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Editorial on the Research Topic

Emerging Proteins and Polypeptides Expressed by “Non-Coding RNAs”

By definition, non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins. Yet,
emerging evidences, drawn from deep ribosome sequencing and mass spectrometry, show that a
subset of ncRNAs including long non-coding RNAs (lncRNAs) and cirRNAs are able to encode
functional proteins/polypeptides (Makarewich and Olson, 2017; Orr et al., 2020; Peeters and
Menschaert, 2020). Although the function of these novel proteins remains sometimes elusive,
some have been demonstrated to play vital functions in human health. The identification and
functional characterization of these novel proteins is a new emerging field of biological sciences.
Recent studies have shown that these novel proteins are involved in diverse biological functions
such as mitochondrial function (Chen et al., 2018; Stein et al., 2018), lipid metabolism (Chibucos
et al., 2014; Chen et al., 2018; Polycarpou-Schwarz et al., 2018; Singh et al., 2018; Zhang et al., 2019;
Zhang et al., 2020), tumor energy metabolism (Chibucos et al., 2014; Kim et al., 2021), cell
development (Kulczynska and Siatecka, 2016; Fazi and Fatica, 2019; Attaway et al., 2021; Kersy
et al., 2021; Kim et al., 2021), and DNA repair (Sharma and Misteli, 2013; Slavoff et al., 2014; Zhou
et al., 2015; Dianatpour and Ghafouri-Fard, 2017; Thapar, 2018; Attaway et al., 2021;
Papaspyropoulos et al., 2021). This research topic in Frontiers in Cell and Developmental
Biology focused on recent progress in this emerging field, aiming to better understand
“ncRNAs,” and served as a forum to discuss gene annotation and the discovery of novel
physiological and pathological molecules.

NON-CODING RNAS: AN OVERLOOKED SOURCE OF
FUNCTIONAL PROTEINS

Non-coding RNAs have recently been demonstrated to contain small-open reading frames (sORFs)
encoding small proteins. Only a few of these newly discovered proteins have been functionally
characterized so far, but they are key players in a variety of cellular processes. In this topic, authors
have reviewed or provided new evidence for the overlooked coding potential of some lncRNAs. The
collection of article illustrates the diversity of functions of these novel proteins, from glioblastoma
biomarkers to neuropeptides and regeneration.
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In an extensive review, Cardon et al. discuss lncRNAs-encoded
proteins as novel biomarkers for glioblastoma (GBM). They
review evidence linking these to the patient’s survival and bad
prognosis. The authors also highlighted the potential functions of
these novel proteins in GBM biology by showing their interaction
with known proteins in the signaling pathways of cellular
mobility and transfer RNA regulation.

Novel proteins originating from lncRNAs have been found in
many biological samples, representing a variety of tissues and cell
types. To better understand the role of ncRNAs-encoded
microproteins in different tissues, Pan et al. profiled the proteomes
of five mouse tissues by mass spectrometry with bottom-up, top-
down, and de novo sequencing strategies. Using the OpenProt
database (Brunet et al., 2019; Brunet et al., 2021), they identified
1,074 microproteins, 540 were known and 534 were novel, including
270 fromncRNAs. They performed gene ontology analyses on the 540
already annotatedmicroproteins to highlight tissue-specific functions.
For example, the brain contains the largest number of neuropeptides,
and the spleen contains the most immune-associated microproteins.
Their results expand the mouse proteome and provide insights into
the molecular biology of mouse tissues.

Working with mouse embryonic stem cells, Senís et al.
discovered a conserved microprotein, named pTUNAR,
encoded in the TUNAR lncRNA. The authors showed that
the 48 amino-acid long pTUNAR is expressed in the nervous
system using ribosome profiling and a custom antibody. They
identified pTUNAR at the membrane of the endoplasmic
reticulum, in interaction with SERCA2. Their results
validate the previous work of Li et al. (2021) where
pTUNAR was independently identified (and named BNLN)
and found in interaction with SERCA3. Although further work
is needed to understand how pTUNAR regulates calcium
dynamics, this work confirmed previous findings and
suggest pTUNAR as an important player in neural
differentiation and neurite formation.

Another type of non-coding RNA are telomerase RNA. Along
with the telomerase reverse transcriptase and regulatory proteins,
it makes up the telomerase complex. However, telomerase RNA is
expressed in most somatic cells, whereas the telomerase reverse
transcriptase is absent. This observation prompted Rubtsova et al.
(2018) to investigate the coding potential of human telomerase
RNA and discovered the human telomerase RNA protein
(hTERP). In this collection, Shliapina et al. further our
understanding of hTERP role in autophagy regulation. Using
hTERP knock-out and over-expression models, the authors
showed that hTERP is involved in the regulation of AMPK
and mTORC1 activity. Although more work is needed to fully
understand the role of hTERP, it is a pinnacle example of how a
deeper characterization of the human proteome is essential to
truly decipher cellular and molecular pathways.

DEVELOPING THE NECESSARY TOOLS TO
EXPLORE THE DEEP PROTEOME

Ribosome profiling is the major technological advance that
revealed pervasive translation throughout the genome in

eukaryotes (Ingolia et al., 2011; Chen et al., 2020). Mass
spectrometry quickly followed to demonstrate the existence of
protein products from these non-canonical translation sites
(Menschaert et al., 2013; Samandi et al., 2017). The
development of new technologies and methods is necessary to
foster the detection of novel proteins originating from non-
coding RNAs.

In this collection, Peeters et al. proposed a proteogenomics
workflow combining state-of-the-art mass spectrometer
(TimsTOF) and machine learning algorithms to improve the
detection of functional peptides in samples. The authors focused
on the mouse brain and peptides shorter than 100 amino acids.
With an enhanced sensitivity and an optimized search of a large
database combining OpenProt (Brunet et al., 2019; Brunet et al.,
2021) and the sORFs repository (Olexiouk et al., 2016; Olexiouk
et al., 2018), this workflow eases the robust identification of non-
canonical peptides.

As the field grows, computational resources have emerged.
These include repositories of non-canonical open reading
frames (such as OpenProt and sORFs used in studies
published in this collection) and browsers of large
ribosome profiling data collection, such as GWIPS-viz
(Kiniry et al., 2018; Michel et al., 2014) and Trips-Viz
(Kiniry et al., 2021; Kiniry et al., 2019). As such, Zaheed
et al. present a detailed guide on using GWIPS-Viz and Trips-
Viz to explore evidence of translation of allegedly non-coding
RNAs. As an example, the authors identify the coding
potential of the previously misannotated as lncRNA
LINC00116. The latter was recently shown to encode the
mitoregulin protein and reannotated as the MTLN mRNA
(Chen et al., 2018) and thus act as a positive control in the
method overview from Zaheed et al.

CONCLUDING REMARKS

The field is still young and this collection highlights recent
discoveries, novel technologies and avenues for research. All of
these are necessary steps to move away from serendipitous
discoveries into systematic explorations of the coding potential
of eukaryotic “non-coding” RNAs. This unexplored reservoir of
functional proteins might hold the key to a better understanding
of cellular and molecular mechanisms.
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