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Abstract

Background: The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and
has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved
across taxa, there is great variation in the number and organisation of these genes. Among avian species, for
instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines
typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and
lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well
documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the
more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal
passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from
four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the
basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary
origin within passerines or are a more derived feature of the infraorder Passerida.

Results: We identified 177 alleles of the MHC class Il 3 exon 2 in seven basal passerine species, with variation in

numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles,
trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian
lineages based on MHC class Il 3 exon 2 sequences strongly supported the monophyletic grouping of basal and

derived passerine species.

Conclusions: Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal
passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the
simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic
MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC.
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Background

The major histocompatibility complex (MHC) is a com-
plex multigene family that regulates the function of the
adaptive branch of the vertebrate immune system. The
MHC is comprised of many different types of genes,
such as classical and non-classical MHC genes, as well as
non-MHC genes such as natural killer cells and tapasin
[1]. Classical and non-classical MHC genes may be distin-
guished from each other in that the former are poly-
morphic and highly expressed, whereas the latter exhibit
lower levels of expression and are often monomorphic [2].
MHC genes may also be grouped as class I, II or III genes
based on the types of molecules they encode. Class I genes
encode receptors that are presented on the surfaces of
most nucleated cells and primarily facilitate immune re-
sponses to intracellular pathogens, whereas class II genes
are only found on a subset of cells and are associated with
immune responses to extracellular pathogens [3]. Class III
genes encode molecules involved in the complement
component of the immune response rather than the
adaptive response [2].

The high levels of polymorphism characteristic of clas-
sical MHC class I and II genes may be largely attributed
to the peptide-binding region (PBR), which displays great
diversity of alleles and extensive sequence variation among
different alleles [3, 4]. The genes of this region encode
proteins that form the molecular groove where peptides
are bound and then presented to T-cells, resulting in the
appropriate immune response being triggered [1]. Each al-
lele typically responds to a category of potential anti-
gens, so individuals and populations with greater
MHC diversity may be better able to cope with a range
of infections [5, 6].

A number of models of multigene family evolution,
such as the birth-and-death model [7] and the accordion
model [5], have been proposed to explain the generally
high levels of polymorphism and the large and variable
number of classical MHC loci among individuals and
species. According to the birth-and-death model, new
genes are created via repeated duplication (birth) and then
either retained in the genome or eventually lost (death)
after becoming non-functional through deleterious muta-
tions [7]. The accordion model, on the other hand, posits
that the number of MHC genes expands and contracts in
response to fluctuating selection pressure [5]. These
models are not mutually exclusive, and both models pre-
dict the redundancy that occurs in the genome of most
species, whereby multiple duplicated gene loci exist in
both class I and II gene regions [6]. One explanation for
this redundancy is that once alleles are generated, they
may remain in the genome even in the absence of selec-
tion pressure [6]. Alleles may be maintained over long
evolutionary time scales through speciation events, which
may then resolve as trans-species polymorphisms (TSP) in
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phylogenetic reconstructions, where similar alleles are
present in groups that diverged over millions of years
ago such as rodents and primates [10, 11]. On a smaller
scale, genetic variation in the MHC may also be generated
among alleles and between loci via the processes of point
mutation, recombination and gene conversion, and main-
tained through the influence of balancing selection.

Among birds, the most studied and well-described
MHC is that of the chicken (Gallus gallus), which only
contains one dominantly expressed molecule of class I
and one of class II [6, 7]. The chicken MHC is small and
densely arranged; a compact organisation of genes with
short introns, small physical size, lack of redundancy,
and low overall number of classical class I and II genes
with few pseudogenes, has led to the chicken MHC be-
ing described as a “minimal essential MHC” [7, 8]. The
small size and simplicity of the chicken MHC allows for
the co-evolution of genes as haplotypes over considerable
periods of time, with no recombination between class I
and II genes having been detected over thousands of
experiments [7, 9]. The result of this is that the most
striking associations between MHC haplotype and resist-
ance or susceptibility to disease have been characterised in
chickens [10, 11].

Similarly simple genetic organisation and small num-
bers of expressed classical MHC loci have been noted in
a few galliform species, such as the pheasant (Phasianus
colchicus) [12], black grouse (Tetrao tetrix) [23], and
grey partridge (Perdix perdix) [13], although the quail
(Coturnix japonica) has been found to have higher levels
of gene duplication [14]. Variable levels of MHC complexity
have been characterised among other avian groups,
such as penguins, seabirds, raptors, rails, cranes, and
waders [15-20], and passerine species typically show
multiple loci with extensive gene duplication, evidence
of recombination, high levels of polymorphism, and the
presence of pseudogenes [21-25]. This suggests the
minimal essential model is not applicable to all avian
species, as the passerine MHC appears to be larger and
more complex than that described in chickens. The
passerine MHC, along with a number of non-passerine
lineages, has been characterised as having high rates of
concerted evolution and/or recent duplications [2, 12],
leading to few reports of orthologous relationships among
birds [12, 26-29]. Thus, although the overall function of
the MHC is conserved across birds, there appear to be
considerable differences in the genomic organisation of
the MHC between lineages [30].

With a few exceptions [27, 31-33], research on the
MHC in passerines has focussed on species within the
more derived infraorder Passerida, whereas very little em-
pirical information exists on the structure and complexity
of the MHC in the Corvida (sensu [34]), a paraphyletic
basal clade within the passerines (Fig. 1). It remains
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Fig. 1 Relationships among major passerine families. Grey shading indicates families included in this study and asterisks denote families in the
Corvida that have been previously studied. Phylogeny constructed using the Ericson backbone in birdtree.org [72] and rooted with Gallus gallus

Gallus gallus

unclear whether a complex MHC is characteristic of all
passerines or is a more derived trait occurring in the
Passerida and the few species of the Corvida that have
been studied (Fig. 1). Here, we used cloning and next-
generation 454 sequencing techniques to characterise
the polymorphism and allelic diversity of classical MHC
class II B exon 2. We focussed on seven Australian spe-
cies from four prominent basal passerine families
(Table 1, Fig. 1) to test if there is increasing complexity
of the MHC structure from basal to derived passerines:
if there is such a progressive increase in MHC complexity,
basal passerine lineages should show a more simple MHC
structure similar to that described in non-passerine lin-
eages. To better understand the evolutionary origins of
complex MHC structure in passerines, we also recon-
structed phylogenetic relationships among MHC sequences
in these species.

Results and discussion

In order to assess levels of polymorphism and allelic di-
versity in the MHC class II genes of basal passerines, we
chose the following species: Brown Treecreeper Climac-
teris picumnus, Superb Fairy-wren Malurus cyaneus,
Spotted Pardalote Pardalotus punctatus, Striated Parda-
lote P. striatus, White-plumed honeyeater Lichenostomus

penicillatus, Fuscous honeyeater L. fuscus, and Yellow-
tufted Honeyeater L. melanops. These seven species are
from four families (Climacteridae, Maluridae, Pardaloti-
dae, Meliphagidae) that comprise a prominent component
of the Corvida. We amplified a 159 bp region that includes
the highly diverse PBR of the MHC class II B exon 2 using
cloning and 454 sequencing methods. The high level of
coverage provided by 454 sequencing makes it a con-
venient method for assessing genetic diversity in highly
polymorphic, multilocus systems, such as the MHC
[25, 35, 36]. We used 454 sequencing and cloning with
Sanger sequencing complementarily to assess levels of
genetic diversity in seven basal passerine species.

The two methods resulted in different numbers of
alleles being identified in each species. We isolated 98
MHC class II B exon 2 sequences from 21 individuals using
cloning with Sanger sequencing (see Additional file 1), with
the total number of alleles detected in each species ranging
from 7 in the Spotted Pardalote to 19 in the Striated
Pardalote. Of the 98 sequences isolated, 17 were found
in more than one species, resulting in 81 unique alleles
across the seven species. Sample sizes were the same in
every species and all samples were from the same study
region, so the variation in allele numbers across species
is unlikely to be a product of sampling design. Within
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Family Species Species prefix N4 (range) Nioci Nos
Climacteridae Brown treecreeper Climacteris picumnus Clpi 30 (8-17) 9 0
Melphagidae VYellow-tufted honeyeater Lichenostomus melanops Lime 39 (11-14) 7 2
White-plumed honeyeater Lichenostomus penicillatus Lipe 19 (6-11) 6 0
Fuscous honeyeater Lichenostomus fuscus Lifu 24 (6-10) 5 1
Maluridae Superb fairy-wren Malurus cyaneus Macy 33 (2-14) 7 2
Pardalotidae Spotted pardalote Pardalotus punctatus Papu 26 (5-11) 6 3
Striated pardalote Pardalotus striatus Past 39 (7-13) 7 1

N - total number of alleles per species; range - range of alleles detected in individuals of each species; Njo¢; — putative number of loci per species; Nps - number

of pseudoalleles

species, the number of alleles identified in each individ-
ual ranged from 5 to 14.

454 sequencing was conducted on 13 samples in total
(see Additional file 1), across all seven study species.
Due to small volumes of available blood samples, differ-
ent individuals were sequenced using 454 compared to
Sanger sequencing, and from a different location in the
study area (see Methods). Using 454 sequencing, we ob-
tained 16,257 reads of the 159-bp region showing a
complete match to the forward and reverse primers.
After a stepwise filtering procedure, we were left with
66 % of the original reads (10,783), with coverage depth
ranging from 114 to 570 reads per allele (see Additional
file 2). This remaining 66 % of reads comprised a total of
146 alleles, of which 12 were found in more than one
species. Of the remaining 134 unique alleles recovered
through 454 sequencing, 38 were also identified through
cloning. Similar to the sequences isolated through cloning,
numbers of alleles varied widely across species and indi-
viduals, ranging from 11 in the White-plumed Honeyeater
to 26 in the Brown Treecreeper. The isolation of more
than two alleles from each individual indicates the pres-
ence of multiple MHC class II f loci in each of these
species, from a minimum of five loci in the Fuscous
Honeyeater to nine loci in the Brown Treecreeper. The
conservative filtering process we used would have po-
tentially excluded a larger number of true alleles from
individuals with higher coverage compared to individuals
with lower coverage, so levels of MHC allelic diversity
may be underestimated in some species.

Despite fewer individuals having been screened through
454 sequencing compared to cloning, larger numbers of
alleles were identified in total and in each individual
(see Additional file 1). Although 454 sequencing has
the advantage of avoiding some artefacts associated with
bacterial cloning, it is still vulnerable to artefacts arising
during PCR and has been shown to produce a higher
percentage of sequencing errors than Sanger sequen-
cing [37-40]. In contrast, Sanger sequencing probably
represents a smaller proportion of the allelic diversity
of a species, compared with 454 sequencing, with a

prevalence of locally common alleles while less common
(or rare) alleles are missed in cloning. Our use of both
these methods suggests 454 sequencing is a much more
efficient, although possibly less accurate, way to assess
levels of allelic diversity in species and populations.

Polymorphism and allelic diversity of MHC loci

We identified a total of 177 alleles of the MHC class II
B exon 2 across seven species. Numbers of alleles var-
ied widely across species and individuals, from 19 to
39 alleles per species and 2 to 17 alleles per individual
(Table 1). Based on the maximum number of alleles in
an individual, we inferred a minimum of 5-9 loci per
species, a range which falls within the middle of the
spectrum for the number of MHC class II § loci described
in passerines (N =3-20; [22]). Frameshift mutations and
stop codons in sequences from five of the seven species
suggest pseudoalleles are present in the dataset (Table 1),
a level similar to that found in the infraorder Passerida
[41, 42]. All seven species displayed high levels of allelic
diversity, with high intraspecific nucleotide and amino
acid distances compared to other passerines ([43, 44];
Table 2). The highest levels of diversity were observed
at the PBR in all species, a pattern again consistent with
Passerida MHC [2].

Phylogenetic relationships among MHC alleles

Bayesian reconstruction of the phylogenetic relationships
among MHC class II [ exon 2 alleles from the seven
species largely reflected taxonomic relationships at the
genus level. The majority of alleles clustered in one of
three well-supported clades (290 % posterior probability;
Fig. 2), with alleles from honeyeaters (Meliphagidae),
pardalotes (Pardalotidae), and treecreepers (Climacteridae)
grouping separately to each other. The phylogenetic
network showed a similar pattern of clustering, with al-
leles from honeyeaters, pardalotes and treecreepers fall-
ing into three distinct clusters (Fig. 2). Sequences from
the Superb Fairy-wren (Maluridae) were the exception
to this general pattern, where approximately half of the
sequences (15/33 sequences; 45 %) were basal to the
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Table 2 Mean nucleotide and amino acid distances
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Nucleotide Amino acid

Species All sites PBR non-PBR All sites PBR non-PBR

Clpi 0.147 (0.019) 0.266 (0.054) 0.110 (0.021) 0.245 (0.046) 0574 (0.125) 0.154 (0.045)
Lime 0.229 (0.023) 0455 (0.072) 0.167 (0.022) 0423 (0.062) 0.845 (0.202) 0.315 (0.059)
Lipe 0.253 (0.026) 0.513 (0.080) 0.184 (0.025) 0.409 (0.064) 0.890 (0.193) 0.288 (0.058)
Lifu 0.259 (0.025) 0.539 (0.072) 0.188 (0.025) 0421 (0.062) 0.909 (0.183) 0302 (0.059)
Macy 8 (0.028) 0.521 (0.078) 0.263 (0.030) 0.536 (0.071) 0.939 (0.197) 0433 (0.071)
Papu .134 (0.018) 0.332 (0.068) 0.077 (0.014) 0.229 (0.046) 0.624 (0.158) 3 (0.034)
Past 1(0.019) 0.338 (0.064) 0.084 (0.015) 0.246 (0.048) 0.641 (0.166) 1 (0.036)

Mean nucleotide and amino acid distances among putative alleles from MHC class Il  exon 2. Nucleotide distances are corrected for multiple substitutions with
the Kimura 2-parameter model and amino acid distances are corrected using expectations from the Poisson distribution. Standard errors are based on 1000 boot-

strap replicates and given in parentheses. PBR peptide binding region

main Pardalotidae-Meliphagidae lineage in the Bayesian
tree but did not form a monophyletic clade, and other
Maluridae sequences were intermingled within Climac-
teridae, Pardalotidae and Meliphagidae.

The basal position of the Superb Fairy-wren sequences
may result from recombination generating a pattern of
mixed ancestry, which causes recombinant sequences to
fall outside the parental clusters [45]. The intermingling
of other Superb Fairy-wren sequences within clades in
the phylogenetic tree containing other genera may indi-
cate a trans-species mode of evolution, a pattern which
has been widely documented in MHC class II § sequences
of both passerines and non-passerines [28, 46—50]. Trans-
species polymorphism (TSP) is a mechanism by which
identical alleles occur in related species by being passed
on from ancestral to descendant species [51]. This can be
difficult to differentiate from convergent evolution, which
can produce similar alleles in different species through in-
dependent evolutionary pathways. Being sympatric, the
seven species in this study may display signatures of con-
vergent evolution if they are subject to similar parasite or
pathogen pressure. To differentiate between signatures of
convergent evolution and TSP, we compared phylogenetic
reconstructions based on non-synonymous and syn-
onymous substitutions only. If the species are subject
to similar selective pressures, the phylogeny based on
non-synonymous substitutions should show mixed clus-
tering of sequences across families whereas the phylogeny
based on synonymous substitutions should show alleles
grouping according to family or species. If, however, the
similarity of alleles across species is a result of TSP, the
two phylogenies should show similar patterns of allelic
clustering across families [48, 52]. A comparison of
phylogenies based on non-synonymous and synonymous
substitutions showed the latter pattern of clustering, with
the majority of clusters in both phylogenies showing al-
leles from more than one family (see Additional file 3).
Mixed clusters predominantly comprised alleles from
honeyeaters, pardalotes and fairy-wrens, whereas alleles

from treecreepers clustered intraspecifically for the most
part. Based on our analysis of exon 2, the phylogenetic sig-
natures support a TSP explanation of the clustering pat-
tern rather than one of convergent evolution. Although
this result suggests the presence of TSP, it must be noted
that distinguishing between phylogenetic patterns gener-
ated by TSP and other non-TSP patterns and processes is
problematic when the loci are unknown. The evolution of
exon 2 is complex and it is possible that, for example,
rates of allele sharing based only on this region are an
overestimation, thereby leading to incorrect inferences of
TSP [52, 53]. Comparison of phylogenies based on intron
and exon regions, as well as other related species with
allopatric distributions, and identification of alleles associ-
ated with individual loci, would clarify the roles of conver-
gent evolution, TSP, and other processes in generating
these patterns of clustering.

Fifteen alleles in the dataset occurred in at least two
different species, and there was variation among genera
in levels of TSP. In 11 instances, alleles occurred across
genera between fairy-wrens and another species. In all
other instances TSP occurred within genera, either be-
tween the two species of pardalotes or three species of
honeyeaters. Treecreepers did not show any instances of
TSP with other study species, which may be related to
treecreepers being in a separate evolutionary lineage to
the other study species (Climacteridae; Fig. 1). Retention
of alleles through TSP between treecreepers and the
other basal lineages in this study would therefore need
to occur over longer evolutionary timeframes of at least
60 million years [54].

Inspection of amino acid alignments revealed seven
sites with residues unique to each of the Climacteridae,
Pardalotidae and Meliphagidae, distinguishing sequences
in the three families from each other (see Additional file 4).
Fairy-wren sequences, being intermingled within these
groups, showed the residues particular to whichever group
they fell in with. This pattern of clustering by species is not
uncommon in birds and could be explained by either a)
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Fig. 2 Relationships of MHC class Il  exon 2 sequences among basal passerine species. a Bayesian phylogeny of MHC alleles from the seven
basal passerine species in this study, rooted with Crocodylus niloticus; asterisks denote major branches with posterior probabilities > 90 %, and
pseudoalleles are indicated by arrows. b Neighbour-net of MHC class Il 3 exon 2 sequences from seven basal passerine species. Sequences are
colour coded by family

recent duplication, where genes diverge following spe- become homogenised through gene conversion [2].
ciation and then duplicate to form similar copies of Both these processes result in intraspecific loci being
the gene, or b) concerted evolution, where duplication — more similar to each other than to orthologous loci in
occurs prior to speciation but the duplicated genes other species. Among birds, patterns of orthology may
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be obscured because of rapid gene duplication and
homogenisation of MHC class II genes [33].

To assess the relationships among MHC class II f
exon 2 sequences in the wider phylogenetic context, we
constructed a phylogeny including species from a range
of avian taxa (Fig. 3). All passerine species formed a
well-supported monophyletic clade (100 % posterior
probability) that was also strongly supported by topology
testing, using a Bayesian stepping stone approach (Bayes
Factor 75.35). All species from the non-passerine taxa
(Accipitridae, Apterygidae, Ardeidae, Galliformes, Pro-
cellariformes, Spheniscidae and Strigidae) formed a polyt-
omy at the base of the phylogeny. Within the passerine
clade, most sequences from honeyeaters, pardalotes and
fairy-wrens grouped together, albeit in a clade without
strong posterior probability support (Group A), whereas
treecreeper sequences fell separately to these sequences.
The exceptions to this were one group of pseudoalleles
and two groups of sequences that had either aspartic acid
(D) or alanine (A) instead of glutamic acid (E) in the first
position (see Additional file 4); these three groups of
sequences instead clustered separately from the other
sequences in this study in a well-supported clade
(Group B). The clustering of pseudoalleles and putatively
functional sequences (Group B) may either indicate the
latter are actually non-functional alleles or that the
pseudoalleles evolved from these alleles. There was no
apparent structuring according to passerine taxonomic
relationships, because Corvida and Passerida sequences
were intermingled in the passerine clade. There is some
evidence that rates of diversifying and homogenising
forces may vary between lineages of birds [28], which
could explain the pattern here where some sequences
cluster according to species whereas other clusters com-
prise sequences from different species. The grouping of
basal passerine species from this study with species from
both the Corvida and Passerida suggests a complex MHC
class II B structure may be common throughout the
passerine order.

Conclusions

In this study we detected evidence of multiple gene loci,
high levels of polymorphism and allelic diversity, and the
presence of pseudogenes among classical MHC class II 3
exon 2 of seven passerine species. Our analyses strongly
support a monophyletic grouping of passerines from the
Corvida and Passerida, signifying an early evolutionary
origin of complex MHC class II p structure in the
Passeriformes. Phylogenetic analyses based on non-
synonymous and synonymous substitutions supported
a trans-species explanation for the mixed clustering of
alleles across the different families in this study. However,
we cannot rule out the possibility that convergent evolu-
tion may have also played a role in generating these

Page 7 of 11

Pardalotidae

Meliphagidae

Meliphagidae
- Meliphagidae
Meliphagidae

Meliphagidae

< Maluridae

Petroica spp. o
Turdus iliacus
Turdus migratorius
Turdus merula
+— Agelaius phoeniceus
1 [ Agelaius phoeniceus
Motacilla alba
Ficedula hypoleuca
—|—_1_— Oenanthe oenanthe
Hylocichla mustelina

E Luscinia svecica

Turdus merula
r Macy19

Group A

Lanius’senator e

Phoenicurus phoenicurus
—@dula hypoleuca
Hylocichla mustelina

* Phoenicurus phoenicurus

Oenanthe oenanthe

* — Turdus merula
— Turdus iliacus
Bucanetes githagineus
Turdus migratorius
—— Turdus iliacus
Luscinia svecica

. Philesturnus carunculatus e
Papu28
Past39

Philesturnus carunculatus
|——== Maluridae

Chersophilus duponti

Oenanthe oenanthe -

Lifu01

Lifu11

* Lifu18
Lipe01
Lime02
Macy26

(sl pseudoalleles
Corvus corax e

Lanius senator
anius senator o

Aspartic acid (D)
substitution

Group B
Sylvia melanocephala
|———* —=m Cyanistes caeruleus

. l\’flllaaccxﬂ1 % Alanine (A)
y I~
Macy08 substitution
Chersophilus dupontii
H—— Sylvia melanocephala
L Ficedula hypoleuca
Bucanetes githagineus
Motacilla alba ,

4 Climacteridae

—— Climacteridae
—— Corvus corax e
|——=m Apterygidae
| = Accipitridae
+ |—=a Strigidae

|- Ardeidae
| Procellariformes
|——== Spheniscidae
= Galliformes
Crocodylus niloticus

0.2

Fig. 3 Basal passerine MHC class Il 3 exon 2 sequences in the wider
avian context. Bayesian phylogeny of MHC alleles from passerine and
non-passerine families, rooted with Crocodylus niloticus. Asterisks
denote major branches with posterior probabilities > 90 % and
filled circles denote passerine species from the Corvida. Group A
contains the majority of sequences from honeyeaters, pardalotes
and fairy-wrens. Group B contains the remaining 18 sequences
from these species, which comprise nine pseudoalleles and nine
sequences with aspartic acid (D) or alanine (A) instead of glutamic
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phylogenetic signatures. Phylogenetic analyses based on
sequences from other MHC class II exon and intron re-
gions may clarify the relative roles of TSP and convergent
evolution in generating these signatures. A comparison of
454 sequencing and cloning methods suggested the former
is a much more efficient way to assess levels of allelic diver-
sity in species and populations. Continued characterisation
of this gene region, as well as other non-coding regions of
the MHC, in species from different phylogenetic levels may
improve our understanding of the rates of gene conversion,
recombination, diversification and homogenisation occur-
ring in the avian MHC. Such research will also provide in-
sights into the evolutionary significance of the disparity in
MHC complexity between passerine and non-passerine
species.

Methods

Sample collection and study design

We collected blood samples from one to three individuals
of seven Australian passerine species from Victoria,
Australia, as described in Amos et al. ([55]; see Additional
file 1). These seven species (Brown Treecreeper Climac-
teris picumnus, Superb Fairy-wren Malurus cyaneus, Spot-
ted Pardalote Pardalotus punctatus, Striated Pardalote P.
striatus, White-plumed honeyeater Lichenostomus penicil-
latus, Fuscous honeyeater L. fuscus, Yellow-tufted Honey-
eater L. melanops) are from four families (Climacteridae,
Maluridae, Pardalotidae, Meliphagidae) that comprise a
prominent component of basal passerine lineages.

As part of a pilot study we tested previously published
MHC class II B primers on the study species (Additional
file 5), from which we identified a single set of primers
that consistently amplified across all the study species.
These primers amplified a 159 bp region of the MHC
class II § exon 2 and were used for all our genetic work.
To assess levels of polymorphism and allelic diversity in
the seven study species, we amplified the 159 bp region
of the MHC class II B exon 2 using cloning and 454
sequencing methods. This 159 bp fragment includes
the highly diverse PBR as well as fit within the length
restrictions for 454 sequencing. The PBR and non-PBR
were inferred assuming functional congruence to the
human HLA-DR1 molecule [56].

DNA extraction, PCR, cloning, and sequencing

Blood samples were digested overnight using Proteinase
K and DNA was extracted with standard phenol-chloroform
protocols for Sanger sequencing [57], while DNA was ex-
tracted from blood samples using a salting-out protocol for
454 sequencing [58]. The resulting DNA was suspended in
Tris-EDTA. For Sanger sequencing the degenerate primers
326 and 325 [59] were used to amplify a 159 bp region of
the MHC class II B gene, spanning the majority of exon 2.
For 454 sequencing we amplified the same 159 bp region of
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the MHC class II B gene using HPLC-purified fusion
primers. The forward fusion primer (5'-CCATCTCAT
CCCTGCGTGTCTCCGACTCAGNNNNNNNNNNG
AGTGYCAYTAYYTNAAYGGYAC-3') comprised the
454 GS FLX Titanium Primer A, a 10 bp Multiplex
Identifier (MID) tag (indicated with Ns) to differentiate
among individuals, and the 326 primer sequence (in bold).
The reverse fusion primer (5'-CCTATCCCCTG
TGTGCCTTGGCAGTCTCAGNNNNNNNNNNGTAG
TTGTGNCKGCAGTANSTGTCCAC-3’) similarly com-
prised the 454 GS FLX Titanium Primer B, a 10 bp MID
tag (indicated with Ns) and the 325 primer sequence
(in bold).

For both Sanger and 454 sequencing standard 25 pl
PCRs were conducted with approximately 25 ng of gen-
omic DNA. Sanger sequencing PCRs: 1 x Taq buffer
(Promega), 2.5 mM MgCl,, 0.2 mM of each dNTP, 0.5
units platinum 7aq polymerase (Invitrogen), 0.02 mg/ml
BSA (Sigma-Aldrich) and 0.4 mM of each primer. 454
sequencing PCRs: 1 x GoTaq Colourless Master Mix
(Promega), 2 mM MgCl,, and 0.4 mM of each primer. A
negative control was included in each PCR and a touch-
down protocol was used for all amplifications. The ther-
mal profile consisted of an initial 5 min denaturation at
95 °C, followed by 10 cycles denaturation at 95 °C for
30 s, annealing at 60—44 °C for 30 s, with the annealing
temperature decreasing by 4 °C every 2 cycles, and ex-
tension at 72 °C for 90 s. This was followed by 35 cycles
of denaturation at 95 °C for 45 s, annealing at 45 °C for
45 s, and extension at 72 °C for 90 s, followed by a final
extension at 72 °C for 10 min. PCR products were visua-
lised on 1.2 % agarose gels to confirm amplification.

Cloning of PCR products for Sanger sequencing was
undertaken by ligating PCR product into the pCR’II-TOPO
bacterial plasmid (TOPO TA Cloning” Kit Dual Promoter,
Invitrogen) and transformed into TOP10F chemically com-
petent cells following the manufacturer’s protocol for the
TOPO TA Cloning” Kit Dual Promoter (Invitrogen). Re-
combinant clones were detected by blue/white screening
and selected clones were suspended in 30 pl of ddH,O for
a minimum of 1 h. Prior to sequencing, clones were
screened for the expected insert size using 2 pl of bac-
terial water in a PCR containing M13 forward and re-
verse primers. For each individual, at least 20 amplified
clones of the expected insert size were purified with
1 pl ExoSAP-IT (USB), and sequenced commercially
(Macrogen, Korea) using M13 primers in Sanger sequen-
cing. To validate each allelic sequence, DNA from each
individual was amplified and cloned twice. Cloned se-
quences were retained if they occurred in at least two
independent PCRs. The retained sequences were edited,
assembled and aligned using Geneious v. 6 [60].

PCR products for 454 sequencing were purified using
the Agencourt AMPure XP purification kit (Beckman
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Coulter) according to the manufacturer’s instructions.
Purified products were pooled in equimolar concentra-
tions and sequenced commercially (Macrogen, Korea)
on an eighth plate on a 454 GS-FLX run.

Bioinformatics following 454 sequencing

Following 454 sequencing, we used the jMHC software
[61] to extract sequences and assign reads to individuals.
Only reads showing a complete match to the forward
and reverse primers were retained, ensuring that all
assigned reads covered the whole amplicon. At the level
of the whole dataset, we retained only sequences of exactly
159 bp which occurred in at least two independent PCRs,
each represented by at least three reads [36]. Remaining
sequences were assigned to individuals based on MID tags
and aligned in Geneious v. 6 [60]. At the individual level,
we discarded any alleles with coverage lower than 10 % of
the allele with the highest coverage within each individual
in order to remove less reliable sequence variants [62].
Despite the potential for excluding true alleles in individ-
uals with very high coverage, we believe this conservative
approach provides a sufficiently comprehensive assess-
ment of the levels of diversity across species to assess pat-
terns of MHC evolution in passerines.

Allelic diversity and phylogenetic analyses

We calculated intraspecific nucleotide and amino acid
diversity using the Kimura 2-parameter and Poisson
models respectively in MEGA v.5 and estimated standard
errors through 1000 bootstrap replicates [63]. We recon-
structed the evolutionary relationships among MHC class
IT B exon 2 sequences from a) the basal passerine species
in this study, and b) a wider range of avian taxa, includ-
ing species from Accipitridae, Apterygidae, Ardeidae,
Galliformes, Procellariformes, Spheniscidae, Strigidae,
and non-Australian Passeriformes (see Additional file 6).
We estimated the best-fit model of evolutionary change
using jModelTest2 ([GTR +I; [64, 65]) based on Akaike’s
Information Criterion and constructed a Bayesian phyl-
ogeny in MRBAYES v. 3.2 [66] with a Nile crocodile se-
quence (Crocodylus niloticus F]886734) as an outgroup.
Trees were sampled every 1,000 generations over 50
million generations of two simultaneous runs, with one
cold and three heated Markov Coupled Monte-Carlo
chains. The first 25 % of trees were discarded as burn-
in and the remaining used to construct a consensus tree
which was visualised in FigTree v. 1.4 [67]. We evalu-
ated the monophyly of the passerine sequences in our
dataset by comparing estimates of marginal likelihood
in natural log units for positively and negatively con-
strained topologies [68] in MRBAYES v. 3.2. We per-
formed topology testing, using a Bayesian stepping
stone approach for 5 million generations and assessed
support for the constrained topology over the negative
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constraint using Bayes Factors [69]. To assess phylogen-
etic relationships based on putatively neutral and adaptive
genetic variation, we constructed Neighbour-Joining trees
in MEGA v. 5 [63] using the Nei-Gojobori method with
Jukes-Cantor correction based on a) non-synonymous
(dn) and b) synonymous substitutions (ds). Bootstrap tests
of trees were conducted using 5,000 replicates. As exon 2
of the MHC class II B genes has been demonstrated to
undergo high rates of recombination and gene conversion
[2, 70, 71], we complementarily utilised phylogenetic
networks in addition to phylogenetic trees to visualise
relationships among MHC sequences. We used the
neighbour-net algorithm based on Jukes-Cantor distances
in Splitstree v. 4 [45] to examine the relationships among
MHC sequences from the seven basal passerine species.

Ethics approvals

Samples were collected under permits from the Victor-
ian Department of Environment and Primary Industries
(numbers 10004294 under the Wildlife Act 1975 and the
National Parks Act 1975, and NWF10455 under section
52 of the Forest Act 1958), the Australian Bird and Bat
Banding Schemes and under approval and monitoring of
Monash University ethics processes (BSCI/2007/07).

Availability of supporting data

The sequence data supporting the results of this article
are available in the Figshare digital repository and can be
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