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Abstract: Sensor fault detection of wind turbines plays an important role in improving the reliability
and stable operation of turbines. The supervisory control and data acquisition (SCADA) system of a
wind turbine provides promising insights into sensor fault detection due to the accessibility of the data
and the abundance of sensor information. However, SCADA data are essentially multivariate time
series with inherent spatio-temporal correlation characteristics, which has not been well considered
in the existing wind turbine fault detection research. This paper proposes a novel classification-based
fault detection method for wind turbine sensors. To better capture the spatio-temporal characteristics
hidden in SCADA data, a multiscale spatio-temporal convolutional deep belief network (MSTCDBN)
was developed to perform feature learning and classification to fulfill the sensor fault detection.
A major superiority of the proposed method is that it can not only learn the spatial correlation
information between several different variables but also capture the temporal characteristics of each
variable. Furthermore, this method with multiscale learning capability can excavate interactive
characteristics between variables at different scales of filters. A generic wind turbine benchmark
model was used to evaluate the proposed approach. The comparative results demonstrate that the
proposed method can significantly enhance the fault detection performance.

Keywords: fault detection; classification; wind turbine sensor; multivariate time series; multiscale
spatio-temporal convolutional deep belief network; deep learning

1. Introduction

Recently, wind energy as an inexhaustible and fast-growing clean renewable energy source has
received considerable attention. As critical equipment for wind power generation, wind turbines have
been widely distributed around the world. In practice, these turbines are usually situated in far-flung
regions and always suffer from harsh operating environments, which can easily cause various failures
and even shutdowns in severe cases [1]. Specifically, sensors, such as pitch angle, power, and speed
sensors, which are widely equipped in wind turbines for monitoring and controlling the operation
of the entire turbine, are extremely prone to various faults. Statistically, sensor failures account for
approximately 15% of the total wind turbine failures [2]. Furthermore, sensor failures can cause signal
corruption for condition monitoring and fault diagnosis, which in turn affect the health status of other
key subassemblies, thereby reducing the reliability of the turbine and increasing economic losses [3,4].
As aresult, it is particularly important and challenging to research effective and valuable fault detection
approaches for wind turbine sensors.

Up to now, numerous fault detection techniques for wind turbine sensors have been proposed
and discussed. On the one hand, physical-model based approaches have been proved to be effective
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and commonly adopted, typically including constrained Kalman filter [5], Takagi-Sugeno fuzzy
model [6], and observed-based approaches [7,8]. Nevertheless, in practical engineering, it is unrealistic
to establish a detailed mathematical model due to the complex electromechanical system construction
and highly dynamic operating condition of wind turbines, which limits the further development and
application of physical-model based methods, to a large extent. On the other hand, with the advent
of advanced sensor technology, instead of requiring physical knowledge or accurate mathematical
models, data-driven methods relying only on measured data have become quite attractive in fault
detection of wind turbine sensors.

Practically, modern large-scale wind turbines have deployed supervisory control and data
acquisition (SCADA) systems to acquire and record a vast amount of rich operational status data [9].
Consequently, due to the availability and economy of SCADA data, sensor fault detection based on
SCADA data has been considered as a feasible and valuable method, and, until now, numerous analysis
approaches have been extensively studied in the literature. These methods mainly include artificial
neural networks (ANN) [10,11], power curve-based method [12,13], support vector machine [14-16],
and classifier fusion-based method [17]. However, these traditional methods cannot fully capture the
complicated non-linear mapping between sensor variables due to their typical shallow structure, and,
accordingly, can only achieve limited detection performance [18]. In addition, these studies did not
mine the sensor data from the perspective of the multivariate time series, nor was the co-relationship
between multivariate was well considered.

Alternatively, as a novel type of machine learning, deep learning has attracted extensive attention
from academic and industry community, which aims to extract abstract and valuable information from
data via stacking multiple non-linear processing layers in hierarchical architectures, and therefore,
is more powerful than those traditional intelligent methods [19]. In recent years, this emerging method
has been extensively used in a variety of challenging regression and classification tasks, such as speech
recognition [20], affect recognition [21,22], image classification [23], and wind speed prediction [24].
Moreover, deep learning-based wind turbine fault detection and diagnosis has witnessed an emerging
research [25,26]. In particular, convolutional deep belief network (CDBN), a powerful hierarchical
generative method, was proposed by Lee [27], which has the unique advantages of the weight sharing
and nonlinear feature learning and has been successfully introduced into the vibration-based fault
diagnosis of bearings [28,29].

However, there are some challenges in applying conventional CDBN to detect wind turbine faults
based on SCADA data. Specifically, sensor measurements from wind turbine SCADA systems
are multivariate and closely related because of the mutual coupling and interaction between
various components in a wind turbine [30]. Moreover, these sensor variables are time series in
nature, incorporating the temporal and spatial correlation information simultaneously. This paper
proposes a novel classification-based fault detection method for wind turbine sensors. In particular,
a multiscale spatio-temporal CDBN (MSTCDBN) is developed to extract the interactions and inherent
spatio-temporal characteristics of the SCADA multivariate time series. The proposed method can
improve the feature learning capability and, thus, enhance fault detection performance. The main
contributions of this paper are summarized as follows.

1. A novel MSTCDBN method is proposed to overcome the limitations of traditional CDBN that
lack the ability to capture the spatio-temporal correlations inherent in multivariate time series
and cannot realize multiscale feature learning. In other words, the proposed MSTCDBN has the
superiorities of spatio-temporal dependence extraction and multiscale feature characterization,
simultaneously. At the same time, as far as we know, this is the first time CDBN has been applied
to the analysis and processing of multivariate time series.

2. Specifically, the spatio-temporal dependences hidden in the multivariate time series are considered
by designing different forms of convolution kernels in a cascade way. Furthermore, the interactive
and complementary representations between sensor variables are extracted at multiple different
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scales of filters in a parallel fashion. The proposed MSTCDBN with the multiscale spatio-temporal
feature learning ability enables us to enhance the classification performance greatly.

3. A generic wind turbine benchmark model is utilized to evaluate the effectiveness of the proposed
method in the fault detection of wind turbine sensors, and comparative studies are performed.

The reminder of this paper is organized as follows. Section 2 briefly describes the theory of
standard CDBN and introduces the proposed MSTCDBN approach for fault detection of wind turbine
sensors in detail. A systematic description of the experiment and the acquisition and preprocessing of
multivariate time series signals are proposed in Section 3. Section 4 gives the comparative detection
results to evaluate the effectiveness of the proposed method. Conclusions are provided in Section 5.

2. Proposed MSTCDBN Fault Detection Method

2.1. Standard CDBN Methodology

The standard CDBN is a novel hierarchical probabilistic generative model constituted by several
stacked convolutional restricted Boltzmann machines (CRBMs). This model takes the two-dimensional
input structure into account and has the superiorities of weight sharing and unsupervised feature
learning. Generally, each CRBM contains one visible layer (input layer, typically, binary or Gaussian)
and one hidden layer. Since the introduction of the convolution operation, not only the connection
weights between these two layers are shared, but also the most significant features of the local area
can be extracted. In addition, in order to improve computational efficiency and retain the most useful
information, a probabilistic max-pooling layer is usually added after the hidden layer. Figure 1 displays
the typical structure of the CRBM model, and for simplicity, only the kth hidden group and the pooling
layer are shown.

Pooling layer Pk
Hidden group H*
Filter weights WF
o O .
O 0O Visible layer v

Figure 1. Typical structure of the convolutional restricted Boltzmann machine (CRBM) model.

Assume that the input layer of the CRBM consists of a Ny X Ny matrix. The hidden layer is
composed of K groups with Ny X Ny matrix. Therefore, there are NIZJK hidden units included in this
CRBM. Meanwhile, each hidden group is jointed with a Ny X Ny filter, where Nyy = Ny — Ny + 1.
In particular, in order to deal with the real-valued input variables of the SCADA system, the Gaussian
visible units should be adopted. The energy function of the Gaussian CRBM can be expressed as

v,h ZZ 2 XZH Zh KOs Zkah Zvi,]-, (1)
k=1i,j=1rs=1 = ij=

where v and h denote the visible units and hidden units, respectively. v; ; is the element in the ith
row and the jth column of the matrix v, hi.‘]. is the element in the ith row and the jth column of the kth
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hidden group, and W’,‘, s is the element in the rth row and sth column of the kth filter. c represents the
shared bias of all visible units and by is the bias of each hidden group.

Then, the conditional distributions of Gaussian CRBMs are calculated according to the block
Gibbs sampling [27], which can be described as follows

P} = 1Iv) = o((W*%0), ; + by), )
P(ojj=1lh) = N() (WEehb), i +¢,1), 3)
kji,j

where o(x) = 1/(1 + exp(x)) represents the logistic sigmoid function, N(y,0?) is the Gaussian
distribution with mean p and variance a2, = refers to the convolution operation, and W{‘ = Wlli]w_j E

After obtaining the features of training samples through the convolution operation, the probabilistic
max-pooling layer is usually introduced to further reduce the computational complexity and retain
the most useful feature information. The pooling layer also has K groups, each of which is a Np X Np
matrix. For each k € {1,--, K]}, the hidden group H* is partitioned into multiple blocks of size C x C,
where C generally refers to a small integer like one, two, or three. Meanwhile, each block is associated
with a unit in the pooling layer. Finally, a contrastive divergence method [31] is conducted to get
the optimal model parameters {Wk, c, bk} of the Gaussian CRBM. As a result, the learning process of
the hierarchical generative algorithm CDBN can be accomplished by continuously training several
individual CRBMs.

2.2. MSTCDBN Architecture

The main idea of the new MSTCDBN method is to incorporate spatio-temporal characteristic
representation and multiscale feature learning into the conventional CDBN structure to enhance fault
detection performance. It is worth noting that the fault detection method for wind turbine sensors
mentioned in this paper is a classification-based supervised detection method, which typically belongs
to a binary classification problem. To be specific, different sensor failure scenarios are uniformly
defined as fault condition to perform effective classification detection. The overall schematic is given
in Figure 2, and the general implementation process are illustrated as follows.
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SCADA multivariate time series Multiscale spatial feature learning Multiscale temporal feature learning Classification Output

Figure 2. Schematic of the developed multiscale spatio-temporal convolutional deep belief network
(MSTCDBN) method.

1. Collect SCADA datasets with various health conditions of wind turbine sensors. For each health
condition, data is preprocessed and further divided into several two-dimensional fragments to
acquire training and testing sets separately.

2. Multiple CDBN models with different structures are integrated for multiscale spatio-temporal
feature learning. In particular, this learning process is realized in a typical unsupervised manner.
Then, the obtained multiscale spatio-temporal characteristics are input to a classifier to detect the
condition of wind turbine sensors.
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3.  Testing sets are fed into the well-learned MSTCDBN-based model to perform multiscale
spatio-temporal feature extraction and produce detection results.

Inspired by inception structure [32,33], one of the advantages of this approach is to extract
and capture useful interactive signatures at multiple different scales of filters in a parallel manner.
On the contrary, due to the inherent spatio-temporal characteristics of the multivariate time series,
feature extraction along different dimensions can not only make the model more interpretative but also
can improve the model performance [34,35]. In view of this, another property is to excavate spatial and
temporal correlation information in a cascade way by designing different forms of convolution kernels.
In general, the method mainly consists of three consecutive stages, which are multiscale spatial feature
learning, multiscale temporal feature leaning, and classification, respectively.

2.2.1. Multiscale Spatial Feature Learning

Given an input sensor measurement matrix X € RS*T, where s denotes the number of sensor
variables, and f represents sampling points. For this multivariate time series matrix, three different
scales of filters, including two by one, three by one, and five by one, are used to extract the interactive
characteristics among multiple variables in parallel, respectively. Note that each filter is designed to
slide only along the variable axis in this section. In other words, three different CDBN modules are
initially executed to process the input data, therein extracting advanced abstract multiscale spatial
correlation information.

In terms of each CDBN module, it includes two hidden layers followed by a pooling layer, and as
mentioned above, the convolution and pooling operations are performed only in the spatial dimension.
Once the above process is completed, in order to keep the temporal dimension unchanged, the local
spatial feature maps yielded by these CDBN modules are concatenated in the direction of the variable
axis for further multiscale temporal feature extraction.

2.2.2. Multiscale Temporal Feature Learning

This phase is designed to extract valuable temporal characteristics from the learned spatial maps
at different filter scales in parallel. Similar to the spatial feature learning, three different scales of
filters are adopted. However, the difference is that each filter is designed to move only along the time
axis of each variable, and the sizes are set to one by two, one by three, and one by five, respectively.
This implies that three additional CDBN modules are applied to mine useful and different temporal
correlation information. In the same way, each CDBN module contains two hidden layers and a
pooling layer. Then, the local temporal correlations extracted at each filter scale are concatenated along
the time axis for the final fault classification detection.

2.2.3. Classification

It should be noted that the fault detection for wind turbine sensors focused on this work
belongs to the category of binary classification, which indicates whether the sensors are in a healthy
condition. In this case, the high-level multiscale spatio-temporal representations learned in the
feature extraction phase is first transformed into a two-dimensional matrix, and then directly fed
into the final softmax function to convert each class of predictions into conditional probabilities.
For the training of the proposed method, the cross entropy function is selected as the loss function,
as shown in Equation (4), where p(i) refers to the true distribution, and g(7) stands for the estimated
distribution. Finally, after adequate training of the proposed method, the testing set is further used for
performance evaluation.

H(p,q) = =), p() logq(i), @
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3. Case Study

3.1. Awvailable Data

In order to implement the proposed approach in wind turbine sensor fault detection, a generic
5MW-based offshore wind turbine benchmark model presented in [36] was employed. This benchmark
models a realistic three-bladed, variable speed horizontal axis wind turbine using a fatigue,
aerodynamics, structures, and turbulence (FAST) aeroelastic simulator, and has been extensively
applied to evaluate a variety of fault detection and diagnostic approaches [37,38]. Moreover, the model
can generate actual stochastic wind data series, and the cut-in, rated, and cut-out wind speeds were
3 m/s, 11.4 m/s, and 25 m/s, respectively. A more detailed illustration of the wind turbine benchmark
model was given in [36]. In this work, in order to verify the proposed approach in a more realistic
scenario, a mean speed of 17 m/s at hub height was used to generate the required data set, and a
simulation of this wind speed sequence is shown in Figure 3.

30 T T T T T T

25

3]
(=]

Wind speed (m/s)

10
5
0 1 1 | I | 1
100 200 300 400 500 600
Time (s)

Figure 3. Wind speed sequence with mean speed of 17 m/s.

In a wind turbine SCADA system, vast amounts of measurements were collected to monitor the
operating status of the turbine and its key subsystems, such as power output, wind speed, temperature,
blade pitch angle, and generator speed. Similarly, in regard to the benchmark model, a total of 15 sensor
outputs with measurement noise are provided, as listed in Table 1 [17], each of which was generated
by adding a band-limited Gaussian white noise that are parameterized by noise power to the actual
variable value by the FAST simulator. Note that all these measured variables were derived from real
wind turbine SCADA systems. Based on this benchmark model, the actual sensor failure scenarios of
wind turbines can also be defined. Overall, six sensor operating conditions with different kinds of
faults were involved in this work, and the details of all these conditions are displayed in Table 2.

3.2. Data Collection and Preprocessing

In this section, in order to acquire more realistic time series measurements, different wind data
sets were used for generating numerical simulations. Note that the sampling time of each data set was
0.0125 s, and the duration was 630 s. In particular, 420 simulations were carried out totally, of which
210 were in normal condition and 45 for each failure scenario.

However, in practice, the sampling time of 0.0125 s was usually relatively low compared with
the real SCADA system. Therefore, in order to consider a realistic higher sampling time [39], the raw
measured values from all conditions were down-sampled to 1 s. Furthermore, because the initialization
of the numerical simulation can result in transients [40], the first 30 s sequence of each simulation
was deleted. Generally, different variables had different dimensions, so it was necessary to normalize
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these measurements such that they are in a consistent range of [0,1]. After that, in order to train the
proposed method on the multivariate time series, the normalized signals were divided into a set
of segments with a length of 100 sampling points without overlap through using sliding window
technology, which meant that each time series segment represents a sequence of 100 s. At this point,
there were 1260 samples for the normal condition and 270 samples for each failure scenario, and these
samples were manually labeled to indicate whether the sensor was in a healthy condition. In this paper,
a commonly used random selection approach was used for performance evaluation, which can avoid
the impact of contingency and particularity on the diagnosis results. In addition, considering that data
bias could severely deteriorate the evaluation results, these data sets were intentionally divided to
make the classes balanced. In particular, random 1000 samples of the normal condition were selected
for model training and 250 samples for testing. For each fault condition, random 200 samples were
applied for training and 50 samples for testing. The detailed description of the sample distribution is
shown in Table 3, and the dimension of each multivariate time series sample was 15 by 100.

Table 1. Available variables.

Number Variable Unit Noise Power
1 Wind speed at hub height m/s 0.0071
2 Rotor speed rad/s 1074
3 Generator speed rad/s 2x107*
4 Generator torque Nm 0.9
5 Generated electrical power W 10
6,7,8 Pitch angle of ith blade deg 1.5x 1073
9 Azimuth angle low speed rad 1073
10,11, 12 Blade root moment of ith blade Nm 103
13,14 Tower acceleration in x, y direction m/s? 5x 1074
15 Yaw error deg 5x 1072

Table 2. Detailed descriptions of considered conditions.

Number Condition Description

Normal Normal condition Fault-free

Fault 1 Generator speed sensor Scaling (gain factor equal to 1.2)
Fault 2 Generator power sensor Scaling (gain factor equal to 1.2)
Fault 3 Pitch angle sensor Stuck (fixed value equal to 1 deg)
Fault 4 Pitch angle sensor Stuck (fixed value equal to 5 deg)
Fault 5 Pitch angle sensor Scaling (gain factor equal to 1.2)

Table 3. Sample description of the different sensor conditions.

Number Size of Total Samples Size of Training Samples Size of Testing Samples
Normal 1260 1000 250
Fault 1 270 200 50
Fault 2 270 200 50
Fault 3 270 200 50
Fault 4 270 200 50
Fault 5 270 200 50
4. Results

In this section, in order to verify the effectiveness of the proposed approach and overcome the
influence of randomness in the model training process on the detection results, ten trials were conducted
for evaluating the overall performance. Meanwhile, the advantage of the proposed MSTCDBN fault
detection method was proved by comparing with traditional CDBN and its other variants. Here,
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four commonly adopted evaluation metrics, classification accuracy, precision, recall, and F1 score were
used for performance evaluation and comparison, which can be defined as follows

TP + TN

Accuracy =15 EN T FP TN ©®)
TP
Precision — TP
recision P T FP, (6)
TP
Recall =———— 7
TP L ENY @
2Precision X Recall
Fl— score — recision X keca (8)

Precision + Recall ’

where TP refers to the number of correctly classified as positive samples, TN is the number of correctly
classified as negative samples, FP is the number of misclassified as positive samples, and FN is the
number of misclassified as negative samples, respectively.

As described in Section 2, in order to extract interactive spatio-temporal features for sensor fault
detection, six different forms of CDBN were designed in the proposed MSTCDBN method. Each CDBN
module consists of two hidden layers and a pooling layer, and the number of filter groups for two
hidden layers were set to 9 and 16, respectively. The detailed structures are listed in Table 4. In addition,
in the process of model training, the batch sizes of each CDBN were 100 and 10, and the stride length
was selected as 1 by 1. In the final classification phase, the output size of the MSTCDBN was two,
which corresponds to the normal and fault conditions of the sensor, respectively.

Table 4. The structure of the proposed MSTCDBN.

Description Setting Convolution1  Convolution 2 Pooling
CDBN1 9,2x1 16,2x1 2x1
Multiscale spatial feature learning CDBN2 9,3x1 16,3x1 2x1
CDBN3 9,5x1 16,5x1 2x1
CDBN4 9,1x2 16,1x2 1x2
Multiscale temporal feature learning CDBN5 9,1x3 16,1x3 1x2
CDBN6 9,1x5 16,1x5 1x2

In addition, herein, several structures of CDBN from different perspectives were investigated
to deeply explore the capability of the presented method in the wind turbine sensor fault detection,
including standard CDBN, single-scale temporal CDBN (STCDBN), single-scale spatial CDBN
(SSCDBN), single-scale spatio-temporal CDBN (SSTCDBN), multiscale temporal CDBN (MTCDBN),
and multiscale spatial CDBN (MSCDBN). Specifically, the first three methods all contain one CDBN
module and only consider the correlations on a single scale. For the standard CDBN, conventional
square filters are adopted. The filters of STCDBN and SSCDBN are specified to slide only along the
time and spatial axes, respectively. In terms of the SSTCDBN, it contains two cascaded CDBN modules,
taking into account the correlations in both temporal and spatial dimensions on a single scale. For the
latter two methods, MTCDBN and MSCDBN consist of three parallel CDBN modules, extracting
temporal and spatial information on multiple scales, respectively. In these experiments, the same input,
two-layer structures CDBN and softmax classifier as the proposed method was used, and the stride
length and batch sizes were also set to 1 by 1 and 100 and 10, respectively. The detailed structures
are shown in Table 5. Moreover, all models with the running environment Intel Core (TM) i5-4300
CPU and 8-GB RAM using the Matlab software. The average testing performance (mean + standard
deviation) of all methods over ten trials are given in Figure 4 and the average testing time is shown
in Table 6.
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Table 5. Structures of six comparative methods.

Method Setting Convolution1l  Convolution 2 Pooling
CDBN CDBN1 16, 3x3 32,3%3 2x2
STCDBN CDBN1 9,1x5 16, 1 x5 1x2
SSCDBN CDBN1 16, 2x1 16, 2x1 -
CDBN1 9,2x1 16, 2x1 2x1
SSTCDBN CDBN2 9,1x2 16, 1x2 1x2
CDBN1 16, 1x2 16, 1x2 1x2
MTCDBN CDBN2 16, 1x3 16, 1x3 1x2
CDBN3 16, 1 x5 16, 1 x5 1x2
CDBN1 32,2x1 32,2x1 -
MSCDBN CDBN2 32, 3x1 32,3x1 -
CDBN3 32,5%x1 32,5x%x1 -
100.00 T . . .
< 95.00 f -
(]
Q
& 90.00 | .
E :
56
T 85.00 - .
~
80.00 Accuracy Precision Recall F1-score
B CDBN 90.64+7.08 85.33+10.25 100.00+0.00 91.7945.95
B STCDBN 91.28+3.83 85.48+5.57 100.00+0.00 92.08+3.24
@ SSCDBN 91.40+7.24 86.44+10.04 100.00+0.00 92.44+5.94
B SSTCDBN 90.36+1.51 85.12+3.06 98.04+1.83 91.07+1.21
@ MTCDBN 92.44+4.88 87.3946.83 100.0049.00 93.14+4.03
B MSCDBN 91.10%+2.99 85.08+4.21 100.00+0.00 91.89+2.49
B Proposed 97.28+0.95 96.35+2.06 98.36+2.34 97.314).95

Figure 4. Detection performance of different convolutional deep belief network (CDBN) structures.

Table 6. Runtime of different CDBN structures.

Method Time (s) Method Time (s)
CDBN 23.33 MTCDBN 83.60
STCDBN 13.77 MSCDBN 105.20
SSCDBN 20.36
SSTCDBN 10.62 Proposed method 56.27

It can be easily seen from Figure 4 that the first six methods yield similar detection performance.
However, compared with standard CDBN with conventional square filter, STCDBN and SSCDBN have
better performance, which shows the ability of temporal and spatial information extraction. Moreover,
in terms of the mean value, it can be seen that MTCDBN is superior to STCDBN in all evaluation metrics.
Although MSCDBN is slightly inferior to SSCDBN, the proposed method obviously outperforms these
two methods and other structures of CDBN. This is mainly because MSTCDBN with different scales of
filters can extract and learn the interactive spatio-temporal correlation information that is beneficial
for classification. Specifically, better and more stable improvements from other variants of CDBN
to MSTCDBN can be observed for accuracy, precision, and F1-score. Overall, the method presented
in this paper results in an enhanced fault detection performance. Likewise, it is not difficult to find
from Table 6 that although the structure of the proposed method is relatively complex, it costs less
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computing time than the MTCDBN and MSCDBN due to the introduction of pooling operation and
need for the fewer number of filter groups.

From another perspective, in order to better understand the classification performance of different
approaches, the testing classification results over ten trials using the confusion matrix are given
in Figure 5. The 0 and 1 represent normal and fault conditions, respectively. It can be observed
that the confusion matrix comprehensively describes the number of correctly classified samples and
misclassified samples for normal and fault conditions, the percentage of each condition that is correctly
classified and incorrectly classified, and the percentage of correctly classified and misclassified in each
predicted label. Obviously, compared with other methods, fewer total samples are misclassified when
employing proposed MSTCDBN method, resulting in better detection performance.

ol 2500 468 | 84.2% 0 2500 | 436 |85.1% 0 2500 | 430 |85.3% 2451 | 433 |85.0%
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Figure 5. Confusion matrix results of different methods. (a) standard CDBN; (b) single-scale temporal
CDBN (STCDBN); (c) single-scale spatial CDBN (SSCDBN); (d) single-scale spatio-temporal CDBN
(SSTCDBN); (e) multiscale temporal CDBN (MTCDBN)); (f) multiscale spatial CDBN (MSCDBN); and
(g) proposed method.

According to Section 3, six health conditions of sensors are mainly focused on this paper, including
the normal condition and five different patterns of faults. Therefore, it is necessary to quantitatively
evaluate the detection performance of an individual condition based on the overall detection results.
The comparative results with average classification accuracy are given in Table 7.

As can be observed from Table 7 that in terms of normal condition, fault types three and four, all
methods achieved relatively good performance, with the classification accuracy of above 98%, 93%,
and 92%, respectively. Moreover, the proposed method and SSTCDBN outperform the other models
in classifying fault type one. As far as fault type five was concerned, the recognition accuracy of
MSCDBN was only 62.8%, which is significantly lower than other methods. It is worth mentioning
that as for fault type two, the approach presented in this paper achieved the highest classification
accuracy of 83.6%. However, with respect to other variants of CDBN, the best result was only 60.4%,
which clearly shows the advantage of the proposed method in fault identification. Moreover, it also
indirectly indicates that fault type two is probably the most difficult of the six health conditions to
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detect. In a word, the method incorporating multiscale and spatio-temporal feature learning capability
presented in this paper plays an important role in sensor fault detection and finally obtains the highest
overall accuracy.

Table 7. Recognition accuracy of each health condition (%).

Method Normal Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Overall

CDBN 100.00 76.20 44.60 93.40 92.40 99.80 90.64
STCDBN 100.00 90.00 33.00 95.40 94.40 100.00 91.28
SSCDBN 100.00 81.00 41.20 97.00 94.80 100.00 91.40

SSTCDBN 98.04 99.80 19.40 99.00 99.60 95.60 90.36
MTCDBN 100.00 83.60 50.60 94.80 100.00 95.40 92.44
MSCDBN 100.00 96.60 60.40 95.80 95.40 62.80 91.10
Proposed 98.36 99.20 83.60 98.60 99.60 100.00 97.28

In order to further demonstrate the ability of the proposed method in fault detection of wind
turbine sensors, a comparison with traditional ANN and deep belief network (DBN) is carried out.
For these two networks, the four-layer structures consisting of an input layer, two hidden layers,
and an output layer are used for classification. It should be noted that different from the CDBN model,
DBN, and ANN deal with data on the one-dimensional input structure. Table 8 shows the average
comparison results between the proposed MSTCDBN and the two methods in terms of four evaluation
metrics over ten trails.

Table 8. Comparison results of other different methods (%).

Method Accuracy Precision Recall F1-Score
ANN 74.13 78.19 69.49 87.02
DBN 88.64 86.05 95.78 90.03

Proposed 97.28 96.35 98.36 97.31

It can be easily found from Table 8 that the accuracy, precision, recall, and F1-score generated
by the proposed MSTCDBN method was higher than the ANN and DBN models. It means that
the proposed method achieves the best overall performance compared to the other two methods,
indicating the superiority of the proposed method in fault detection. Furthermore, it can also be seen
that the DBN performs better than the ANN. This is mainly because compared with the ANN model,
DBN has powerful unsupervised feature learning ability, which can handle complex relationships
between variables, thus resulting in relatively better performance. However, this model ignores the
two-dimensional structure of the input, making it difficult to extract the spatio-temporal correlations
hidden in the multivariate time series. In contrast, the proposed MSTCDBN method takes into account
spatio-temporal features at different filter scales, which contributions to the enhancement of the fault
detection performance.

In summary, since the sensor measurements generated by the benchmark model can truly reflect
the wind turbine SCADA data, the proposed MSTCDBN method has the potential to be an alternative
method for sensor fault detection in real wind farms. Meanwhile, in practice, it is reasonable to train
an independent model for each turbine due to the different operating conditions and environments of
each turbine. Likewise, the condition labels which are helpful for fault detection should be carefully
labeled so that the proposed method is widespread adopted.

5. Conclusions

In this paper, a novel MSTCDBN approach is presented to address the challenging task of fault
detection of wind turbine sensors by considering the temporal and spatial correlations hidden in the
multivariate time series. Firstly, a major feature of the presented approach is that different forms
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of convolution kernels are designed to extract the spatio-temporal characteristics between sensor
variables in a cascade way. Secondly, another contribution is to learn interactive and rich fault
features by incorporating different scales of filters in a parallel manner. Accordingly, the proposed
method can enhance the feature learning capacity and fault detection performance. Furthermore,
the effectiveness of the MSTCDBN model was investigated by comparing with traditional CDBN and
its other variants, as well as ANN and DBN methods. In particular, the developed method combing
spatio-temporal feature extraction and multiscale learning is better than other models in terms of
classification performance, which provides a new insight for detecting wind turbine sensor faults and
can be extended to other research applications.

However, due to the limited SCADA data, this study is only validated on a generic benchmark
model. In future work, the developed MSTCDBN will further be spread to real wind turbine sensors,
and other critical components in wind turbines will be discussed. From the perspective of pattern
recognition, a fault diagnosis system can quickly identify and locate fault categories when abnormalities
occur in the wind turbine. Therefore, the proposed method will be further used for the sensor fault
diagnosis to identify the specific fault type of the sensor. Based on the sensor fault detection and
diagnosis, it is necessary to adopt corresponding fault-tolerant control strategies to ensure that the
turbine is in normal operation, thereby improving the safety and reliability of the turbine. Meanwhile,
more advanced feature extraction and learning approaches will be established to further mine the
spatio-temporal correlations in SCADA multivariate time series. In this paper, the data-driven method
is used to realize the fault detection, and the combination of data-driven and model-based methods is
expected to become a new research direction [41].
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