

Fig 4. Age andmemory impairment in PD patients classified as AD-like. (A) Histogram depicting age frequencies for all 75 PD patients in the study (grey
bars) vs. subset of PD patients classified as having an AD-like biomarker profile (black bars). AD-like individuals represent a range of ages. (B) DRS-memory
domain scores for cognitively impaired (PDD and PD-MCI) PD patients classified as AD-like (black) vs. not AD-like (grey). Age-adjusted DRSmemory
domain scores are shown. *Two-tailed Mann-Whitney p <0.05. (C-D) Standardized scores (T-scores, where 50 is the mean and each 10-point change from
50 represents one standard deviation) for total immediate free recall (C) and recognition discrimination (D) from the Hopkins Verbal Learning Test-Revised
(HVLT-R) for cognitively impaired (PDD and PD-MCI) PD patients classified as AD-like (black) vs. not AD-like (grey). Of note, 3/13 PD patients classified as
AD-like were unable to complete testing due to severity of dementia; these individuals are denoted by a square symbol and assigned a T-score of 20. All PD
patients classified as not AD-like were able to complete testing. *Two-tailed Mann-Whitney p <0.05.

doi:10.1371/journal.pone.0147319.g004
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our cohort, 13 were classified by the five-marker panel as AD-like, whereas 15 were not. These
two groups were compared for performance on memory-specific tests. We note that PD-MCI
individuals were also included in this analysis because nearly all the PDD patients were classi-
fied as AD-like, with the consequence that an analysis confined to PDD individuals would not
allow comparison between balanced groups with vs. without an AD-like biomarker profile.

On the memory domain portion of the DRS, the 13 PD patients identified as AD-like dem-
onstrated significantly poorer performance, compared to the 15 PD individuals deemed not
AD-like by our logistic regression classifier (two-tailed Mann-Whitney p-value = 0.012, Fig
4B). Similar results were observed for a second test of memory, the Hopkins Verbal Learning
Test-Revised (HVLT-R) [41,42], for which average T-scores (standardized from published
norms [42]) on immediate free recall (Fig 4C) and recognition discrimination (Fig 4D) were
lower in AD-like PD individuals, compared to PD individuals classified as not AD-like. While
differences in total immediate recall were significant between groups (two-tailed Mann-Whit-
ney p-value = 0.050), differences in recognition discrimination showed only a non-significant
trend (two-tailed Mann-Whitney p-value = 0.129).

Discussion
Biomarker studies in neurodegenerative diseases are becoming increasingly common. How-
ever, in most cases, a small number of candidate markers, usually from the same modality, are
used to predict an outcome of interest. As a consequence, we gain an increasing number of
associations between individual markers and various clinical outcomes, but the relationships
among these individual markers remain unclear.

In PD, the clinical outcome of CI and dementia has been studied in detail, with the advent
of multiple candidate biomarkers reported to correlate with current cognitive state and future
cognitive decline [4,15–21,25,51]. The focus on CI and dementia in PD reflects the fact that
this aspect of PD occurs in the vast majority of patients [4–7], exacting a significant personal
and financial cost [9]. Moreover, while there are currently no neuroprotective therapies and
only marginally effective symptomatic therapies for PD-MCI and PDD, at least two broad
mechanisms for explaining this PD phenotype exist.

Specifically, Braak and Braak have hypothesized that dementia may develop in PD as alpha-
synuclein pathology spreads from brainstem-limited patterns to involvement of the neocortex
[52,53]. An alternative, but not mutually exclusive, mechanistic hypothesis for the develop-
ment of dementia in PD has emphasized the role of the concomitant AD-defining senile pla-
ques and neurofibrillary tangles found in a large proportion of PD patients; put simply,
proponents of this theory posit that an AD-like process may drive the development of PDD in
at least some patients [34,50,54–57].

Here, we first sought to understand relationships among multiple individual markers that
have been linked to CI and dementia in PD. To this end, we evaluated a deeply characterized
cohort of PD patients, ascertaining their characteristics across 17 candidate biomarkers span-
ning multiple modalities. These markers have not previously been studied together in a cohort
of patients.

Somewhat surprisingly, these 17 markers did not show a high degree of internal correlation,
with the two most highly-correlated markers, MODHY and UPDRS-III score, demonstrating a
correlation coefficient of just 0.51 across the 75 PD patients in our cohort.

Our second objective in this study was to evaluate the hypothesis that an AD-like process
may drive the development of PDD. To address this question, we evaluated a subset of five
markers strongly linked to AD–CSF p-tau, CSF t-tau, SPARE-AD score, APOE genotype, and
CSF Aβ42 –in our PD patients. Intriguingly, a logistic regression classifier using these five
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markers trained to recognize AD could also discriminate PD-CN from PDD subjects. Indeed,
classification accuracy was high, at 80%, with balanced sensitivity and specificity, despite the
relative lack of internal correlation among these markers in PD subjects compared to AD sub-
jects. Our finding is thus consistent with the hypothesis that the development of dementia in
PD and AD may share biological mechanisms, manifesting as a shared biomarker signature.
Supporting this hypothesis is our clinical finding that cognitively impaired PD patients deemed
AD-like have poorer performance on both the memory subsection of the Mattis DRS and on
the HVLT-R recall than cognitively impaired PD patients who are classified as not AD-like.
We note here that AD-like PD patients had lower scores for both immediate free recall and rec-
ognition on the HVLT-R, but only the former difference was statistically significant. It is possi-
ble that this reflects small sample numbers and that a larger sample size would show
differences between groups on both aspects of the HVLT-R. However, some PD patients have
been reported to show impairment of free recall with relative sparing of recognition memory
compared to AD patients [43,58,59], raising the possibility that even in cognitively impaired
PD patients with an AD-like biomarker profile, the specific nature of the memory deficit may
still differ from AD.

Our in vivo biomarker findings corroborate multiple lines of evidence suggesting some
degree of shared pathophysiology in AD and PDD. First, postmortem neuropathological exam-
ination reveals that up to 50% of PDD patients have concomitant AD pathology [30–34]. Sec-
ond, biochemical investigations suggest that the individual proteins aggregating in PD and in
AD–and in particular the alpha-synuclein protein characteristic of PD, and tau protein charac-
teristic of AD–may each enhance the formation of pathological inclusions of the other protein
[60–63].

Several limitations of our study should be acknowledged. First, we studied a relatively small
sample of PD patients. Because of this limitation, we chose not to develop and cross-validate
classifiers within the PD group itself at the present time, as our numbers within this group
might be insufficient to develop robust classifiers. In addition, further validation in larger
cohorts of the predictive ability of our five-marker AD-derived classifier to correctly identify
PDD patients would be a valuable addition to the current report. It is important to note, how-
ever, that the strength of our study lies not in the number of subjects enrolled, but in the depth
of their characterization across multiple modalities, resulting in a dense and highly complete
dataset collected from a prospectively enrolled cohort, which will be made publicly available.
Indeed, it is precisely the depth of characterization in our cohort that allows us to demonstrate,
for the first time, the relative lack of correlation among these disparate cognitive biomarkers.

Second, our cohort has moderate PD, with a median disease duration of 6.9 years. Thus, it
remains to be seen whether our findings, and in particular the ability of an AD-derived classi-
fier to correctly identify PDD subjects, would generalize to other stages of disease.

Third, as is frequently encountered in the clinic, the PDD patients in our study are older
than the PD-MCI or PD-CN patients. We guarded against the possibility that our AD-derived
classifier may simply be detecting an aged biomarker profile by evaluating the age distribution
of individuals deemed AD-like and by performing further analyses adjusting for age. However,
it is possible that at least some of the signal detected by our classifier could still be due to
increased age. In this regard, given the younger age of the PD-MCI individuals in our cohort, it
will be interesting to see if those classified as AD-like now will be more likely to develop
dementia in the future.

In summary, we show that it is possible to use a small panel of biomarkers to discriminate
PD patients with and without dementia, and, further, that the discriminating biomarkers may
reflect an underlying process shared with AD. We note that the concept of shared pathophysi-
ology between AD and PD/PDD has important ramifications. In AD, therapies targeting the
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generation and deposition of Aβ are in clinical trials now [64–68]. Should any of these agents
show promise in large human AD trials, evidence for shared pathophysiology in these two dis-
eases might suggest the evaluation of these therapeutics to prevent dementia in PD-CN subjects
at greatest risk of developing dementia, or to treat manifest dementia in PDD patients. More-
over, the development of classifiers selecting the most AD-like of PD patients–and thus the PD
patients most likely to respond to “crossover” therapies–may be of substantial practical use.
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