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Abstract: This study presents a noncontact electrocardiogram (ECG) measurement system to replace
conventional ECG electrode pads during ECG measurement. The proposed noncontact electrode
design comprises a surface guard ring, the optimal input resistance, a ground guard ring, and
an optimal voltage divider feedback. The surface and ground guard rings are used to reduce
environmental noise. The optimal input resistor mitigates distortion caused by the input bias
current, and the optimal voltage divider feedback increases the gain. Simulated gain analysis was
subsequently performed to determine the most suitable parameters for the design, and the system
was combined with a capacitive driven right leg circuit to reduce common-mode interference. The
present study simulated actual environments in which interference is present in capacitive ECG
signal measurement. Both in the case of environmental interference and motion artifact interference,
relative to capacitive ECG electrodes, the proposed electrodes measured ECG signals with greater
stability. In terms of R–R intervals, the measured ECG signals exhibited a 98.6% similarity to ECGs
measured using contact ECG systems. The proposed noncontact ECG measurement system based on
capacitive sensing is applicable for use in everyday life.

Keywords: noncontact electrocardiogram; surface guard ring; optimal input resistance; optimal
voltage divider feedback

1. Introduction

Electrocardiograms (ECGs) are the most commonly used bioelectric signal. ECGs
are used for cardiovascular disease screening and assessing heart or cardiovascular func-
tions [1–6]. Additionally, they have become increasingly critical in lifestyle and consumer
applications, including exercise monitoring [7,8], fatigue detection [9,10], and stress moni-
toring [11,12]. Conventional ECG measurement methods generally use Ag/AgCl electrodes
or dry electrodes to make direct contact with the human body, employ electronic devices to
amplify and digitize signals, and perform wave processing to determine the ECG wave-
form. However, such conventional ECG recording methods have a severe drawback: the
electrodes must be in contact with human skin. This contact is required for both short ECG
recording using conductive gel electrodes and long ECG recording using dry electrodes. In
practice, this requirement limits the convenience and applicability of ECG measurement.

Recent studies have proposed and investigated noncontact, capacitive ECG (CECG)
electrodes [13–19], which mainly employ capacitive coupling between surface electrodes to
measure biological signals. By using the human skin and the electrode as two ends of a
capacitor, capacitive electrodes can transmit the bioelectrical signal through the capacitor.
Capacitance electrodes were first proposed by Richardson [20]. However, the shortcom-
ing of capacitive electrodes is that the signal quality is much lower than that of contact
ECG. A high input impedance amplifier is embedded in the electrode to overcome this
shortcoming [21–23]. In the following decades, the design and performance of capacitive
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electrodes have continued to improve to obtain high-quality ECG signals [24–26]. The
emergence of noncontact electrodes has increased the popularity of measurement appli-
cations. For example, Lim et al. embedded capacitive electrodes inside mattresses [27],
Baek et al. applied capacitive electrodes to chairs [28], and Nemati et al. embedded CECG
electrodes in T-shirts [29]. One study installed capacitive electrodes in car seats to measure
the ECG of drivers [30]. However, CECG electrode signals are susceptible to interference,
which prevents them from accurately obtaining the waveform. Therefore, measuring ECG
signals in a stable and accurate manner is pivotal to increasing the feasibility of CECG
electrode applications.

The three main interference sources for CECG measurement are common-mode noise
generated by power cords [31], motion artifacts [32], and interference from the external
environment [33]. Such interference may cause signal distortion and saturation when
measuring physiological signals, minimizing their accuracy. Thus, various noise reduction
methods have been proposed. For example, Lee et al. employed conductive foam to reduce
motion artifact interference generated by the friction between electrodes and clothing [34].
Serteyn et al. adopted an injection signal to overcome common-mode noise [35], and
Eilebrecht et al. applied an additional accelerator sensor to offset motion artifact inter-
ference [36]. Other methods for overcoming common-mode noise are also available, for
example, driven right leg (DRL) [37] and capacitive DRL (CDRL) [38]. Despite various
methods having been proposed to overcome interference when measuring with CECG
electrodes, to the best of the author’s knowledge, few methods have achieved stable CECG
signal measurement in real-life settings.

Therefore, the present study proposed a novel noncontact ECG circuit measurement
system to address this limitation. The system employs a high gain circuit design to increase
the signal-to-noise ratio (SNR). For example, use of the optimal input resistance can opti-
mally reduce the effects of the bias current; the guard ring reduces electromagnetic wave
interference from the external environment, and the output resistance divider feedback re-
duces the influence of parasitic capacitance. This robust design enables the circuit to stably
measure the CECG signal regardless of external or motion artifact interference caused by
the circuit. Furthermore, the circuit is simple and practical. The proposed circuit may be
applied in noncontact ECG measurements to increase their feasibility.

2. Materials and Methods
2.1. Active Electrode Design

The electrode design prioritizes collecting signals with a relatively high SNR. In
addition to including a guard ring to shield the electrodes from external noise, the design
employs high input impedance (Rload) to increase the gain and the output resistance divider
feedback circuit to reduce the influence of stray capacitance. Throughout the design process,
the effect of passive components on the electrode circuit was adjusted to obtain the optimal
component combination. Figure 1a,b presents the equivalent circuit and photos of the
electrode, respectively. The diameter of the electrode is 2.5 cm. Given that the operational
amplifier (OPA) has infinite input impedance, the output impedance can be disregarded.
The circuit gain equation is presented in Equation (1), where ZI denotes the impedance of a
combined component, where the stray capacitance (Cstray) is first connected in series to the
ground guard ring capacitor (Cgnd) and then connected in parallel to the Rload, and ZCe is
the capacitive impedance of clothing. The measured value of Ce is 47 pF, Cstray is 76 pF, and
Cgnd is 31 pF.

G(s) =
ZI

ZCe + ZI
(1)

The system employs a resistance divider feedback circuit to reduce the effect of stray
capacitors. The effects of the stray capacitor (C′stray) are calculated using Equation (2).

C′stray =
R f l

R f h + R f l
Cstray (2)



Sensors 2021, 21, 3668 3 of 21Sensors 2021, 21, x FOR PEER REVIEW 3 of 22 
 

 

 

(a) (b) 

Figure 1. Active capacitive electrode design. (a) Active electrode equivalent circuit and 
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Accordingly, the gain is calculated using Equation (3).

G(s) =
sCeRload

(
C′stray + Cgnd

)
C′stray + Cgnd + sRload

(
C′strayCgnd + CeCgnd + CeC′stray

) (3)

2.1.1. High-Input Impedance Amplifier

A high-input impedance OPA is necessary for electrodes to obtain ECG signals through
clothing. The LMP7721 (TI, Dallas, TX, USA) was adopted as the head amplifier; its input
impedance and capacitance are >1 TΩ and <2 pF, respectively. Other outstanding functions
of this OPA include a high common-mode rejection ratio (100 dB), low input voltage noise
(6.5 nV/

√
Hz), low input bias current (3 fA), and the functions that are used to reduce noise

and offsets across the high source and bias impedance. The OPA achieves low voltage
(1.8–5.5 V) and output (1.3 mA) operation, thereby making it feasible for portable battery
supply systems.

2.1.2. Input Resistor

A simple and robust direct current bias architecture was implemented by adding
a resistor from input to ground. The input resistor (Rload) provides a stable bias current
path for the preamplifier. To simulate the high impedance of clothing, studies have
employed several gigaohms of resistance for matching [34,39]. To determine the optimal
resistance value, the simulated results of resistance values between 100 MΩ and 100 GΩ
were compared. In Figure 2a, the resistance value determines the cutoff frequency of the
high-pass filter, which is a combination of the capacitive coupling of clothing and the
resistor. A resistance value of <1 GΩ is unsuitable for ECG measurement because it would
attenuate the ECG signal. The main bandwidth of ECG signals is 0.5–35 Hz. Commercial
power sources, the largest source of electrode noise, is 60 Hz. Therefore, the gain ratio of
various resistance values at 60 Hz was compared (Figure 2b). Accordingly, a 50 GΩ resistor
was adopted.

2.1.3. Output Divider Feedback

Stray capacitance (Cstray) represents the coupling capacitance value between the elec-
trode and the guard ring. An increase in Cstray results in a decrease in the total gain of the
circuit. To reduce the effect of stray capacitance, the two ends of the stray capacitance must
be maintained at similar voltages. By using the output divider feedback to transmit OPA
output signals to the connection point of the input stray capacitance and the guard ring,
the divider feedback signal can be distributed to reduce stray capacitance. Therefore, the
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divider feedback signal requires sufficient current drive force and a suitable divider ratio.
The OPA of the electrode also needs a driving voltage to be maintained in the active region
all the time for the high sensitivity of the sensing signal. Figure 3a depicts the effect of
resistive divider ratio on gain; Figure 3b displays the effect of different Rfl on gain given
a fixed Rfh. After analysis, the present study selected the parameters of Rfl = 1 GΩ and
Rfh = 100 MΩ.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22 
 

 

 

(a) (b) 

Figure 2. Effect of different resistance values (Rload) on gain (Vout/Vi). (a) Effect of resistance values between 100 MΩ and 
100 GΩ on gain; (b) effect of resistance values between 100 MΩ and 100 GΩ on gain ratio at 60 Hz. 

2.1.3. Output Divider Feedback 
Stray capacitance (Cstray) represents the coupling capacitance value between the 

electrode and the guard ring. An increase in Cstray results in a decrease in the total gain of 
the circuit. To reduce the effect of stray capacitance, the two ends of the stray capaci-
tance must be maintained at similar voltages. By using the output divider feedback to 
transmit OPA output signals to the connection point of the input stray capacitance and 
the guard ring, the divider feedback signal can be distributed to reduce stray capacitance. 
Therefore, the divider feedback signal requires sufficient current drive force and a suita-
ble divider ratio. The OPA of the electrode also needs a driving voltage to be maintained 
in the active region all the time for the high sensitivity of the sensing signal. Figure 3a 
depicts the effect of resistive divider ratio on gain; Figure 3b displays the effect of dif-
ferent Rfl on gain given a fixed Rfh. After analysis, the present study selected the parame-
ters of Rfl = 1 GΩ and Rfh = 100 MΩ. 

 
(a) 

Figure 2. Effect of different resistance values (Rload) on gain (Vout/Vi). (a) Effect of resistance values between 100 MΩ and
100 GΩ on gain; (b) effect of resistance values between 100 MΩ and 100 GΩ on gain ratio at 60 Hz.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22 
 

 

 

(a) (b) 

Figure 2. Effect of different resistance values (Rload) on gain (Vout/Vi). (a) Effect of resistance values between 100 MΩ and 
100 GΩ on gain; (b) effect of resistance values between 100 MΩ and 100 GΩ on gain ratio at 60 Hz. 

2.1.3. Output Divider Feedback 
Stray capacitance (Cstray) represents the coupling capacitance value between the 

electrode and the guard ring. An increase in Cstray results in a decrease in the total gain of 
the circuit. To reduce the effect of stray capacitance, the two ends of the stray capaci-
tance must be maintained at similar voltages. By using the output divider feedback to 
transmit OPA output signals to the connection point of the input stray capacitance and 
the guard ring, the divider feedback signal can be distributed to reduce stray capacitance. 
Therefore, the divider feedback signal requires sufficient current drive force and a suita-
ble divider ratio. The OPA of the electrode also needs a driving voltage to be maintained 
in the active region all the time for the high sensitivity of the sensing signal. Figure 3a 
depicts the effect of resistive divider ratio on gain; Figure 3b displays the effect of dif-
ferent Rfl on gain given a fixed Rfh. After analysis, the present study selected the parame-
ters of Rfl = 1 GΩ and Rfh = 100 MΩ. 

 
(a) 

Figure 3. Cont.



Sensors 2021, 21, 3668 5 of 21
Sensors 2021, 21, x FOR PEER REVIEW 5 of 22 
 

 

 
(b) 

Figure 3. Effect of output divider feedback on gain. (a) Effect of a 0.02–40.01 (Rfl+Rfh)/Rfl ratio on 
gain; (b) effect of 1 MΩ to 1 GΩ Rfl values on gain. 

2.1.4. Ground Guard Ring 
The functions of the ground guard ring are to shield the electrode from external en-

vironmental interference—connecting a guard ring to a capacitance in series diverts the 
interference to ground potential, thereby increasing the SNR—and to provide an output 
feedback path to reduce stray capacitance. 

2.2. Constructing the CECG Measurement System 
The proposed noncontact ECG measurement system consists of a front-end elec-

trode circuit, a CDRL feedback circuit, and a signal processing circuit (Figure 4). The two 
front-end electrodes are used to sense the ECG signals, the CDRL feedback circuit over-
comes common-mode noise, and the signal processing circuit amplifies and filters sig-
nals. Sakuma et al. proposed the specifications of the CECG in general are that the cutoff 
frequency of high-pass filter (HPF) is less than 10 Hz and the cutoff frequency of 
low-pass filter (LPF) is 50 Hz [40]. Therefore, the proposed HPF was designed to have a 
corner frequency of 1 Hz, and the LPF was to have 42 Hz. 

 

Figure 3. Effect of output divider feedback on gain. (a) Effect of a 0.02–40.01 (Rfl + Rfh)/Rfl ratio on
gain; (b) effect of 1 MΩ to 1 GΩ Rfl values on gain.

2.1.4. Ground Guard Ring

The functions of the ground guard ring are to shield the electrode from external
environmental interference—connecting a guard ring to a capacitance in series diverts the
interference to ground potential, thereby increasing the SNR—and to provide an output
feedback path to reduce stray capacitance.

2.2. Constructing the CECG Measurement System

The proposed noncontact ECG measurement system consists of a front-end electrode
circuit, a CDRL feedback circuit, and a signal processing circuit (Figure 4). The two front-
end electrodes are used to sense the ECG signals, the CDRL feedback circuit overcomes
common-mode noise, and the signal processing circuit amplifies and filters signals. Sakuma
et al. proposed the specifications of the CECG in general are that the cutoff frequency of
high-pass filter (HPF) is less than 10 Hz and the cutoff frequency of low-pass filter (LPF) is
50 Hz [40]. Therefore, the proposed HPF was designed to have a corner frequency of 1 Hz,
and the LPF was to have 42 Hz.
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2.2.1. CDRL

The CDRL circuit mainly eliminates common-mode noises (60 Hz) caused by coupling
between the commercial energy line and the human body by transmitting the common-
mode signal in the opposite direction. Thus, the circuit sends the signal toward the human
body through the capacitive electrode, using the phase difference to inhibit common-mode
noises. The capacitive value of Csr is 1 pF, and the R, representing the input impedance
of the OPA in CDRL circuit, is 10 KΩ. By using Csr to increase the high-frequency signal
gain and enabling inverted common-mode signals to pass through, the electrode reduces
low-frequency signal gain and prevents the passing of physiological signals. Thus, the
electrode offsets common-mode noise and enables the CECG measurement system to
obtain a higher signal quality.

2.2.2. Signal Processing Circuit

The signal processing involved amplification and filtering of the signals, which were
achieved via the instrumentation amplifier circuit, high-pass filter, and low-pass filter. The
circuit is pictured in Figure 5. Left and right electrode signals enter the signal processing
circuit through the connection with signal inputs. First, the instrumentation amplifier
circuit is used to obtain the CECG signal. This physiological signal, collected by the
capacitive coupled electrode, is subsequently serially processed using a high-pass filter, a
low-pass filter, and two amplifier circuits.
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2.2.3. Data Acquisition

The system employs an analog-to-digital converter and acquisition card (NI-DAQ-
6009) to convert analog signals to digital signals. The acquisition card is a hot-swap I/O
module with 8 analog input channels, 2 analog output channels, and 12 digital input and
output channels. The card features a 32-bit counter channel for analog data collection. The
measurement channels are separately connected to the output ends of the CECG signal
processing circuit for data collection. Subsequently, LabVIEW NI-DAQmx software is used
for real-time data acquisition; the data is then saved as a general digital data file. MATLAB
is subsequently employed for CECG digital data analysis.

2.3. Experiments

To verify whether the capacitive electrodes effectively reduce noise interference from
external and motion artifact interference, simulated and human experiments were per-
formed. The proposed electrode was compared with classic capacitive electrodes, which
have high input impedance and are the most commonly used CECG measurement method.
The structure of the classic electrode is shown in Figure 6. The value of input resistor (Rload)
is 50 GΩ.
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2.3.1. Simulated Testing Experiment

(1) Simulated Testing System Development

Figure 7 presents the regular ECG electrode measurement method of IEC 60601-
2-47 [41]. The present study employed two 11 cm × 13 cm acrylic boards to simulate
nonconductive mediums (i.e., clothing) and glued conductive aluminum foil between
the two acrylic boards to simulate the human skin. The signal from the signal generator
(Agilent 33220A function/arbitrary generator) passed through a 1000-to-1 step-down
circuit to simulate the human ECG signal. The amplitude of the simulated ECG signal at
generator output is 1 Vp-p. Therefore, a signal attenuation of 60 dB is produced by the
step-down circuit. This signal was then transmitted to the aluminum foil. Both electrodes
were connected to the top acrylic board, representing the process of using electrodes to
measure physiological signals (i.e., ECG signals) through clothing. The thickness of the
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non-conductive acrylic medium is 0.1 cm. The CDRL electrode was attached to the bottom
acrylic board, as indicated in Figure 6. The left and right electrode signals first passed
through the signal processing circuit, underwent analog-to-digital conversion through the
DAQ card, and were displayed and recorded as ECG signals on the computer screen.
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(2) Interference Simulation Experiment

A direct current power source was connected to a metal panel to provide the panel
with electric potential, which simulated the electric potential of the human body under the
voltage divider rule (1 V). The metal plate was moved forward and backward as well as
left and right using a motor at different positions to simulate the effect of human-generated
moving interference sources on the CECG measurement system. For a full description
of the employed interference platform, please consult the previous study of the present
research team [33].

2.3.2. ECG Measurement Experiment

(1) ECG Measurement System Development

The ECG measurement system, presented in Figure 8, is largely similar to the simu-
lated measurement system, with the main difference being that the capacitive electrode is
directly fixed to the participant’s clothing to measure the ECG. The experimental process
was as follows: First, the participant was seated and the CECG electrode was fixed against
the chest with chest straps. Subsequently, other participants (representing interference
sources) walked around the participant at various distances to create interference. The ex-
periment was performed using the proposed active electrode and classic active electrodes,
and the results were compared to validate the noise immunity capacity of the proposed
active electrode.

(2) ECG Measurement Experiment Interference Methods

Four interference methods were employed in the human measurement experiment:
the interferer walking forward and back in front of the participant, the interferer walking
left and right in front of the participant, the interferer walking left and right at the sides of
the participant, and the participant shaking their body forward, backward, left, and right.
The first three interference methods simulated the interference caused by others walking in
the vicinity of the participant; each method was separately performed at distances of 25,
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50, and 75 cm. The fourth method simulated the motion artifact interference generated by
the participant’s body movements.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 8. Human measurement system development. 

(2) ECG Measurement Experiment Interference Methods 
Four interference methods were employed in the human measurement experiment: 

the interferer walking forward and back in front of the participant, the interferer walk-
ing left and right in front of the participant, the interferer walking left and right at the 
sides of the participant, and the participant shaking their body forward, backward, left, 
and right. The first three interference methods simulated the interference caused by oth-
ers walking in the vicinity of the participant; each method was separately performed at 
distances of 25, 50, and 75 cm. The fourth method simulated the motion artifact inter-
ference generated by the participant’s body movements. 

3. Results 
3.1. Simulated Measurement Results 
3.1.1. Signals Measured when Forward- and Backward-Moving Interference Was Posi-
tioned at the Front of the Electrode 

To facilitate comparison, this represents the classic CECG wave and the measured 
CECG wave as Waveforms I and II, respectively. Interference was activated during 10–20 
s. Figure 9 displays the signals measured when a forward- and backward-moving inter-
ference source moved at distances of 75–50, 50–25, and 25–0 cm in front of the electrode. 
According to the results of Waveform I, the interference increased as interference source 
distance decreased. Overall, the waveforms of Waveform II were more stable than those 
of Waveform I. When the interference source was at a distance of 25–0 cm, the signals of 
Waveform I were near saturation, whereas the baseline of Waveform II only trembled 
slightly (Figure 9c). Furthermore, Waveform II hardly sustained any interference when 
the distance of the interference source was 75–50 cm (Figure 9a). 

Figure 8. Human measurement system development.

3. Results
3.1. Simulated Measurement Results
3.1.1. Signals Measured when Forward- and Backward-Moving Interference Was
Positioned at the Front of the Electrode

To facilitate comparison, this represents the classic CECG wave and the measured
CECG wave as Waveforms I and II, respectively. Interference was activated during 10–
20 s. Figure 9 displays the signals measured when a forward- and backward-moving
interference source moved at distances of 75–50, 50–25, and 25–0 cm in front of the electrode.
According to the results of Waveform I, the interference increased as interference source
distance decreased. Overall, the waveforms of Waveform II were more stable than those
of Waveform I. When the interference source was at a distance of 25–0 cm, the signals
of Waveform I were near saturation, whereas the baseline of Waveform II only trembled
slightly (Figure 9c). Furthermore, Waveform II hardly sustained any interference when the
distance of the interference source was 75–50 cm (Figure 9a).

3.1.2. Signals Measured When Left- and Right-Moving Interference Was Positioned at the
Front of the Electrode

Figure 10 depicts the signals measured when a left- and right-moving interference
source was positioned 75, 50, and 25 cm in front of the electrode. The interference sustained
by Waveform I was more substantial than that sustained by Waveform II (Figure 10a–c).
However, the interference sustained by Waveform I in Figure 10 was dramatically less than
that in Figure 9, indicating that Waveform I sustained more interference from the forward-
and backward-moving interference than the left- and right-moving interference. Notably,
neither of these interference considerably affected Waveform II.

3.1.3. Signals Measured When Left- and Right-Moving Interference Was at the Sides of
the Electrode

Figure 11 presents the signals measured when a left- and right-moving interference
source was positioned at various distances at the sides of the electrode (75, 50, and 25 cm).
The results of Waveform I concur to those of the previous two interference methods, with
the waveform sustaining the most and least interference when the interference source was
at distances of 25 (Figure 11c) and 75 cm (Figure 11a), respectively. Waveform II sustained
minor interference when the interference source was at 25 cm (Figure 11c) but negligible
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interference at distances of 50 and 75 cm (Figure 11a,b).
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3.1.4. SNR under Interference at Different Distances

Figure 12 presents the SNR of the proposed electrode and the classic electrode when
the forward- and backward-moving interference was positioned at various distances in
front of the electrode. The SNR is calculated using Equation (4). P(Rpeak) is the power of
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the 100-ms interference-free ECGs centered on the detected R peak and P(RpeakNoise) is
the power of the 100-ms interference ECGs centered on the detected R peak. As expected,
the SNR increased at greater distances, and the proposed electrode demonstrated more
favorable performance than the classic electrode.

SNR = 20 log
P(Rpeak)

P(RpeakNoise)
(4)
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3.2. Human Measurement Results
3.2.1. Signals Measured with a Forward- and Backward-Moving Interferer in Front of
the Participant

Figure 13 presents the signals measured with a forward- and backward-moving
interferer in front of the participant at distances of 75–50, 50–25, and 25–0 cm. The results
of Waveform I concur to those of the simulated interference experiment—interference
increased as interference source distance decreased (Figure 13a–c). Additionally, the
Waveform II appeared more stable than Waveform I, validating that the CECG signals
measured using the proposed electrode sustained less noise interference.

3.2.2. Signals Measured with a Left- and Right-Moving Interferer in Front of the
Participant

Figure 14 displays the signals measured with a left- and right-moving interferer
in front of the participant at distances of 75, 50, and 25 cm. The results indicated that
Waveform I sustained some interference when the interferer was at distances of 50 and
25 cm (Figure 14b,c) and less interference when the interference source was at a distance
of 75 cm (Figure 14a). When the interferer was moving at a distance of 25 cm, Waveform
II exhibited a slight trembling, but the R-wave of the ECG was not disrupted (Figure 14c).
When the interference distance was set to 50 and 75 cm, Waveform II did not sustain
interference (Figure 14b,c).

3.2.3. Signals Measured when a Left- and Right-Moving Interferer Was at the Sides of the
Participant

Figure 15 illustrates the signals measured when a left- and right-moving interferer
was 75, 50, and 25 cm to the sides of the participant. Waveform I sustained considerable
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interference in all three distances. By contrast, Waveform II demonstrated more stable
performance (Figure 15a–c) and did not sustain interference when the interference distance
was set to 75–50 cm.
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Figure 15. Signals measured when a left- and right-moving interferer was (a) 75, (b) 50, and (c) 25 cm
to the sides of the participant.

3.2.4. Signals Measured When Interference Was Caused by the Participant’s
Body Movement

Figure 16 displays the signals measured when interference was generated by the
motion artifact interference caused by the participant’s body movement. Figure 16a depicts
the waveform measured when the participant moved his body forward and backward,
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and Figure 16b displays the waveform produced when the participant moved left and
right. In the 10–20 s period, motion artifact interference was generated in both scenarios.
The interference was stronger in Waveform I. Although motion artifact interference was
also generated when measuring Waveform II, the peak of the R-wave in Waveform II
remained visible.
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3.2.5. Comparison between ECG Signals Measured by Contact and Noncontact Electrodes

Figure 17 compares the ECG signal measured by contact and noncontact electrodes.
The signal measurement duration was 60 s, with no interference during the first and last 15 s.
During the 15–45 s, the interferer moved between 50 and 25 cm in front of the participant,
similar to the interference method in Section 3.2.1. Figure 17 indicates substantial stray
interference in the middle 30 s of signal measurement by the conventional CECG electrode,
whereas the proposed CECG electrode did not sustain interference. A comparison between
the 15–45 s period in Figure 17a,c revealed a 98.6% correlation in R–R interval, whereas
that of Figure 17a,b was 56.4%.
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4. Discussion

The present study proposed a noncontact CECG measurement system capable of
stable ECG signal measurement. To overcome a major problem of current capacitive
electrodes, namely susceptibility to interference, circuit parameter optimization analysis
was performed to determine the most suitable circuit design framework. The proposed
design can overcome the problems in current capacitive sensors, particularly those re-
lated to their susceptibility to environmental interference and sensor shaking, thereby
successfully improving the quality of ECG signals measured by noncontact measurement
systems. Noise interference has been a constant bottleneck in the commercialization of
CECG measurement circuits. Various solutions for overcoming noise interference have
been proposed [15,32,34–36]. However, few solutions have achieved stable CECG signal
measurement in a physical environment. The present study simulated an environment with
various interference to the measurement of CECG signals. The proposed CECG measure-
ment system demonstrated outstanding antinoise capabilities to overcome environmental
and motion artifact interference. This system may serve as a favorable design reference for
the practical development of CECG sensors.

The capacitive electrode design process consisted of conducting circuit parameter
property analysis, employing common-mode noise canceling, selecting electrode compo-
nents, and increasing the gain ratio to design the capacitive electrode. Furthermore, a
simulated interference testing experiment platform was developed to simulate external
interference sources and the interference factors generated by human movement. The
effect of interference on the CECG system was observed, and the interference generated
by interference sources at various distances was compared to clarify the problems faced
by existing CECG systems. The experiment results revealed that conventional capacitive
electrodes sustained interference from interference sources or human movement at dis-
tances of ≤75 cm (Figures 9–15). Furthermore, this interference noise increased as the
interference distance decreased. The proposed CECG is capable of withstanding most
noise interference. Although minor interference was observed when the interference source
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was positioned at ≤25 cm, the R-wave peak value of the measured ECG signal remained
visible. Moreover, the proposed CECG electrode is capable of inhibiting motion artifact
interference generated by electrode movement (Figure 16). Thus, the proposed capacitive
electrode is more suitable for application in commercial and portable products.

A comparison between the ECGs measured using the conventional ECG electrode
and the CECG electrode in Figure 17 revealed a 98.6% correlation in the R–R intervals.
The two ECGs were largely similar, indicating that the accuracy of the proposed CECG
measurement system is close to that of conventional contact ECG electrodes. Therefore,
the current authors argue that the proposed CECG measurement technology may replace
conventional contact ECG electrodes in long ECG recordings.

In terms of circuit parameter selection, researchers should pay greater attention to
selecting suitable components. Figure 2 indicates that a higher input resistance (Rload)
resulted in a higher gain. However, this study did not select a 100-GΩ resistor because an
excessively large resistance may result in the output of motion artifact interference, which,
of course, hampers the inhibition of motion artifact interference. Therefore, tradeoffs are
necessary in the selection of input resistors. Operators must ensure that the ECG signal can
be acquired and consider the effect of the resistor on motion artifact interference.

The present study compiled design combinations with a high gain ratio to overcome
the problem of interference susceptibility in CECG. In the electrode design process, man-
ufacturers should endeavor to design near-identical electrodes for CECG measurement
to prevent common-mode conversional loss. Moreover, because CECG is susceptible to
external interference, environmental interference factors should first be eliminated when
measuring ECG to prevent their effect on the measured data. For example, when perform-
ing ECG measurements, the operating condition of surrounding instruments and devices
should remain constant throughout the process to ensure that human movement is the only
interference source, thus improving the reproducibility of the interference and result data.

5. Conclusions

The present study proposed a novel capacitive electrode and devised a CECG mea-
surement system based on said electrode. In addition to performing in-depth research
on the effect of noise, this study provides solutions to noise filtering and signal process-
ing. Furthermore, a simulated test platform for assessing the antinoise properties of the
CECG measurement system was developed. Empirical results of simulated and actual
ECG measuring experiments revealed that the proposed CECG electrode outperformed
conventional CECG electrodes. The proposed CECG electrode may serve as a valuable
reference for future practical applications of noncontact ECG measurement systems.
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