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Abstract

Barley grain protein content (GPC) is an important quality factor that determines grain end-

use value. The synthesis and accumulation of grain protein is highly dependent on the avail-

ability of nitrogen fertilizer, and it is important to understand the underlying control mecha-

nisms of this. In the current study, the GPC and protein composition of mature grain seeds

from Yangsimai 3 and Naso Nijo barley cultivars were analyzed. Grain storage subpro-

teomes (albumin, glubulin, hordein and glutelin) were compared in the cultivars grown in

both low and high nitrogen level conditions. The GPC of mature grain was significantly

higher in Yangsimai 3 than Naso Nijo following nitrogen treatment. Albumin, hordein and

glutelin content were increased in Yangsimai, while only hordein content was increased in

Naso Nijo. Large-scale analysis of the grain storage subproteome revealed 152 differentially

expressed protein spots on 2-DE gels with a pH range of 3–10. Among these, 42 and 66 pro-

tein spots were successfully identified by tandem mass spectrometry in Yangsimai 3 and

Naso Nijo grown in low and high nitrogen conditions. The identified proteins were further

grouped into thirteen categories according to their biological functions. This detailed analy-

sis of grain subproteomes provides information on how barley GPC may be controlled by

nitrogen supply.

Introduction

Barley (Hordeum vulgare L.) was one of the first crops to be domesticated and was a founder

crop in planting areas throughout the world [1–2]. Protein is one of most important nutrient

components of barley grain, and it has long been suggested that grain protein content (GPC)

can be increased with an appropriate amount of nitrogen fertilizer [3–4]. According to their

solubility, seed storage proteins can be classified as albumins (water soluble), globulins (alka-

line soluble, water insoluble), hordeins (alcohol soluble), or glutelins (alkaline soluble, but
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water, alcohol and saline insoluble) [5]. Hordeins and glutelins are the major storage proteins

in grain seeds, while albumins and globulins mainly comprise enzymes or enzyme inhibitors

involved in cell metabolism and development [6–7]. Until now, it was unclear which protein

subunit was directly altered by changes to nitrogen levels.

Proteomics has been employed to dissect the genetic basis of GPC and quality [8–13]. For

example, using comparative proteomics, Görg et al. [8–9] identified a 19 kDa hordein-like

polypeptide that plays a role in determining malting quality in barley cultivars, as it was

quickly degraded in low malting grade grain. In addition, two-dimensional gels combined

with tandem mass spectrometry have been used to investigate the processes of grain filling,

maturation and germination in barley seeds [11]. Accumulation of proteins during cereal

grain maturation has been shown to be relative to changes at the transcriptional and proteomic

levels and differs with nitrogen level [14–15]. Changes in the expression of transport and

metabolism genes caused by changes to nitrogen and sulphur supplies led to altered concentra-

tions of several free amino acids. These amino acids seem to be essential in determining

expression and accumulation of grain storage proteins in wheat [14]. In addition, several dif-

ferentially expressed proteins potentially related to grain storage protein accumulation in dip-

loid wheat were identified as central actors in the response to nitrogen levels using proteomics

[16].

In the present study, we report a comparative proteomics analysis of two cultivars (Yangsi-

mai 3 and Naso Nijo) in high and low nitrogen conditions using two-dimensional gel electro-

phoresis (2-DE) and tandem Mass Spectrometry (MS). The main objectives were: (1) to

investigate the difference in GPC and protein composition between low and high nitrogen-

treated plants; (2) to obtain comparative information on the subproteomes of feed barley and

malting barley under low and high nitrogen conditions; (3) to identify changes in protein com-

position and candidate proteins that increase GPC under high nitrogen conditions.

Materials and methods

Plant material and growth conditions

Two barley cultivars, Yangsimai 3 and Naso Nijo, were used in this study. Yangsimai 3 is a

Chinese cultivar of feed barley, and is two-rowed, with a high grain protein content. Naso Nijo

is a Japanese two-rowed malting barley cultivar with a low GPC [13]. Both barley cultivars

were planted at the Yangzhou University Experimental Farm in autumn of 2014 in soil with a

total N of 1.14g/Kg. Cultivars were grown under low (0 kg N/ha) and high (225 kg N/ha) nitro-

gen conditions. Urea was given as a base nitrogen application just before sowing. Forty seeds

of each cultivar were planted 3 cm apart with 25 cm between rows. Mature seeds were har-

vested from the middle region of the main spikelet, and then seeds were dried to a consistent

level, and stored at -20˚C for seed total protein extraction and protein composition (including

albumin, globulin, hordein and glutelin) analysis. A total of 100 seeds per genotype used for

protein extraction and protein content measurement for each replication. Three biological

replicates were performed in the present study.

Extraction of proteins and protein composition content measurement

Mature grains were ground in a Cyclotec 1093 sample mill (Hoganas City, Sweden) and sieved

through a 0.5 mm screen. Proteins were extracted from samples (1 g) according to the methods

described by Shewry et al. [17], with some modifications. Albumin extraction was carried out

three times for 30 min each with 2 mL deionized water: supernatant was collected by centrifu-

gation at 1,000 g for 10 min, and was used for albumin protein content measurement. The pre-

cipitate was used to determine globulin content and was dissolved in 0.5 M sodium chloride.
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This step was repeated three times, whereby the supernatant was collected following centrifu-

gation at 1,000 g for 10 min, washed once with deionized water and the supernatant containing

sodium chloride was removed. Similarly, hordein extraction was carried out six times for 1 h

each with 55% (v/v) propan-2-ol, 1% (v/v) acetic acid and 1% (v/v) DTT (15–30 ml) at 60˚C.

Samples were centrifuged at 12,000 g for 10 min to permanently disrupt the disulphide bonds

within and between hordeins, pure 4- vinyl-pyridine was added and mixtures (v/v, 1.4%) were

shaken for 30 min at 60˚C [18]. The precipitate was washed once with deionized water and the

supernatant containing the hordein extraction buffer was removed. The precipitate was resus-

pended in 0.05 M sodium hydroxide and centrifuged at 12 000 g for 10 min three times. The

supernatants containing glutelin were collected. Extracted proteins were used for protein con-

tent measurement and protein powder preparation. The nitrogen content and protein compo-

sition of whole grain samples were quantified according to the Kjeldahl method using a FOSS

Kjeltec TM 2300 analyzer unit (Foss Analytical AB, Sweden) [19]. Protein content (grain pro-

tein content, albumin content, globulin content, hordein content and gluten content) was cal-

culated using the following formula: Protein content = Nitrogen content×5.83×100% [20].

Statistical analysis of the differences in aerial part traits between cultivars was performed using

Student’s t-tests.

The proteins (albumin, globulin, hordein and glutelin) were precipitated with 10% TCA

containing 0.07% DTT to remove the extraction buffer, which interferes with isoelectric focus-

ing (IEF). One volume of sample was added to 4 volumes of cold 10% TCA solution. After 2 h

incubation at -20˚C, the extracts were centrifuged at 18,000 g for 30 min at 4˚C and the super-

natant was discarded. Protein pellets were resuspended with cold 80% acetone containing

0.07% DTT and incubated for 1 h at -20˚C before centrifugation at 18 000 g for 15 min at 4˚C.

This step was repeated five times and the protein pellet was freeze-dried under a vacuum. Pro-

tein pellets (albumin, globulin, hordein and glutelin) were solubilized and incubated in a pro-

tein buffer (7 M urea, 2 M thiourea, 2% CHAPS (powder to solution, w/v), 0.5% IPG buffer (v/

v) (pH 3–10) (Fairfield City, USA) and 36 mM DTT (5.6 mg/mL)) at room temperature for 1

h and vortexed every 10 min. The mixture was then centrifuged (20 000 g) for 15 min, and the

supernatant was collected. Protein concentration was determined by Bradford assay [21] with

bovine serum albumin (BSA) as a standard.

Two-Dimensional gel electrophoresis and image analysis

Seed protein extract (200 μg) was loaded onto a GE Healthcare 18 cm IPG strip with a linear

gradient of pH 3–10 during overnight strip rehydration. IEF was conducted using IPGPhorII

(Fairfield City, USA) at 20˚C for a total of 65 kVh. Equilibration of the strips was performed

immediately with 10 mL of two types of SDS equilibration buffer for 15 min each. Buffer 1

contained 1.5 M Tris-HCl (pH 8.8), 6 M urea, 30% glycerol, 2% SDS, and 1% DTT, and buffer

2 contained 1.5 M Tris-HCl (pH 8.8), 6 M urea, 30% glycerol, 2% SDS, and 2.5% iodoaceta-

mide. Second dimension SDS-PAGE gels (12.5% linear gradient) were run on an Ettan DALT-

six (Fairfield City, USA) for 0.5 h at 2.5 W per gel, then at 12 W per gel until the dye front

reached the end of the gel. Upon electrophoresis, the protein spots were stained with silver

nitrate according to the instructions of the PlusOne™ Silver Staining Kit for proteins (Fairfield

City, USA), which offered improved compatibility with subsequent mass spectrometric analy-

sis. Briefly, gels were fixed in 40% ethanol and 10% acetic acid for 30 min, and then sensitized

with 30% ethanol, 0.2% sodium thiosulfate (w/v) and 6.8% sodium acetate (w/v) for 30 min.

Gels were then rinsed with distilled water for five minutes three times, then incubated in silver

nitrate (2.5 g/L) for 20 min. Incubated gels were rinsed with distilled water and developed in a

sodium carbonate solution (25 g/L) with formaldehyde (37%, w/v) added (300 μL/L) before
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use. Development was stopped with 1.46% EDTA-Na2•2H2O (w/v), and gels were stored in

distilled water until they could be processed and reproducible spots were removed from them.

Gel images were acquired using Labscan (Fairfield City, USA). Image analysis was carried out

with Imagemaster 2D Platinum Software Version 7.0 (Fairfield City, USA). Three biological

replicates of silver stained gels showed high reproducibility (>95%) when compared using

Imagemaster 2D Platinum Software 7.0. Spot detection was performed automatically by the

software with the parameters smooth, minimum area and saliency set to 2, 15 and 8, respec-

tively, followed by manual spot editing, such as spot deletion, spot splitting and merging. All

gels were matched to the reference gel in automated mode with Imagemaster 2D Platinum

Software v7.0. The volume of each spot from three replicate gels was normalized and quanti-

fied against total spot volume using Imagemaster 2D Platinum Software 7.0. Sequential k-near-

est neighbor methods was used to impute missing values. Changes in the normalized spot

volumes between experimental and control images were evaluated with a mixed linear mode.

The spot number and normalized spot volume data were formatted in Excel. Protein expres-

sion in Yangsimai 3 and Naso Nijo was compared using Student t-tests, and only those protein

spots with fold changes greater than 1.5 and p<0.05 were considered differentially expressed

protein spots.

When comparing the patterns of protein expression under low and high nitrogen levels,

both quantitative and qualitative differences were observed. The quantitative differences can

be grouped into two categories: up-regulated or down-regulated protein spots in Yangsimai 3

(UY or DY) and Naso Nijo (UN or DN). The qualitative differences can also be grouped into

two categories: specific expressed protein spots in Yangsimai 3 (SEPSY) and specific expressed

protein spots in Naso Nijo (SEPSN). Student’s t-tests (p<0.05) were used to determine signifi-

cant differences in relative abundances of protein spot features between Yangsimai 3 and Naso

Nijo. Spots with reproducible and significant variations, at least 1.5-fold up-regulated or

down-regulated, were considered quantitative differentially expressed proteins.

In-gel digestion of proteins

Protein spots were excised manually and transferred to 1.5 mL microcentrifuge tubes, and pro-

teins with low abundances were removed from all the replicate gels to be pooled and digested

in a single tube. Protein spots were destained twice with 30 mM potassium ferricyanide and

100 mM sodium thiosulfate, and then rinsed with 25 mM ammonium bicarbonate in 50% ace-

tonitrile. Protein spots were dehydrated with 100% acetonitrile, dried under vacuum, and

10 μL trypsin (10 ng/μL) was added, and imbibed for 40 min on ice. Protein spots were then

covered with 25 μL 25 mM ammonium bicarbonate and incubated for 16 h at 37˚C. The pep-

tides were eluted using 30 μL 0.1% TFA, shaken for 10 min, and the digestion solution was

transferred to a new 1.5 mL tube before the protein spots were eluted using 70% v/v acetoni-

trile and 0.1% v/v trifluoroacetic acid twice. The digestion solution was then transferred once

more to a new 1.5 mL tube, incorporating the digestion solution, and freeze-dried for 2 h to

condense the volume to 10 μL before storage at -80˚C.

Identification of proteins by mass spectrometry

The digestion solution was spotted on an MALDI target plate (1.0 μL) twice and the recrystal-

lized CHCA matrix was dissolved in 0.1% TFA/70% ACN (0.5 μL). A Mass Standards Kit for

Calibration of SCIEX MALDI-TOF Instrument (Foster City, USA) was used for mass assign-

ment. Each sample spot was desalted with 0.01% TFA, and completely dried. Protein identifi-

cation was conducted using an SCIEX MALDI TOF-TOF™ 5800 analyzer equipped with

neodymium. For the MS mode, peptide mass maps were acquired in positive reflection mode,
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and the 800–4,000 m/z mass range was used with 4,000 laser shots per spectrum. A maximum

of 20 precursors per spot with a minimum S/N ratio of 20 were selected for MS/MS analysis in

2 kV positive modes. The contaminant m/z peaks originating from trypsin auto-digestion, or

matrix, were excluded from MS/MS analysis.

Combined MS and MS/MS results were analyzed using ProteinPilot software (Foster City,

USA), and the results were searched using MASCOT software (http://www.matrixscience.

com/). Matches to protein sequences from the Viridiplantae taxon (other green plants) in the

NCBInr database (updated 6 June 2014) were considered acceptable if: 1) A MOWSE score

was obtained from MASCOT, which rates scores as significant if they are above the 95% signif-

icance threshold (p<0.05); 2) At least two different predicted peptide masses matched the

observed masses for an identification to be considered valid; 3) The coverage of protein

sequences by the matching peptides was higher than 5%; 4) A peptide mass tolerance of ±0.15

Da was achieved; 5) A parent ion mass tolerance of 0.2 Da was achieved; and 6) Acetylation of

the N-terminus, cysteine as carboxylamidomethyl cysteine, pyroglu formation of N-terminal

Gln, and methionine in an oxidized form were set as possible modifications. To understand

their function, the identified proteins were classified using the MapMan ontology defined by

Guo et al. [13].

Results

Effects of nitrogen supply on grain protein content and protein

composition

In the present study, total GPC in low nitrogen level plants was 12.22% and 12.13% in Naso

Nijo and Yangsimai 3, respectively, and 14.02% and 14.72%, respectively in high nitrogen level

plants. The difference between low nitrogen level and high nitrogen level PGCs was statistically

significant (p<0.05) (Fig 1A). In addition, Yangsimai 3 had a higher GPC than Naso Nijo

under high nitrogen conditions (p<0.05) (Fig 1A). Hordeins are the major storage proteins in

barley. The hordein content of both Yangsimai 3 and Naso Nijo under high nitrogen condi-

tions was significantly higher than at low nitrogen conditions, at 34.72% and 17.10% (p<0.01),

respectively (Fig 1B). A significant difference was also observed between Yangsimai 3 and

Naso Nijo under high nitrogen conditions. Albumin and gluten contents increased with nitro-

gen supply in Yangsimai 3, however, albumin content was inhibited by high nitrogen in Naso

Nijo (Fig 1B). Thus, the increased hordein content determined the GPC under high nitrogen

conditions.

Construction of subproteomes of albumin, globulin, hordein and glutelin

from two cultivars under low and high nitrogen conditions

To construct a 2-DE map of barley grain proteins, albumin, globulin, hordein and glutelin

were extracted from Yangsimai 3 and Naso Nijo and separated by 2-DE with three biological

replicates. At a linear gradient of pH 3–10, a total of 175, 259, 22 and 111 protein spots were

observed on Yangsimai 3 2-DE gels with the protein expression profiles of albumin, globulin,

hordein and glutelin, respectively, while 144, 286, 22 and 152 protein spots were detected on

Naso Nijo 2-DE gels (Fig 2). In total, 152 reproducible differentially expressed protein spots

were detected in both barley varieties, among which 68 (68/567, 11.99%) and 84 (84/604,

13.91%) protein spots were found to have different patterns of expression in Yangsimai 3 and

Naso Nijo between high and low nitrogen conditions (student’s t-test at p<5%) (Table 1).

When analyzing different patterns of expression in low nitrogen level and high nitrogen

treated plants, both quantitative and qualitative differences were observed. Student’s t-tests
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were used to calculate significant differences in the relative abundance of protein spots. A total

of 68 and 84 protein spots were identified as differentially expressed proteins in Yangsimai 3

and Naso Nijo, respectively. The qualitative differences were grouped into two categories:

SEPSY, which had 19 entries, and SEPSN, which had 21 entries (Table 1). The quantitative dif-

ferences were grouped into up-regulated or down-regulated categories in Yangsimai 3 (UY

with 22 entries or DY with 27 entries) and Naso Nijo (UN with 31 entries or DN with 32

entries) (Fig 3, Table 1). A total of 77 and 54 differentially expressed protein spots were

observed in the globulin and albumin expression profiles, respectively, but only 10 and 11

were detected in hordein and glutelin expression profiles, respectively (Table 1).

Identification of differentially expressed protein spots

All differentially expressed protein spots between high and low nitrogen level conditions in

both varieties (Yangsimai 3 and Naso Nijo) were excised from representative 2-DE gels for

identification. In total, 108 differentially expressed protein spots were successfully identified

by tandem mass spectrometry, corresponding to 64 unique proteins (Fig 2, Table 1, S1 Table).

These identified proteins were further grouped into thirteen categories according to their bio-

logical functions, and the category with the most identified proteins was stress (11/65 proteins,

17%), followed by protein degradation and posttranslational modification, TCA, redox,

Fig 1. The total grain protein contents and protein fractions in mature grains of two barley cultivars grown under

high and low nitrogen level conditions. A, total grain protein content of mature grain. B, protein compositions

(albumin, globulin, hordein and glutelin) of mature grain.

https://doi.org/10.1371/journal.pone.0223831.g001
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glycolysis, development, and metabolism categories, which contained 10, 6, 5, 4, 4, and 4 pro-

teins, respectively. A very small number of proteins functioned in photosynthesis (2 entries),

RNA function (2 entries), signaling (2 entries), biodegradation (1 entries) and fermentation (1

entries). The remaining proteins with unknown functions were categorized as other function

(12 entries) (Fig 3).

Fig 2. Protein expression profiling analysis of two barley cultivars with contrasting grain protein contents between high and low nitrogen levels.

https://doi.org/10.1371/journal.pone.0223831.g002
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Further analysis revealed that these 64 unique proteins were derived from 49 different

genes or gene families, and 62 protein spots corresponded to 20 protein isoforms (S1 Table).

These isoforms were identified by the same gene ID, though they differed significantly with

respect to their pIs and Mr. The number of isoforms for each protein ranged from 2 to 8. For

example, serpin-Z4 (gi|1310677) and serpin-Z7 were identified in eight (spots 28, 38, 41, 96,

141, 142, 59 and 61) and seven protein spots (spot 9, 40, 95, 101, 107, 108 and 140), respec-

tively, while spots 82 and 135 were identified as a 14-3-3 protein. In addition, some proteins

had the same protein name with different gene IDs (S1 Table). For example, three protein

spots were identified as 14-3-3 proteins, but the gene IDs were gi|326493920 (spot 82 and 135)

and gi|257664738 (spot 137).

Discussion

The grain protein content of Yangsimai 3 and Naso Nijo displayed

different patterns in response to nitrogen treatment

Nitrogen is one of the most important soil nutrients for ensuring both high grain yield and

grain quality, and increasing yield and protein content are major objectives for cereal crop

breeding programs [22]. Generally, a high GPC in barely grains is required for human food

Table 1. Summary of the number of differentially expressed spots between low and high nitrogen condition.

Expression profiling Differentially expressed protein spots Total

Yangsimai 3 Naso Nijo

SEPSY UY DY SEPSN UN DN

Albumin 12 (12) 6 (4) 5(3) 11 (9) 9 (3) 11 (6) 54 (37)

Globulin 6 10 (1) 17 (17) 9 (5) 18 (18) 17 (17) 77 (58)

Hordein 0 3 (2) 3 (2) 0 3 (3) 1 (1) 10 (8)

Glutelin 1 (1) 3 (0) 2 (0) 1 (1) 1 (1) 3 (2) 11 (5)

Total 19 (13) 22 (7) 27 (22) 21 (15) 31 (25) 32 (26) 152 (108)

Note, the digit in brackets indicate differentially expressed proteins spots were identified by tandem MS.

https://doi.org/10.1371/journal.pone.0223831.t001

Fig 3. Functional category and Venn diagram of differentially expressed proteins. A, functional category of

differentially expressed proteins; B, Venn diagrams showing the number of differentially expressed proteins common to

(‘overlap’ genes) and specifically expressed in the four subproteomes. Numbers in a single-shaded region indicate

subproteome-specific proteins, while those in a double-shaded region show the overlap proteins.

https://doi.org/10.1371/journal.pone.0223831.g003
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and animal feed, while low GPC is desirable for malting and brewing industries. The form and

concentration of nitrogen (N) in soil is a major factor in determining grain quality and crop

yield [23]. Remarkably, barley grain protein content is significantly affected by different nitro-

gen levels and cultivars; increasing nitrogen fertilizer application increases the hordein protein

content (lysine-poor storage protein) with the increase in total grain protein content, but there

are only small increases in the total amounts of the other more lysine-rich proteins (salt soluble

proteins and glutelin residue proteins) [6, 24]. In the current study, grain protein content of

the two cultivars increased with the level of nitrogen and displayed significant differences

under high nitrogen levels. Albumin, globulin, hordein and glutelin content increased in

Yangsimai 3, but only hordein content increased in Naso Nijo under high nitrogen treatment.

Hordein content increased by 1.58% in Yangsimai 3 compared to 0.82% in Naso Nijo. There-

fore, the hordein fraction in barley grains was more sensitive to nitrogen and increased as the

nitrogen level increased, which is the most stable factor for high GPC in feed barley.

Differentially expressed proteins contributed to the difference in grain

protein content with nitrogen treatment

Changes in proteome under low and high nitrogen conditions have also been observed; with

differentially expressed proteins involved in metabolism, stress, glycolysis, tricarboxylic acid

cycle, protein degradation, carbon fixation and other functions [25–28]. Recently, proteomics

has been employed to investigate the grain response to nitrogen supply, and enzymes or

enzyme inhibitors involved in cell metabolism and development were detected in albumin and

globulin subproteomes [16]. In the present study, a large number of differentially expressed

proteins were identified in albumin (37 proteins) and globulin (58 proteins) expression pro-

files, which had functional roles in twelve categories (S1 Table). For example, five differentially

expressed protein spots (spots 24, 92, 94, 111 and 151) were identified as glyceraldehyde-

3-phosphate dehydrogenase (GAPDH), of which spot 24 derived from the albumin expression

profile and was up-regulated in Yangsimai 3 under high nitrogen conditions. Others were

detected in the globulin expression profile and displayed various expression patterns. GAPDH

is considered a classical glycolytic protein and exhibits distinct activities as a multidimensional

protein, such as iron metabolism, membrane trafficking, histone biosynthesis, the mainte-

nance of DNA integrity and receptor mediated cell signaling [29]. Its expression is altered by

low and high N levels combined with different sulphur fertilization levels in wheat [27]. Ser-

pin-Z4 and Z7 belong to the barley serine protease inhibitor (serpin) family, and both play

important roles in improving beer foam-stability and malt filterability [30–31]. In our previous

study, we identified multiple expression patterns in Yangsimai 3 and Naso Nijo [13]. In the

albumin and globulin proteomes, a total of 7 and 8 Serpin protein spots were detected in Yang-

simai 3 and Naso Nijo, respectively. This suggests that the expression of Serpin-Z4/Z7 was

induced by different nitrogen levels. Albumin and globulin are thus two subproteomes

involved in GSP synthesis in grain seeds that are affected by nitrogen levels [16].

The major endosperm storage proteins are alcohol soluble hordeins in barley, which com-

prise 30–50% of the total grain protein [32–33]. According to electrophoretic mobility and

amino acid composition, hordeins are generally divided into three groups: sulphur-rich (B, γ-

hordeins), sulphur-poor (C-hordeins) and high molecular weight (HMW, D-hordeins) hor-

deins [34]. The hordein fractions were affected by cultivars and environmental variation in

barley grain, as well as interactions between them [35–36]. Remarkably, B-hordein content

account for 70–90% of the total hordein content, which was increased with nitrogen levels,

and changes in B-hordein content accounted for the largest proportion of hordein content

changes [6]. In the present study, we demonstrated the expression profiles of hordein and
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glutelin under low and high nitrogen conditions, and specific differentially expressed hordein

proteins were identified. A total of eight protein spots representing five hordein proteins were

differentially expressed in Yangsimai 3 and Naso Nijo, which could contribute to the differ-

ence in GPC of mature barley seeds at the protein level.

Comparative analysis of grain protein content in barley using

transcriptomic and proteomics

HvNAM1, which encodes a NAC transcription factor as a TtNAM-B1 orthologous gene in bar-

ley, was found to be responsible for the GPC QTL on barley chromosome 6HS [37–39]. At the

transcriptional level, the HvNAM1 gene was only found to be highly expressed in developing

grain (15 day after pollination) and senescing leaves (56 day after pollination), with only trace

amounts in other tissues [40]. In the present study, a total of 63 unique proteins were distrib-

uted across seven barley chromosomes (S1 Table). Among which, thirty genes were highly

expressed in developing grain (5 and/or 15 days after pollination) (S1 Table). Remarkably, the

GPC of both cultivars increased with increased nitrogen application, and Yangsimai 3 was

more sensitive to nitrogen than Naso Nijo. The hordein proteome is a potentially major con-

tributor to the difference in GPC between Yangsimai 3 and Naso Nijo. For example, protein

spots 55 and 58 were identified as B hordeins and predicted proteins with unknown functions.

Both accumulated in Yangsimai 3 with a higher abundance than in Naso Nijo. Therefore,

multi-omics analysis can analyze the molecular mechanisms of GPC and nitrogen regulation

in barley grains.

Conclusion

In the present study, the GPC of mature grain was significantly higher in Yangsimai 3 than in

Naso Nijo following nitrogen treatment. Hordein content was higher in both cultivars under

high nitrogen conditions. Subproteome analysis revealed 152 differentially expressed protein

spots on 2-DE gels. A total of 42 and 66 protein spots were successfully identified by tandem

mass spectrometry in Yangsimai 3 and Naso Nijo under different nitrogen levels. Remarkably,

the variation in B hordein content in Yangsimai 3 could have contributed to the higher GPC

in Yangsimai 3 compared to Naso Nijo under different nitrogen availability conditions. There-

fore, storage protein accumulation leads to GPC variation in feed and malting barley.

Supporting information

S1 Table. Peptide information of differentially expressed proteins identified by tandem

mass spectrometry.
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