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Significant impact of miRNA–target 
gene networks on genetics of 
human complex traits
Yukinori Okada1,2, Tomoki Muramatsu3, Naomasa Suita1,4, Masahiro Kanai1, 
Eiryo Kawakami5, Valentina Iotchkova6,7, Nicole Soranzo6,7, Johji Inazawa3,8 & 
 Toshihiro Tanaka1,8,9

The impact of microRNA (miRNA) on the genetics of human complex traits, especially in the context 
of miRNA-target gene networks, has not been fully assessed. Here, we developed a novel analytical 
method, MIGWAS, to comprehensively evaluate enrichment of genome-wide association study (GWAS) 
signals in miRNA–target gene networks. We applied the method to the GWAS results of the 18 human 
complex traits from >1.75 million subjects, and identified significant enrichment in rheumatoid 
arthritis (RA), kidney function, and adult height (P < 0.05/18 = 0.0028, most significant enrichment 
in RA with P = 1.7 × 10−4). Interestingly, these results were consistent with current literature-based 
knowledge of the traits on miRNA obtained through the NCBI PubMed database search (adjusted 
P = 0.024). Our method provided a list of miRNA and target gene pairs with excess genetic association 
signals, part of which included drug target genes. We identified a miRNA (miR-4728-5p) that 
downregulates PADI2, a novel RA risk gene considered as a promising therapeutic target (rs761426, 
adjusted P = 2.3 × 10−9). Our study indicated the significant impact of miRNA–target gene networks 
on the genetics of human complex traits, and provided resources which should contribute to drug 
discovery and nucleic acid medicine.

MicroRNA (miRNA), a small non-coding RNA molecule of approximately 22 nucleotides, regulates degradation 
and translational repression of a specific gene through its binding to the 3′  UTR of target mRNA.1 MiRNA has 
essential impacts on the pathogenesis of human complex traits, including cancers, cardiovascular diseases, and 
autoimmune diseases; thus, can act as a disease biomarker as well as a therapeutic target1,2. To date, approximately 
2,000 human miRNAs have been annotated in the miRNA registry (miRBase), targeting and regulating majority 
of the coding genes3. Recent technological development has enabled the identification of additional functional 
miRNA4, thereby increasing the impact of miRNA in the field of bioscience.

The regulatory effect of miRNA is a heritable genetic trait5. Previous studies investigated the contributions 
of human genetic polymorphisms to miRNA functions, by surveying single nucleotide polymorphisms (SNPs) 
that alter miRNA seed or target sites6 or by conducting expression quantitative trait (eQTL) analyses of miR-
NAs7. These approaches have identified several empirical examples that could link SNPs to human disorders; for 
example, a synonymous variant in IRGM confers a risk for Crohn’s disease by altering a miR-196 binding site8. 
However, in comparison with the progress achieved in the field of mRNA epigenomics, the comprehensive land-
scape regarding the impact of miRNA on genetics of human complex traits has not been fully elucidated.
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A challenge in miRNA epigenomics is the complexity of miRNA–target gene networks. Given the vast amount 
of potential combinations of miRNAs and target genes, systematic computational predictions of miRNA–target 
genes are necessary. However, current target gene prediction algorithms include uncertainty in their accuracy, 
which is represented by the output of quantitative prediction scores that are inconsistent among algorithms9. 
Integration of this high-dimensional network information with existing genetic or other epigenetic resources will 
require novel bioinformatics approaches.

Here, we report a novel analytical method to comprehensively evaluate the enrichment of genome-wide 
association study (GWAS) signals in miRNA–target gene networks (miRNA–target gene enrichment analysis in 
GWAS; MIGWAS). The application of our method in large-scale GWAS results of human complex traits could 
provide an empirical and quantitative estimation of the impact of miRNA–target gene networks on the genetics of 
these human complex traits. Our method also provides a list of miRNA and target gene pairs with excess genetic 
association signals, which may contribute to the discovery of therapeutic miRNAs and drug target genes.

Results
Summary of the MIGWAS analytical method. The principal hypothesis of our method was that, for 
human complex traits in which miRNA plays important biological roles, the association signals observed in large-
scale GWASs would be relatively enriched for miRNA and target gene pairs. To this end, we constructed an in sil-
ico pipeline (MIGWAS) to systematically evaluate whether the trait association signals of miRNA and target gene 
pairs were more likely to both demonstrate significant associations than expected by chance. Considering that 
the top-associated SNPs identified in the GWAS studies can only partially explain genetic heritability, we utilized 
genome-wide SNP p-values obtained in the GWAS to annotate miRNA- and gene-based association signals (=  
PmiRNA and Pgene, respectively)10. To account for the uncertainty of miRNA–target gene predictions, we integrated 
the analytical results by sequentially sliding the prediction score thresholds obtained from multiple prediction 
algorithms (miRDB11, MiRmap12, PITA13, and TargetScan14; Supplementary Table 2). Quantitative estimates of 
fold changes in association signal enrichment (=  Fenrichment) and their significance (=  Penrichment) were evaluated 
using a permutation procedure. The source codes for the MIGWAS method and the data resources are available 
upon request to the authors.

No enrichment was observed in the null GWAS data. We first confirmed that our method did not 
report spurious enrichment results, even in the condition that strong inflation exists in the original GWAS result 
due to reasons such as population stratification. As a negative control of our method, we generated null GWAS 
results using 1000 Genomes Project Phase I (α ) European genotype data. When we applied our method to the 
null GWAS results, we did not observe a significant enrichment of the association signals in the miRNA and target 
gene pairs (Fenrichment =  0.55~1.42 and Penrichment =  0.012~0.89; n =  5; Supplementary Figure 1A). Similarly, when 
we artificially induced inflation of the GWAS association signals, by inversely applying genomic control (GC) 
corrections with λ GC values in the range of 1.0–3.0, we did not observe significant enrichment (Fenrichment <  0.99 
and Penrichment >  0.25; Supplementary Figure 1B). These results empirically demonstrated the statistical robustness 
of our method.

Significant impact of miRNA–target gene networks on human complex trait genetics. We 
then applied our MIGWAS method to previously published large-scale GWAS results of human complex traits. 
We collected GWAS results of 18 human complex traits that comprised a total of >  1.75 million individuals. 
These traits included anthropometric traits,15,16 hematological parameters,17,18 biochemical parameters,19,20 phys-
iological functions,21,22 metabolic diseases,23,24 psychiatric diseases,25,26 immune-related diseases,27,28 and others29 
(Supplementary Table 1).

Of the 18 examined human complex traits, rheumatoid arthritis (RA), estimated glomerular filtration rate 
(eGFR), and adult height exhibited significant enrichment of the association signals in the miRNA and target 
gene pairs (Penrichment <  0.05/18 =  0.0028; Fig. 1A). The significance and fold changes of this enrichment correlated 
significantly among the traits (Spearman’s ρ =  − 0.81; P =  3.8 ×  10−5; Fig. 1B). For the top three traits (RA, eGFR, 
and adult height), the relative enrichment was more than 1.5-fold higher in the miRNA–target gene association 
signals in the GWAS when compared to the null hypothesis (Fenrichment >  1.57). In particular, the most significant 
enrichment was observed in RA (Fenrichment =  1.77, Penrichment =  1.7 ×  10−4). Suggestive enrichment was observed 
for the metabolic traits, including type II diabetes mellitus (T2D), body mass index (BMI), and high-density lipo-
protein (HDL; Penrichment <  0.05). On the other hand, the least enrichment was observed for age-related macular 
degeneration (AMD) and uric acid (UA; Penrichment >  0.97). These results suggest a significant impact of miRNA–
target gene networks on the genetics of a variety of human complex traits (Fig. 2).

The MIGWAS result was supported by literature-based knowledge on the traits. To validate 
the impact of the miRNA–target gene network as suggested by our MIGWAS method, we conducted a survey of 
miRNA citations in the existing literature to quantify our current knowledge of miRNA in the context of each 
trait as an independent resource with which to measure the impact of miRNA. On average, in the NCBI PubMed 
database, approximately 0.5% of literature on each trait cited miRNA (Supplementary Table 3). We observed 
significant positive correlations between the relative enrichment of miRNA–target gene association signals as 
estimated by MIGWAS (=  Fenrichment) and the proportions of the literature that cited miRNA (adjusted P =  0.024; 
Fig. 3). The highest citation proportion, 0.94%, was observed for eGFR, as suggested in previous biological stud-
ies30. This indicates that the impact of miRNA on human genetics, as suggested by our MIGWAS method, was also 
supported by the current knowledge on miRNA.

Identification of therapeutic miRNAs that regulate drug target genes. As a feature, our 
method provides a list of miRNA and target gene pairs with excess genetic association signals. For the top three 
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enrichment traits (RA, eGFR, and adult height), we highlighted 9, 6 and 25 miRNAs, respectively, and their target 
genes (both PmiRNA and Pgene <  0.01 with high target prediction scores [top 1st percentile of the multiple algo-
rithms]; Fig. 2, Table 1 and Supplementary Table 4). We found that some of the identified miRNA–target genes 
were also the drug target genes registered in the drug databases, including DDX6, IFNAR1, PADI2, and FADS2 
for RA, and MMP24, PML, and SCN4A for adult height. Considering utilities of these genes as therapeutic tar-
gets, the miRNAs and target gene pairs provided by our MIGWAS method should serve as an efficient screening 
resource for human genetics-driven novel drug discovery28,31,32. We note that miRNA targeting the larger num-
bers of genes could be likely to have higher power to be detected as candidates in our analytic pipeline, while these 
miRNAs could have a wide range of regulatory effects on gene expression profiles, and considered as promising 
candidates in terms of disease biology.

As an empirical example, we focused on PADI2 at 1p36 pointed by multiple miRNAs (miR-4492 at 11q23 and 
miR-4728-5p at 17q12) in the context of the RA GWAS, as inhibition of this drug target gene is considered to 
be promising for treatment of autoimmune diseases33. We functionally confirmed that miR-4728-5p suppresses 
PADI2 protein expression levels through direct binding to the 3′  UTR region. (Fig. 4A,B and Supplementary 
Figures 2 and 3). Being adjacently located at the well-known RA risk gene of PADI4, PADI2 itself has not been 
recognized as a disease risk gene that satisfied the genome-wide significance threshold (P <  5.0 ×  10−8)28,34. 
Motivated by its identification through our MIGWAS method, we conducted a conditional analysis of the PADI4 
locus with the top associated SNP in the GWAS meta-analysis (rs2301888, P =  2.2 ×  10−18; Fig. 4C), and identified 
an independent significant association signal at PADI2 (rs761426, adjusted P =  2.3 ×  10−9). These findings suggest 
that our method can also contribute to the fine-mapping of causal genes embedded in GWAS results. The RA risk 
T allele of rs761426 has a cis-eQTL effect that increases PADI2 mRNA expression in whole blood (P =  4.6 ×  10−12; 
Supplementary Figure 4),35 thereby providing the possibility of the identified miRNA as a candidate of nucleic acid 
medicine. MiR-4728-5p was located in the previously reported RA risk loci at 17q12 (Supplementary Figure 5),  
while cis-eQTL effects of the regional SNPs on miR-4728-5p was not publicly available. We note that the RA risk 
SNPs in these loci were not located on the seed or target sequences of miR-4728-5p.

Discussion
The integration of large-scale genetic studies with epigenomics resources should enhance our knowledge regard-
ing human complex traits.28 In this study, our analytical method clearly indicated the significant impact of 
miRNA–target gene networks on the genetics of a variety of these traits. In particular, significant enrichment was 
observed for RA, eGFR, and adult height, as implicated by the previous biological studies.2,30 Our method also 
provided a list of miRNA and target gene pairs with excess genetic association signals, which could contribute 
to fine-mapping of causal genes and the screening of therapeutic miRNAs and drug target genes28,31,32. As an 
empirical example, we identified PADI2 as a novel risk gene of RA that could be a potential therapeutic target, 
as well as the miRNA that suppresses PADI2 protein expression (miR-4728-5p)2,30. Such framework integrating 
disease genetics and network-based information could be utilized for predicting clinical phenotypes as a future 
research strategy36.

Although the biological importance of miRNA in disease etiologies has long been suggested, strategies linking 
miRNA with disease genetics have made less progress than other epigenomics resources such as mRNA expres-
sion profiles. We show here that our newly developed method can bridge this missing link by validating the sim-
ple hypothesis that the miRNA and target gene pairs implicated in disease biology will likely exhibit enrichment 
of association signals in GWAS results. This integrative approach, which included multiple miRNA–target gene 

Figure 1. GWAS signal enrichment in miRNA–target gene networks. Significance (=  Penrichment; A) and 
relative fold changes (=  Fenrichment; B) in the enrichment of GWAS association signals of each human complex 
trait on miRNA–target gene networks. Penrichment and Fenrichment significantly correlated (P =  3.8 ×  10−5). 
Rheumatoid arthritis (RA), estimated glomerular filtration rate (eGFR), and adult height exhibited significant 
enrichment (Penrichment <  0.05/18 =  0.0028) with relative fold changes greater than 1.5-fold when compared to 
the null hypothesis (colored red).
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prediction algorithms and variable prediction score cutoff thresholds, achieved an unbiased interpretation of tar-
get prediction uncertainties. Additional implementation to estimate variance of the Fenrichment and Penrichment would 
be informative to validate robustness of our integrative approach. Further application of our MIGWAS method to 
the results of the GWASs of additional disorders is warranted.

We found that estimated impact of miRNA on human genetics was consistent with the literature-based cur-
rent knowledge of miRNA on these traits. While our literature-based analysis did not involve manual curation 
of the texts, which can weaken the evidence, the observed concordance might provide a clue to prioritize the 
diseases to be assessed.

We note that the detailed biological mechanisms by which the variants located in each miRNA and target 
gene region confer disease risk are yet to be elucidated. Considering the essential roles of miRNAs in the regu-
lation of target gene expression, further accumulation of miRNA eQTL studies, particularly those focusing on 
the effect of trans-miRNA eQTL on potential target genes,7 should clarify these mechanisms. Whereas the exist-
ing microarray-based miRNA expression assays evaluate limited numbers of miRNAs, recent advances in the 
RNA-seq technology should provide expression profiles of wide ranges of functional miRNAs.

Figure 2. miRNA–target gene networks in the GWAS of human complex traits. CIRCUS plots45 of the 
GWAS association signals and miRNA–target gene networks. Manhattan plots representing the GWAS results 
are indicated as the outer layers of the CIRCUS plots45. MiRNA and target gene pairs for which both the PmiRNA 
and Pgene satisfied the nominal association threshold (α  =  0.01) and for which the prediction scores were within 
the top 1st percentile in multiple prediction algorithms are connected by lines. SNPs located within ± 150 kbp of 
these miRNAs or genes are colored red in the Manhattan plots.
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In summary, our study demonstrated the significant impact of miRNA–target gene networks on the genetics 
of human complex traits. This information should contribute to our understanding of the roles of miRNA in dis-
ease etiology and the potential uses in drug discovery.

Methods
Collection of GWAS results of human complex traits. We collected summary statistics (p-values) of the 
previously published GWASs of human complex traits from public web sites or collaborators. To ensure the statis-
tical power of our analysis, we restricted GWASs to those including > 30,000 individuals. For GWASs that reported 
multiple traits in the same paper, we did not redundantly add the numbers of individuals. We collected GWAS 
results of 18 human complex traits that comprised of 1,765,016 individuals in total; adult height15, age at menarche 
(AAM)29, age-related macular degeneration (AMD)27, Alzheimer’s disease (ALD)25, blood pressure (diastolic 
[DBP] and systolic [SBP])21, body mass index (BMI)16, bone mineral density (femoral; BMD)22, estimated glo-
merular filtration rate based on serum creatinine (eGFR)20, high-density lipoprotein (HDL)19, low-density lipo-
protein (LDL)19, triglyceride (TG)19, platelet counts (PLT)17, red blood cell counts (RBC)18, rheumatoid arthritis 
(RA)28, schizophrenia (SCZ)26, type II diabetes mellitus (T2D)23, and uric acid (UA; Supplementary Table 1)24.  
SNP information was re-assigned based on the UCSC hg19 reference.

As a negative control, we generated in total five null GWAS results (datasets 1–5), using 1000 Genomes Project 
Phase I (α ) European genotype data. We applied SNP quality control filters as described elsewhere28 and ran-
domly divided the individuals into case-control groups (case:control ratio =  1:1). We then conducted a GWAS 
using a logistic regression analysis implemented in PLINK v1.90.

Figure 3. Relationships between literature-based knowledge about traits and the miRNA–target gene 
network enrichment in the GWAS. The proportion of the NCBI PubMed literature on each trait that cited 
miRNA in their context (x–axis) and relative fold changes in the enrichment of GWAS association signals on 
miRNA–target gene networks(=  Fenrichment; y–axis) indicated significant positive correlation (P =  0.024 adjusted 
with the number of the individuals in the original GWAS).

Trait miRNAs enriched in the GWAS results with their target genesa Penrichment

RA
miR-130b-3p (DDX6), miR-638, miR-762, miR-3155a (IFNAR1), 
miR-3155b, miR-3202, miR-3714, miR-4492 (PADI2), miR-4728-
5p (PADI2, FADS2)

1.7 ×  10−4

eGFR miR-661, miR-2355-5p, miR-4313, miR-4487, miR-4672, miR-
4728-5p 3.6 ×  10−4

Adult height

let-7a-5p, let-7d-5p, miR-7-1-3p, miR-15a-5p, miR-17-5p, miR-
20a-5p, miR-30d-3p, miR-146b-3p, miR-217, miR-608 (MMP24, 
PML), miR-940 (SCN4A), miR-629-3p, miR-1225-3p, miR-1225-
5p, miR-1227-5p, miR-3120-3p, miR-3613-3p, miR-3675-5p, 
miR-4419a, miR-4487, miR-4489, miR-4690-3p, miR-4690-5p, 
miR-4713-5p, miR-4722-3p

5.2 ×  10−4

Table 1.  miRNAs and target genes listed by the MIGWAS analysis. amiRNAs are indicated for significantly 
enriched traits suggested using the MIGWAS method. MiRNAs that target known drug target gene(s) are 
underscored with bars, with parentheses indicating the target(s). Full miRNA and target gene lists are provided 
in Supplementary Table 4.
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Figure 4. miR-4728-5p suppresses PADI2 protein expression, a novel RA risk gene as a potential 
therapeutic target. Western blotting (A) and luciferase assay (B) demonstrated that miR-4728-5p, the miRNA 
suggested by our MIGWAS analysis, suppresses PADI2 protein expression levels by direct binding to the 3′  
UTR region (Supplementary Figures 2 and 3). Experiments were performed in triplicate, and each data point 
represents the mean (bars, SD). An asterisk represents Student’s t-test P <  0.05. (C) Conditional association 
analysis of the RA GWAS results28 in the PADI2–PADI4 region. Each diamond represents the − log10 p-values of 
the SNPs. Red color for the diamond represents the r2 value with the most significantly associated SNP (larger 
red diamond). RefSeq genes are indicated below, and the gene nearest to the top-associated SNP is colored red. 
When conditioned on the top SNP at PADI4 (rs2301888), an independent significant association was observed 
at PADI2 (rs761426).
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Translation of SNP-based association signals into gene- or miRNA-based signals. To evalu-
ate the association signals of human complex traits with the respective genes and miRNAs, we translated the 
genome-wide SNP p-values of each GWAS into a set of gene-based or miRNA-based p-values (=  Pgene or PmiRNA), 
adjusted according to local linkage disequilibrium structures and gene or miRNA sizes. We used the MAGENTA 
software to conduct this step10. Gene information was obtained from the UCSC hg19 reference and miRNA infor-
mation was obtained from miRBase release 20 3. We excluded genes and miRNAs located in the major histocom-
patibility complex (MHC) region at 6p21.337–39, while inclusion or exclusion of the MHC region did not change 
the analytic results substantially (data not shown).

For the gene or miRNA p-values obtained from the null GWAS, we artificially induced inflation of the associ-
ation signals of the null dataset 1, by inversely applying genomic control (GC) corrections with λ GC values to Pgene 
and PmiRNA in the ranges of 1.0 (i.e., no changes in p-values after correction) to 3.0 (i.e., strong inflation induced 
after correction).

Curation of miRNA–target gene network information. We downloaded miRNA–target gene pre-
diction scores calculated using the major target prediction algorithms on January 31st, 2015 (n =  4; miRDB11, 
MiRmap12, PITA13, and TargetScan14; Supplementary Table 2). The methodological comparisons of these pre-
diction algorithms have been discussed elsewhere9. We assigned miRNA and gene information according to 
miRBase (release 20)3 and the UCSC hg19 reference, respectively. We excluded closely located miRNA and gene 
pairs (defined as physical distances between the miRNA and gene below 1 Mbp), as the genome-wide association 
signals of such miRNAs and genes could be non-independent because of local linkage disequilibrium.

Enrichment analysis of association signals in the miRNA–target gene pairs. We hypothesized 
that genetic association signals are relatively enriched in the miRNA and gene pairs, regarding traits for which 
miRNA plays important etiological roles. To empirically test this hypothesis, we evaluated whether associa-
tion signals of both of the miRNA and target gene pairs suggested by the miRNA–target gene prediction algo-
rithms with defined score thresholds were more likely to demonstrate significant associations than that would be 
expected by chance. To robustly estimate the degree of enrichment, we integrated the analysis results from various 
score thresholds of multiple prediction algorithms.

Let xsi
 be the set of miRNA and target gene pairs that satisfies the prediction score threshold calculated using 

the i th prediction algorithm (=  si), and ysi
 be the subset of xsi

 for which both the PmiRNA and Pgene satisfy the nom-
inal association threshold (α  =  0.01). We defined _n ysi

/ _n xsi
 as a metric to represent the association signal 

enrichment of miRNA and target gene pairs, where _n xsi
 and _n ysi

 represent the numbers of miRNA and target 
gene pairs included in xsi

 and ysi
, respectively. We estimated the null distribution of this metric using a permuta-

tion procedure (× 10,000 iterations). For each iteration step, we randomly shuffled the miRNA and target gene 
pair connections within xsi

, and generated dummy sets of xsi
’ and ysi

’ as described above. We shuffled 
miRNA-target gene pairs by permuting pair labels within all the pair collections of xsi

, and thus, equal weight was 
assigned to each pair but not to each miRNA or each target gene. We defined a relative fold change in the metric 
= _( )F senrichment i

 as ( _n ysi
/ _n xsi

)/m( _n ysi
’/ _n xsi

’), where m(t) represents the mean value of the distribution t. The 
significance of the metric = _( )P senrichment i

 was evaluated using a one-sided permutation test in its null 
distribution.

We then sequentially integrated _F senrichment i
 or _P senrichment i

 by sliding the threshold values of si from the top 
10th percentile to the 0.1th percentile of the prediction score distribution on a logarithm scale with a number of 
partition =  8. Considering that estimation of _F senrichment i

 or _P senrichment i
 can be biased when distributions of xsi

’ 
and ysi

’ are sparse, we only integrated the results obtained under the condition of m( _n xsi
’) ≥  5. Finally, we inte-

grated the results of the multiple prediction algorithms (nalgorithm =  4), by averaging the fold change estimates and 
meta-analyzing the enrichment significance. Namely, we estimated the overall fold change in enrichment, 
Fenrichment, and significance of enrichment, Penrichment, as,

∑ ∑=




∑
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n k
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0 1 percentile
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k P1 1 ,
(2)i

n

s s s
s senrichment

algorithm 1 10 percentile

0 1 percentile
1
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i i i

i i

algorithm

where ksi
 =  1 when m( _n xsi

’) ≥  5 and ksi
 =  0 when m( _n xsi

’) <  5. We note that we did not observe the condition 
when ∑ ks si i

 =  0. Φ represents the cumulative distribution function (c.d.f.) of the normal distribution. The source 
codes for MIGWAS and the data resources are available upon request to the authors.

Survey of miRNA citations in human complex trait literature. To relatively quantify our current 
knowledge about miRNA in human complex traits, we conducted a survey of miRNA citations in previously 
published literatures concerning the 18 human complex traits that we examined. We calculated the proportions 
of literature concerning each trait that cited miRNA in their contexts according to a search of the NCBI PubMed 
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database on July 31st, 2015. Considering that most of the miRNA literatures have been published in recent years, 
we confined our analysis to those published in the last 5 years (2010–2014). The proportions were calculated as 
follows:

n
n

TRAIT M RNA
TRAIT

(2010: 2014[dp] AND AND I )
(2010: 2014[dp] AND )

,
(3)

PubMed

PubMed

where nPubMed(x) represents the number of the literatures obtained from the NCBI PubMed database when using 
x as a search term. MIRNA was a miRNA-specific search term defied as “(miRNA OR miRNAs OR microRNA 
NOT mirna[au])”. TRAIT was a search term used for each trait and is defined in detail in Supplementary Table 3.  
We note that for the traits representing quantitative values, we additionally included the disorders defined as 
extreme trait values in TRAIT (e.g., gout for uric acid), as these traits and disorder are likely to share biological 
and genetic backgrounds and have often been examined together.24

The association between Fenrichment and the calculated proportions was evaluated through a linear regression 
analysis. To account for potential heterogeneity in the statistical powers of the original GWAS that might affect 
Fenrichment, we included the numbers of the individuals in the GWASs as a covariate.

List of the miRNA and target gene pairs with association signal enrichment. For the human 
complex traits that demonstrated significant enrichment of the genetic association signals in the miRNA–tar-
get gene networks after Bonferroni correction (Penrichment <  0.05/18 =  0.0028), we made a list of the miRNA and 
target gene pairs. We selected the pairs if (i) both PmiRNA and Pgene satisfied the nominal association threshold 
(α  =  0.01), and (ii) the prediction scores of the pairs were ranked within the top 1 percentile in multiple predic-
tion algorithms.

We next annotated the selected miRNA–targeted genes based on whether they had been registered as thera-
peutic drug target genes. We used the SuperTarget database40 and a previously curated drug target gene database28 
based on the DrugBank41 and Therapeutic Targets Database42.

Western blotting. The following primary antibodies were used for western blotting: anti-PADI2 (12110-
1-AP) (Proteintech, Chicago, IL) and anti-β -actin (Sigma, St. Louis, MO). Western blotting was performed as 
described elsewhere43.

Luciferase assay of miRNAs that target disease risk gene. HeLa and MCF7 cell lines were main-
tained in DMEM containing 10% fetal bovine serum (FBS). Luciferase reporter plasmids were constructed 
by inserting the 3′  UTR of PADI2 (regions 1–8) downstream of the luciferase gene within the pmirGLO 
Dual-Luciferase miRNA Target Expression Vector (Promega, Madison, WI). Luciferase reporter plasmids 
and 10 nmol/L of miRNAs (miR-Negative Control [NC], miR-4429 or miR-4728-5p; Thermo Fisher Scientific, 
Waltham, MA) were co-transfected in HeLa cells using Lipofectamine 2000 (Thermo Fisher Scientific) according 
to the manufacturer’s instrument. Forty-eight hours after transfection with luciferase reporter plasmids and miR-
NAs, Firefly and Renilla, as an internal control, luciferase activity were measured by the Dual-Luciferase Reporter 
Assay System (Promega). Relative luciferase activity was calculated by normalizing Firefly luciferase activity by 
its corresponding Renilla luciferase activity. Supplementary Figures 2 and 3 showed the sequences of primers for 
constructing of each luciferase reporter plasmid. Experiments were performed in triplicate, and each data point 
represents the mean (bars, SD). Student’s t-test was used for statistical analysis.

Conditional association analysis of the GWAS results. A conditional association analysis of the RA 
GWAS meta-analysis summary statistics was conducted with respect to the PADI2–PADI4 region using GCTA 
software44. We performed a conditional analysis separately for the European and Asian GWAS results, and sub-
sequently meta-analyzed the conditioned results using the inverse-variance method. Cis-eQTL analysis results 
of the SNP was obtained from Genotype-Tissue Expression (GTEx) Analysis Release v4 (dbGaP Accession 
phs000424.v4.p1)35.
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