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Harnessing epithelial homeostatic mechanisms 
to fight cancer

ABSTRACT  Cancer treatments have, in general, targeted the cancer cell itself. This approach 
has often been unsuccessful in the long term, especially for solid tumors. Even targeted 
therapies based on sequencing cancer genomes can be thwarted by genetic heterogeneity 
within tumors. Furthermore, genomic instability in cancer cells accelerates the generation of 
variants that are resistant to the treatment. Immunotherapies and anti-angiogenic treat-
ments, which target the tumor-interacting and tumor-adjacent cells, have overcome some of 
these challenges, suggesting that other methods that target wild-type cells could be valuable 
in arresting tumor progression. Studies in Drosophila have uncovered mechanisms by which 
cells within an epithelium can react to neighboring cells that have genetic differences, result-
ing in the elimination of one population at the expense of another. Some of these mecha-
nisms are now known to be conserved in mammals. The possibility of harnessing such mech-
anisms to empower normal epithelial cells to eliminate their precancerous neighbors before 
they develop into fully fledged cancers is an area of research that merits more attention.

INTRODUCTION
Most human cancers originate in epithelia as preneoplastic clones 
of mutant cells surrounded by wild-type cells (Figure 1, A and B). 
As cancers grow, there is a selection for additional mutations that 
promote growth, inhibit apoptosis, enable angiogenesis, and help 
evade immune surveillance (Figure 1C). Tumors are usually de-
tected, either by physical examination or by a variety of diagnostic 
tools, only when they are sufficiently large. By that time, many have 
breached the underlying basement membrane and initiated the 
process of spreading to distant sites in the body (metastasis). Treat-
ments that seek to kill tumor cells by exploiting a genetic weakness 
are often not fully effective, because advanced cancers are geneti-
cally heterogeneous. Moreover, tumor cells often have genetic le-
sions that increase the mutation rate. Thus, even when a tumor 
initially responds to a treatment, recurrence of a drug-resistant 

version is common and treatments can eventually become 
ineffectual.

Therapies that target wild-type cells in a tumor’s environment, 
such as immunotherapies which subject the tumor to immune sys-
tem attack (Ribas and Wolchok, 2018), or anti-angiogenic therapies 
which deprive a tumor of oxygen and nutrients (Jayson et al., 2016), 
have shown promise in overcoming the challenges posed by tu-
mors. Another potential way of treating cancers is to arrest their 
progression at a very early stage, before their genomes become 
unstable and before they become more genetically heterogeneous. 
Indeed, for colorectal cancers, the detection and excision of pre-
neoplastic lesions by regular colonoscopy has been shown to re-
duce the incidence of advanced cancers (Citarda et al., 2001). How-
ever, this type of approach based on regular screening is not easily 
applicable for the detection of tumors in many internal organs such 
as the pancreas; pancreatic cancers are almost invariably fatal unless 
detected at an early stage (David et al., 2009). Novel systemic thera-
pies that help eliminate early preneoplastic lesions could theoreti-
cally prevent a great number of life-threatening cancers.

Here we discuss homeostatic mechanisms that function in epi-
thelial tissues that appear capable of eliminating clones of abnormal 
cells. Many of these mechanisms were discovered in studies of 
Drosophila imaginal discs, the larval precursors of adult tissues such 
as wings and eyes. Importantly, similar mechanisms have been 
shown to function in mammalian epithelia, suggesting that these 
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homeostatic mechanisms might be evolutionarily ancient. Here we 
argue that a better understanding of epithelial homeostatic mecha-
nisms, and the possibility of manipulating them, might lead to a 
novel therapeutic strategy: eliminating nascent preneoplastic le-
sions from epithelia before they become full-blown cancers.

DISCOVERY OF EPITHELIAL HOMEOSTATIC 
MECHANISMS IN DROSOPHILA
Drosophila epithelial cells can compare their fitness levels with that 
of their neighbors and activate processes that culminate in the elimi-
nation of unfit cells. Ginés Morata and Pedro Ripoll demonstrated in 
1975 that normal epithelial cells of the imaginal discs eliminate their 
slow-growing neighbors, a phenomenon they named “cell competi-
tion” (Morata and Ripoll, 1975). These investigators studied the 
properties of mutations known as Minutes that are now known to, in 
most cases, inactivate genes encoding ribosomal proteins. Cells 
that are heterozygous for a Minute mutation grow more slowly. De-
spite this handicap, Drosophila that are heterozygous for Minute 
mutations develop to become near-normal fertile adults, although 
their development takes much longer than wild-type flies. Morata 
and Ripoll (1975) devised an ingenious experiment where they gen-
erated patches of Minute heterozygous cells within wing-imaginal 
discs composed of wild-type cells. Instead of observing abnormally 
small patches of Minute/+ tissue in adult flies, because of the expec-
tation that these patches of cells would grow especially slowly, they 
observed that these patches were eliminated completely. Thus, 
Minute/+ cells are viable provided the entire tissue is composed of 
them. However, when patches of Minute/+ cells are generated in 
the midst of wild-type cells, they are eliminated.

While Morata and Ripoll (1975) correctly inferred the existence of 
cell competition from an examination of adult flies, many years 
passed before the process was actually visualized in imaginal discs. 
This was facilitated by methods to efficiently generate Minute/+ 
clones in imaginal discs and to mark these clones, thus allowing the 
unambiguous identification of wild-type and Minute/+ cells, espe-
cially at the clonal borders. In these experiments, it was observed 
that Minute/+ cells at the edge of the clone (i.e., those that are ad-
jacent to wild-type cells) undergo apoptosis (Moreno et al., 2002). 
Thus, the Minute/+ clone is progressively eliminated by apoptosis at 
its receding boundary where Minute/+ cells are directly adjacent to 

wild-type cells (Figure 1D). Subsequent studies showed that cells 
driven to grow faster by increased levels of Myc are able to elimi-
nate wild-type cells in their vicinity and have been dubbed “super-
competitors” (de la Cova et al., 2004; Moreno and Basler, 2004). 
Similarly, clones of cells with enhanced Wg/Wnt (Vincent et  al., 
2011) or JAK/STAT signaling (Rodrigues et al., 2012), or decreased 
Hippo signaling (Tyler et al., 2007), also outcompete wild-type cells. 
Since wild-type cells can be “winners” when they are adjacent to 
Minute/+ cells and “losers” when they are near cells with more Myc, 
the fate of a cell in such a contest cannot be predicted by its intrinsic 
properties but rather by how it compares to its neighbors. Indeed, 
since many of the mutations that make cells supercompetitors affect 
genes that are frequently mutated in human cancers, it has been 
suggested that the ability of cancer cells to proliferate is augmented 
by their ability to kill their wild-type neighbors as has now been 
clearly demonstrated using tumor models in Drosophila (Eichenlaub 
et al., 2016; Suijkerbuijk et al., 2016).

We are unable to provide a comprehensive review on cell com-
petition here, but instead direct readers to recent reviews covering 
competition in Drosophila (Baker, 2017; Nagata and Igaki, 2018) 
and vertebrates (Kon, 2018). Since the initial discovery of cell com-
petition, classically defined as apoptosis of less fit cells, occurring at 
their border with more fit cells, a variety of similar homeostatic phe-
nomena have been described in Drosophila imaginal discs that 
eliminate aberrant cells. Clones of cells with mutations in the apico-
basal polarity regulators scribble and lgl, generated in the midst of 
wild-type cells, are eliminated, even though tissues composed en-
tirely of homozygous mutant scribble or lgl cells show unconstrained 
growth. Clones of cells with mutations in mahjong, which encodes a 
protein that binds to Lgl, are also eliminated, though interestingly 
these clones do not have obvious defects in apicobasal polarity 
(Brumby, 2003; Menendez et al., 2010; Tamori et al., 2010). In addi-
tion, imaginal discs can eliminate misspecified cells, such as cells 
that express genes characteristic of a leg fate within a wing disk, 
often by basal extrusion of the entire clone (Adachi-Yamada and 
O’Connor, 2002; Bielmeier et al., 2016). Thus, the elimination of ab-
errant cells can, in different cases, involve one or more processes 
that include apoptosis of mutant cells, their extrusion from the epi-
thelium, and the engulfment of mutant cells by their wild-type 
neighbors (Figure 1, D–F).

D

CBA

FE

apical

basal BM

FIGURE 1:  Epithelial homeostatic mechanisms can prevent tumorigenesis. (A) Under normal conditions, epithelial cells 
maintain tight physical contact with their neighbors. BM, basement membrane. (B) A preneoplastic clone (gray) arises 
when a single cell acquires a cancer-causing mutation and begins to proliferate. (C) If containment is unsuccessful, the 
clone proliferates and may acquire additional mutations leading to overgrowth and possibly invasion through the 
basement membrane and metastasis. (D–F) Neighboring cells (white) attempt to contain this proliferation by promoting 
the apoptosis of misspecified cells and replacing them through proliferation (D), by engulfing them (E), or by causing 
their extrusion from the epithelium (F).
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EPITHELIAL HOMEOSTASIS IN MAMMALS
As in Drosophila, mammalian tissues also seem to have homeostatic 
mechanisms that can eliminate unfit cells. This has been primarily 
studied in the early epiblast. Similar to earlier experiments in imagi-
nal discs, researchers have shown that cells heterozygous for muta-
tions in genes encoding ribosomal proteins, or cells with lower Myc 
levels than their neighbors, are eliminated from the early epiblast 
(Oliver, 2004; Clavería et al., 2013; Sancho et al., 2013). Cell compe-
tition can also be induced in fetal and adult tissues by mosaic over-
expression of Myc (Villa del Campo et al., 2014) or loss of Notch 
(Alcolea et al., 2014).

Similar to imaginal discs of Drosophila, it seems that mammalian 
epithelia have an innate ability to self-surveil and eliminate less fit 
cells. The elimination of aberrant clones from mosaic contexts has 
been seen in Madin-Darby canine kidney (MDCK) epithelial cells 
grown in culture (Hogan et al., 2009) and in diverse mouse epithelia 
including the hair follicle, pancreas, gut, and lung (Brown et  al., 
2017; Sasaki et al., 2018). Mammalian epithelia have been shown to 
clear cells bearing some of the same abnormalities that have been 
investigated in Drosophila. For instance, clones of MDCK cells with 
decreased expression of Mahjong or Scribble undergo apoptosis 
only when surrounded by wild-type MDCK cells (Tamori et al., 2010; 
Norman et al., 2012).

Additionally, experiments in mammalian tissues suggest an abil-
ity to clear aberrantly overgrowing, preneoplastic clones. This clear-
ance occurs by some of the same mechanisms that have been iden-
tified in Drosophila epithelial homeostasis, including induction of 
apoptosis of aberrant cells, or extrusion of these cells from the epi-
thelial layer. When β-catenin–overexpressing, overgrowing clones 
are generated in the mouse hair follicle epithelium, these clones are 
surrounded by wild-type cells before undergoing apoptosis. These 
surrounding wild-type cells play an active role in inducing apoptosis; 
if wild-type cells are prevented from maintaining contact with the 
overgrowing clone, the clone can continue to grow in an uncon-
trolled manner (Brown et al., 2017).

In other cases, single cells or small clones of cells are extruded 
from the epithelium, leaving behind a wild-type epithelium. Src and 
RasV12 mutant clones extrude from in vitro MDCK epithelia (Hogan 
et al., 2009; Kajita et al., 2010) as do clones expressing constitutively 
active YAP (Chiba et al., 2016). Similar extrusion of RasV12 mutant 
clones has been seen in vivo in the Drosophila wing-imaginal disk epi-
thelium (Prober and Edgar, 2002; Bielmeier et al., 2016) and in diverse 
mouse tissues (Sasaki et al., 2018). The Fujita group, which has stud-
ied this phenomenon intensely, has named this process Epithelial De-
fense Against Cancer, or EDAC. This may explain an earlier finding: 
when oncogenic Ras was expressed in random pancreatic precursor 
cells, the formation of invasive tumors was exceedingly rare (Hingo-
rani et al., 2003). The vast majority of preneoplastic clones were per-
haps shed from the epithelium. Epithelial integrity is key to these pro-
cesses, as loss of E-cadherin in wild-type MDCK cells drastically 
decreases the rate of RasV12 clone extrusion (Hogan et al., 2009).

Two additional mechanisms of homeostatic tumor prevention 
have been suggested in mammals. In some cases, epithelia can sim-
ply prevent the overgrowth of a clone, without necessarily eliminat-
ing it. In three-dimensional cultures of human mammary epithelia, 
when a single cell was given a growth-promoting mutation, such as 
overexpression of Myc, or constitutively active AKT or CyclinD1, 
these cells simply remained quiescent, contained by their wild-type 
neighbors. Once again, when epithelial organization was perturbed, 
these cells regained their overproliferative behaviors (Leung and 
Brugge, 2012). Additionally, wild-type tissues may have some ability 
to induce the differentiation of cancerous cells. In rare cases, blasto-

cysts that contain transplanted teratoma cells can grow into normal 
mosaic mice, with tissue originating from both the host blastocyst 
and the transplanted cells, suggesting that the teratoma cells were 
directed to normal developmental fates (Brinster, 1974; Mintz and 
Illmensee, 1975; Illmensee and Mintz, 1976).

Tantalizing evidence suggests that similar processes occur in hu-
man tissues, depressing the rate of tumor formation. Mutations that 
have been defined as “cancer-causing” are much more common in 
human skin cells than are skin cancers (Martincorena et al., 2015). 
Additionally, autopsy studies of adults who died in their 40s of 
causes other than cancer show surprisingly high rates of histologi-
cally frank tumors (Nielsen et al., 1987; Sakr et al., 1993). Statistics 
on lifetime occurrence of tumors indicate that only a small portion of 
these tumors would have been likely to become invasive (Noone 
et al., 2018). While the immune system likely has a role in cancer 
prevention, these observations suggest that nascent tumors might 
also be eliminated or contained by epithelial homeostatic 
mechanisms.

FUTURE DIRECTIONS
We suggest that more research is needed to unravel the molecular 
details of these epithelial homeostatic mechanisms and that genetic 
screens in model organisms could lead the way. For example, 
Drosophila is particularly suited to clonal screens where genetic ma-
nipulations in tumor-adjacent cells are possible either using chemi-
cal mutagenesis (Yamamoto et al., 2017) or using RNA interference 
via methods such as CoinFLP (Bosch et al., 2015). Similar systems 
could be engineered to enable screens involving mammalian cells. 
These could be conducted in epithelial monolayers in culture, in 
organoids, or even in intact organisms. A screen for small molecules 
that affect the extrusion of RasV12 clones in mammalian cell culture 
has already been described (Yamauchi et al., 2015).

If we can find ways to enhance epithelial homeostatic mecha-
nisms and thus empower normal epithelial cells to eliminate nascent 
cancers in their midst, it might be possible to devise preventative 
treatments whose goal is to cause the periodic shedding of preneo-
plastic lesions, long before they become life-threatening cancers. 
Such an approach could potentially obviate many of the problems 
associated with treating advanced, genetically heterogeneous 
cancers.
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