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In a nutshell 

ABSTRACT  Adaptive responses to stress, including hormesis, have been im-

plicated in longevity, but their mechanisms and outcomes are not fully un-

derstood. Here, I briefly summarize a longevity mechanism elucidated in the 

budding yeast chronological lifespan model by which Mitochondrial Adaptive 

ROS Signaling (MARS) promotes beneficial epigenetic and metabolic remodel-

ing. The potential relevance of MARS to the human disease Ataxia-

Telangiectasia and as a potential anti-aging target is discussed. 
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Much of what we know about many complex cellular pro-

cesses (e.g., cell cycle regulation, vesicle transport, gene 

expression and organelle biology), we owe to the study of 

the Saccharomyces cerevisiae model system. This now also 

holds true for basic mechanisms of cellular aging, where 

the replicative and chronological lifespan of this budding 

yeast models aging in dividing and post-mitotic cell popula-

tions in multicellular eukaryotes, respectively. Since an 

overview of the methods involved and what has been 

learned in these aging model systems has been reviewed 

recently [1], I am focusing here on a developing paradigm 

of mitochondrial-stress signaling as a key longevity deter-

minant based on the study of yeast chronological life span 

(CLS). 

Mitochondria are complex organelles at the crossroads 

of metabolism, apoptosis (a type of programmed cell 

death), and signaling. Due to their bacterial ancestry, mito-

chondria have retained a simple, yet essential genetic 

blueprint that contributes critically to one of their main 

functions, generation of ATP via the process of oxidative 

phosphorylation (OXPHOS, a.k.a. respiration) [2]. For ex-

ample, in mammals, mitochondrial DNA (mtDNA) is a 16.5-

kb circular genome that encodes 13 of the ~80 OXPHOS 

complex subunits, as well as two rRNAs and 22 tRNAs 

needed to translate these on dedicated ribosomes in the 

mitochondrial matrix [3]. The remaining ~1,500 resident 

mitochondrial proteins are encoded by genes in the nucle-

us and imported into the organelle during or after synthe-

sis by cytoplasmic ribosomes. In S. cerevisiae, mtDNA is 

larger (~80 kb), encodes fewer OXPHOS genes, and con-

tains introns, but nonetheless is essential for respiratory 

growth [4]. Because most proteins that reside in or regu-

late mitochondria are encoded by nuclear genes, including 

those needed for mtDNA replication and gene expression 

[3], a complex interplay exists between the nucleus and 

mitochondria [5, 6]. The so-called “anterograde” and “ret-

rograde” signaling pathways involved in maintaining mito-

chondrial biogenesis, function, and homeostasis are cur-

rently not completely understood, but have emerged as 

important for aging and longevity. 

During OXPHOS, the mitochondrial electron transport 

chain (ETC) produces reactive oxygen species (ROS) when 

electrons are transferred to oxygen at sites in the chain 

prior to complex IV (cytochrome oxidase) where electrons 

react with oxygen to form water [7]. These premature, 

one-electron transfers generate the free radical superoxide, 

which can form in either the matrix or the space between 

the inner and outer mitochondrial membranes (Fig. 1). In 

addition, there are other sites of mitochondrial superoxide 

production [8]. Mitochondrial superoxide has several fates 

[9]. It can react with and damage molecules directly (e.g., 

iron-sulfur complexes found in many enzymes), it can react 

with nitric oxide (NO) to produce the highly reactive oxi-

dant peroxynitrite (and reduce availability of NO for signal-

ing), or it can be converted to hydrogen peroxide by su-

peroxide dismutase in the matrix (SOD2) or in the inner-

membrane space (SOD1). Hydrogen peroxide can also react 

directly with macromolecules (e.g., can oxidize cysteine 

residues in proteins), can be enzymatically converted to 

water by various enzymes (e.g., catalase and glutathione 

peroxidase), or can undergo the Fenton reaction to pro-

duce the highly reactive hydroxyl radical. Collectively, su-

peroxide, hydrogen peroxide and hydroxyl radical are ROS 

that have been implicated in aging primarily through their 

damaging functions as summarized by the “mitochondrial” 

and “free radical” theories of aging for which there is sig-

nificant support, but also contradictory evidence [10-13]. 

However, superoxide and hydrogen peroxide are also sig-
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naling molecules [7] and, as I will summarize, part of Mito-

chondrial Adaptive ROS Signaling (MARS) pathways that 

can, perhaps surprisingly to some, increase longevity. 

One conserved longevity mechanism involves reduced 

flux through the mechanistic target of rapamycin complex 

1 (mTORC1) kinase-signaling pathway, which extends life 

span in many organisms [14]. This pathway, which was 

discovered in yeast [15], stimulates pro-growth activities 

such as ribosome biogenesis and translation and suppress-

es stress responses and autophagy [16], but its anti-aging 

mechanism is not fully understood. We discovered that 

yeast TORC1 negatively regulates mitochondrial respiration 

in the presence of glucose and that releasing this brake on 

mitochondria is critical for extension of CLS [17]. Interest-

ingly, the enhanced respiration observed when TORC1 sig-

naling is dampened is not driven by an increase in overall 

mitochondrial biogenesis, but rather by augmented trans-

lation of mtDNA-encoded OXPHOS subunits that results in 

increased density of all OXPHOS complexes in the inner 

membrane [18]. Determining precisely how TORC1 regu-

lates expression of mtDNA-encoded genes, controls 

OXPHOS density and activity, and mediates reciprocal ef-

fects on mitochondrial and cytoplasmic translation are 

fertile areas for future inquiry. However, we have made 

significant headway in understanding how the increase in 

mitochondrial respiration promotes extension of CLS, 

which brings me to explain the MARS concept below. 

The dependence of CLS extension by reduced TORC1 

signaling on mitochondrial respiration became more intri-

guing when we realized that the increase in oxygen con-

sumption was observed only in the growth phase of cultur-

ing [17]. That is, in a typical yeast CLS experiment, cells are 

diluted into fresh glucose medium, where they grow expo-

nentially by fermenting glucose to ethanol. Once the glu-

cose in exhausted, the cells switch to using this ethanol as 

a carbon source, which requires mitochondrial respiration 

FIGURE 1: Mitochondrial Adap-

tive ROS Signaling (MARS). De-

picted at the top are ROS (super-

oxide and hydrogen peroxide) 

generated in various mitochon-

drial subcompartments, and, in 

the case of hydrogen peroxide, 

possibly crossing membranes to 

signal directly in the cytoplasm. I 

propose that there are mitochon-

drial ROS sensors associated with 

mitochondria that can directly be 

modified by ROS or in the cyto-

plasm that can detect some ROS-

dependent second messenger 

from mitochondria. MARS signals 

are then relayed to other cellular 

compartments by redox-sensitive 

kinases or other effectors. The 

end result is an adaptive change 

that can have a beneficial effect 

on cellular homeostasis and sur-

vival. To the right is the budding 

yeast MARS paradigm, based on 

CLS extension in response to re-

duced TORC1 signaling as de-

scribed in the text. Specific known 

components and outcomes of 

yeast MARS system are shown. 

The question mark denotes an 

important gap in knowledge, 

which is the nature of precise 

mitochondrial ROS-dependent 

signals and sensors. A generalized 

MARS scheme is depicted on the 

left. 
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(diauxic shift). After the post-diauxic phase of growth, the 

cells enter stationary phase, where their metabolism again 

changes to negotiate nutrient limitations and stress [19]. 

Thus, the observations that CLS extension by reduced 

TORC1 signaling requires mitochondrial respiration and 

that it is increased only in the growth phase led us to pos-

tulate that a MARS response to increased respiration was 

driving increased survival in stationary phase (i.e. the lon-

gevity phenotype). In a nutshell, this turned out to be the 

case, as we recently showed that increased respiration 

during growth results in a mitochondrial superoxide-

dependent MARS response that silences transcription at 

subtelomeric chromatin [20, 21]. This requires inactivation 

of the histone 3 lysine 36 (H3K36) demethylase Rph1p and 

hence an epigenetic response to mitochondrial ROS 

(mtROS) is required for the observed CLS extension [21]. 

Interestingly, this MARS response is recapitulated using 

low levels of menadione (provitamin K) to produce signal-

ing levels of mitochondrial superoxide even in the absence 

of increased respiration, indicating that MARS signaling per 

se is a key element of how reduced TORC1 signaling ex-

tends CLS [21]. 

The Rph1p histone demethylase is phosphorylated and 

inactivated by the kinase Rad53p, which is subservient to 

the upstream kinases Mec1p and Tel1p in the nuclear DNA-

damage response [22]. Accordingly, we found that the 

MARS pathway described above is dependent on Rad53p 

[21]. However, mtROS signal unilaterally through Tel1p and 

this is not associated with a canonical DNA-damage re-

sponse [21]. Thus, MARS signaling in this context co-opts 

elements of the DNA-damage sensing machinery to relay a 

different type of cellular stress response, in our case, an 

extension of cellular life span. It remains to be determined 

if similar MARS signaling is involved in lifespan regulation 

and/or mediates some of the longevity or healthspan ben-

efits afforded by reduced mTORC1 signaling in mammals. 

However, it is noteworthy that the human homolog of 

Tel1p is ATM, the gene for which is mutated in the inherit-

ed disease Ataxia-Telangiectasia (A-T) [23], suggesting 

MARS-like pathways could be involved in the etiology of 

this disorder. In fact, an exciting breakthrough in the biolo-

gy of ATM was the realization that it not only responds to 

nuclear DNA damage, but also is redox sensitive (e.g., di-

merizes in response to oxidization) and signals differently 

in response to oxidative stress versus double-strand breaks 

[24, 25]. Furthermore, we and others have described mito-

chondrial defects in A-T patient cells and mouse models of 

the disease [26-29], with reducing mtROS having some 

beneficial effects on the pathology observed in the latter 

[30]. An intriguing possibility is that in the absence of the 

ROS-sensing function of ATM, mtROS production is not 

kept in check and this leads to the well-documented oxida-

tive stress in A-T [31]. This situation would likely be com-

pounded by the inability to properly respond to and repair 

nuclear DNA damage, and based on recent results also 

mtDNA [32, 33]. I also speculate, based on the yeast MARS 

paradigm discussed, that lack of ATM might also alter epi-

genetic regulation and nuclear gene expression due to a 

role in modifying chromatin in response to mtROS in addi-

tion to mediating canonical nuclear DNA-damage respons-

es. 

As already discussed, MARS works through an epige-

netic mechanism that silences subtelomeric transcription 

to extend yeast CLS [21]. What remains to be determined is 

the importance of silencing subtelomeric chromatin per se 

for yeast longevity. That there are specific pro-aging genes 

located here or that the silencing is part of a response to 

protect telomeres and preventing nuclear genome instabil-

ity (e.g., gross chromosomal rearrangements) are two pos-

sibilities that are not mutually exclusive. Increased error-

prone repair and replication stress have been shown to 

contribute to CLS [34, 35], perhaps consistent with sub-

telomeric silencing stabilizing the nuclear genome to ex-

tend CLS. It is also important to point out that extension of 

CLS by reduced TORC1 signaling is multifaceted, with sub-

telomeric silencing being only one key component. For 

example, increased stress resistance, metabolic adapta-

tions, and other cellular processes are clearly involved [36-

38]. Many of these pathways require activation of the 

stress-responsive transcription factors, Msn2p/4p and 

Gis1p [39], the latter of which is a paralog of Rph1p that 

also contributes to the MARS response [21]. Furthermore, 

Rph1p and Gis1p have been implicated in metabolic regu-

lation (e.g., glycerol and acetate metabolism) [40, 41]. In-

terestingly, all of these factors bind to similar cis-acting 

elements [40, 42] and hence likely collaborate and cross-

talk to integrate various stress and metabolic inputs into 

transcriptional and epigenetic responses that mediate the 

beneficial effects of reduced TORC1 signaling. 

Metabolic and epigenetic responses are burgeoning ar-

eas in aging research. In the yeast MARS paradigm (Fig. 1), 

the possibility that these are intimately intertwined 

through the Jumonji demethylase Rph1p is intriguing. 

Rph1p is in the dioxygenase class of histone demethylases 

[43] that requires iron, α-ketoglutarate and oxygen for 

catalysis with succinate and C02 as products. In yeast, tran-

scriptional responses that mediate mitochondrial biogene-

sis and function in response to oxygen have long been 

known to occur through heme-activated transcription fac-

tors [44, 45], intimately linking nuclear transcriptional re-

sponses to mitochondrial heme biosynthesis, which re-

quires iron. Mitochondria are also major sites of iron-sulfur 

center production for the ETC and many other enzymes in 

the cell, and their assembly and function are very sensitive 

to superoxide [46]. Thus, iron availability may be a mecha-

nism to signal mitochondrial function/dysfunction to the 

nucleus by modulating Rph1p activity. This basic concept 

has been proposed to contribute to nuclear genome insta-

bility downstream of mitochondrial dysfunction, based on 

iron-sulfur center deficiency in nuclear DNA-repair en-

zymes [47]. Rph1p requires α-ketoglutarate and produces 

succinate, intermediates of the TCA cycle, potentially 

providing a direct link to mitochondrial metabolic activity 

similar to iron. Similar arguments can be posed for the 

sirtuins, which require the metabolic co-factor NAD
+
, a 

major link to the mitochondrial ETC that utilizes NADH 

from the TCA cycle to drive respiration, and for histone 

acetyltransferases that utilize the central metabolic inter-
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mediate acetyl-CoA for catalysis. This linkage of metabo-

lism to chromatin remodeling is clearly worth significant 

more attention with regard to regulation of nuclear gene 

expression and DNA stability, in general, and to aging, spe-

cifically. 

Lastly it is important to emphasize that the MARS para-

digm for yeast CLS regulation I have summarized here was 

not elucidated in a vacuum. That is, MARS pathways in 

aging in C. elegans and yeast have been documented clear-

ly by others [48-51]. In addition, adaptive responses to 

other forms of mitochondrial dysfunction that regulate 

longevity [52], particularly the mitochondrial unfolded pro-

tein response [53], which can even act cell-non-

autonomously [54], are firmly established. Therefore, I 

conclude that significant future efforts should be aimed at 

understanding mitochondrial stress-signaling pathways in 

biology, pathology and aging, including those like MARS 

with long-term adaptive effects. Delineating the full com-

plement of these pathways, how they act in specific time 

and developmental windows, and transduce signals to ef-

fect specific beneficial outcomes (e.g., epigenetic regula-

tion and metabolic remodeling) could have significant 

prophylactic or therapeutic value for mitochondrial and 

metabolic diseases, as well as age-related pathology. 
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