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Background: High cytokine levels have been associated with severe COVID-19

disease. Although many cytokine studies have been performed, not many of

them include combinatorial analysis of cytokine profiles through time. In this

study we investigate the association of certain cytokine profiles and its

evolution, and mortality in SARS-CoV2 infection in hospitalized patients.

Methods: Serum concentration of 45 cytokines was determined in 28 controls

at day of admission and in 108 patients with COVID-19 disease at first, third and

sixth day of admission. A principal component analysis (PCA) was performed to

characterize cytokine profiles through time associated with mortality and

survival in hospitalized patients.

Results: At day of admission non-survivors present significantly higher levels of

IL-1a and VEGFA (PC3) but not through follow up. However, the combination

of HGF, MCP-1, IL-18, eotaxine, and SCF (PC2) are significantly higher in non-

survivors at all three time-points presenting an increased trend in this group

through time. On the other hand, BDNF, IL-12 and IL-15 (PC1) are significantly

reduced in non-survivors at all time points with a decreasing trend through

time, though a protective factor. The combined mortality prediction accuracy

of PC3 at day 1 and PC1 and PC2 at day 6 is 89.00% (p<0.001).
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Conclusions: Hypercytokinemia is a hallmark of COVID-19 but relevant

differences between survivors and non-survivors can be early

observed. Combinatorial analysis of serum cytokines and chemokines can

contribute to mortality risk assessment and optimize therapeutic

strategies. Three clusters of cytokines have been identified as independent

markers or risk factors of COVID mortality.
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Introduction

Coronavirus disease 2019 (COVID-19) has emerged as a

global infectious respiratory disease caused by a novel

betacoronavirus: the SARS- CoV-2 (severe acute respiratory

syndrome coronavirus 2) (1, 2). Since its emergence in

December 2019 until December 2021, it has infected nearly

300 million people and killed more than 5 million people across

the world (3). COVID-19 infection displays a wide clinical

presentation ranging from asymptomatic or mild symptoms to

severe pneumonia and critical respiratory failure (4). Due to its

complex physiopathology, prognosis at hospital admission

remains a challenge.

Severe COVID-19 has been associated with an acute

hyperimmune response known as “cytokine storm” or

“cytokine release syndrome” (CRS) contributing to multiorgan

failure (5). Recent studies suggest its relation to an impaired type

I IFN immunity (6, 7). That hypercytokinemia, has been

correlated with respiratory failure, ARDS and adverse clinical

outcomes (8–10). Cytokines released by immune cells in case of

uncontrolled inflammation, have been studied as markers and

profiles of severity to predict outcomes (11–16). Although

individual cytokine analysis can shed some light on COVID-

19 pathology, the immune responses are complex, and a

combinatorial analysis could better explain the relations

between cytokine levels. Previous studies with principal

component analysis (PCA) and transcriptomic have

determined the cytokine profiles regarding COVID-19 severity

and mortality (7, 17–19). However, differences between the

different cytokine profiles and how they evolve through time

in hospitalized patients, comparing mortality and survival has

not been performed yet.

In this study, we aimed to establish the timeline of different

cytokine profiles that help to predict patient outcome in order to

anticipate, adapt treatment and improve survival.
02
Materials and methods

Study design

We performed a prospective study at Hospital Clıńico of

Valladolid (Spain). A total of 108 patients with RT-PCR-

confirmed SARS-CoV2 infection and were recruited from late

March to 11th April of 2020. Patients with other active infections

or a terminal chronic disease were excluded. Patients were divided

into two groups according to the occurrence of mortality. In

addition, 28 age and gender matched healthy volunteers with a

negative RT-PCR test for SARS-CoV2 infection were also

recruited during routine pre-anesthetic evaluation for scheduled

surgery. The present study was approved by the Valladolid

Hospital’s Clinical Ethics Committee (CEIm) (cod: PI 20-1717)

and all subjects provided a written informed consent.

Plasma samples were collected the first, third and sixth day

of hospital admission in 3.2% sodium citrate tubes and

centrifuged at 2000 g for 20 minutes at room temperature.

Plasma was aliquoted and stored at -80°C until used.
Cytokine analysis

Concentration of 45 cytokines in plasma was determined by

45-plex Human XL Cytokine Luminex Performance Panel

(R&D), following manufacturer instructions. The cytokines

analyzed are the following ones: BDNF, EGF, eotaxin (also

known as CCL11), FGF-2, GM-CSF, GRO-a (CXCL1), HGF,

IFN-a, IFN-g, IL-1a, IL-1 b, IL-10, IL-12 p70, IL-13, IL-15, IL-

17a (CTLA-18), IL-18, IL-1RA, IL-2, IL-21, IL-22, IL-23, IL-27,

IL-31, IL-4, IL-5, IL-6, IL-7, IL-8 (also known as CXCL8), IL-9,

IP-1 beta (CCL4), IP-10 (CXCL10), LIF, MCP-1 (CCL2), MIP-

1a (CCL3), NGF-b, PDGF-BB, PIGF-1, RANTES (CCL5), SCF,
SDF-1a, TNF-a, TNF- b, VEGF-A, and VEGF-D.
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Statistical analysis

Since most of the cytokine data did not follow a normal

distribution, continuous variables were presented in terms of

median (interquartile range, IQR) and compared among groups

using the Mann-Whitney U-test or T-test. Categorical variables

were described as count and percentages, which were compared

using the c2 test or Fisher exact test, when appropriate.

Distributions of the cytokine values were assessed and log2

transformed to render the principal component analysis (PCA).

PCA was carried out with all variables related to cytokine

concentrations that showed significant differences between

survivors and non-survivors in the univariate analysis, on at

least one of the three analyzed days. All participants for whom

the variables of interest were available were included in the final

analysis and no assumptions were made for missing data. Prior

to extraction of factors, Kaiser-Meyer-Olkin (KMO) measure

of sampling adequacy and the Bartlett test of sphericity were

checked to evaluate the fitness of the data for factor analysis. The

factor solution was formed based on the eigenvalues, which

represent the amount of variance captured by given

components. Factors with eigenvalues >1.0 were retained,

according to the Kaiser-Guttman criterion and the Scree Plot.

Then we optimized the factor solution using varimax rotation. A

factor-based-score was calculated for each component, and we

estimated the factor scores on all COVID-19 patients at the first,

third and sixth day of admission.

To assess changes over time in outcome measures within

each group, Friedman’s repeated measures test with Dunn’s

multiple comparison test was used for non-parametric data

and a repeated-measures analysis of variance (RM-ANOVA)

with Tukey’s multiple comparison test for parametric data.

A multivariable logistic regression analysis was performed to

estimate the relevance of each factor obtained in the PCA

analysis, differentiating the profile of the patients who survived

versus those who did not survive 28 days after admission. The

logistic regression model was internally validated by performing

bootstrap resampling (1000 resamples). The area under the

receiver operating characteristic curves (AUC ROC) shows the

accuracy for the final logistic regression model and individual

predictors. All statistical analyses were performed using SPSS

version 28.0 for Windows (SPSS, Inc, Chicago, Ill). A p-value of

less than 0.05 was regarded as statistically significant.
Results

Characteristics of the patients

A total of 108 hospitalized subjects admitted with clinical

SARS-CoV-2 pneumonia were enrolled, of whom 20 died within

28 days after admission and composed the non-survivors’ group.
Frontiers in Immunology 03
The other 88 patients were included in the survivors’ group.

Baseline characteristics of patients are reported in Table 1. The

group of non-survivors was significantly older than the other

group. There were no differences in terms of gender and

comorbidities between groups. Considering the analytical

variables, non-survivors presented higher levels of glycaemia,

creatinine, leukocytes, neutrophils, procalcitonin, CRP, D-dimer

and LDH. There were no significant differences in clinical

outcomes referring to the percentage of patients with invasive

mechanical ventilation and length of stay in hospital and

intensive care unit.
Cytokine profile

In bivariate analysis, the levels of 10 cytokines were

different (p< 0.05), at least in one of the three moments (1, 3

and 6 days) between survivors and non-survivors (Tables S1-

3). On the first day of admission (Table S1), significant

differences were observed regarding HGF, IL-2, IL-1a, IL-15
and VEGFA levels. IL-15 and IL-2 were the only cytokines

whose levels were significantly reduced by half in the group of

non-survivors at 28 days. The rest of cytokines were

significantly increased in this group. Specifically, IL-1a and

VEGFA quadrupled and doubled their levels, respectively. On

the third day of admission (Table S2), differences between

groups were found in the case of BDNF, eotaxin, IL-18 and

again HGF and IL-15 levels. In non-survivors, levels of HGF

and IL-18 were significantly higher, where HGF tripled the

levels compared to survivors. On the other hand, levels of

BDNF, eotaxin and IL-15 were significantly lower in this

group. Finally, on the sixth day of admission (Table S3),

cytokines significantly elevated in non-survivors were SCF,

MCP-1, IL-18, VEGFA and HGF. The exception became

again IL-15, which barely showed variation over time, and

whose levels in non-survivors remained the half of those in

survivors. IL-18 increased its levels compared to day 3 of

admission; and VEGFA, which significantly doubled the level

on the first day of admission, tripled the levels in non-survivors

on the sixth day. However, HGF stands out as the only cytokine

that remained significantly elevated in the group of non-

survivors through all three measurement times, reaching its

maximum peak and difference compared to survivors, on the

sixth day of admission.

Some of these 10 cytokines and chemokines (IL-1a, IL-2, IL-

15, IL-18, eotaxin, HGF, MCP-1, SCF and VEGFA) have been

linked to different aspects of COVID-19 disease, its severity and

even mortality but a combinatorial analysis can help us to

understand its complex interaction. Principal component

analysis (PCA) is a technique for reducing the dimensionality

of such datasets, increasing interpretability but at the same time

minimizing information loss.
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Principal component analysis

The Kaiser-Meyer-Olkin measure of sampling adequacy

(0.7) and the Bartlett test of sphericity (p < 0.001) indicated

that the factor matrix was adequate for data (Table S4).

PCA resulted in three components with eigenvalues greater

than one that describe relationships between cytokines’ levels in

patients with COVID-19. The three components accounted for

66.09% of the total variance. PC1, PC2, and PC3 accounted for

32.63%, 19.14%, and 14.32% of the variance, respectively. PC1 is

composed by IL-15, IL-2 and BDNF; PC2 by HGF, MCP-1, IL-

18, eotaxin and SCF; and PC3 by IL-1a and VEGFA. Figure 1

show three-dimensional score plot illustrating how cytokines

were distributed on PCs.
Frontiers in Immunology 04
The algorithms of the principal components were applied to

all patients and calculated scores were saved as new variables

PC1, PC2 and PC3 at the first, third and sixth day of admission.
Principal components score in COVID
patients vs control group

In addition, the algorithms of the principal components

were applied to the control group and the PCA scores (PC1, PC2

y PC3) were compared between COVID-19 and healthy SARS-

CoV-2-negative control subjects on the day of admission. The

calculated scores were higher in COVID-19 patients than in

controls: PC1 (t(52.26)= 3.53; p=0.001); PC2 (U= 988.00; p=
TABLE 1 Clinical characteristics of the patients. Data are represented as [median (IQR)] and as [% (n)].

Non-survivors at 28 days
(N=20)

Survivors
(N=88)

p-value

Age in years [median (IQR)] 73.5 (14) 67 (17) 0.017

Male [n (%)] 12 (60) 47 (53.4) 0.593

Comorbidities [n (%)]

Smoking 4 (20) 5 (5.7) 0.059

Coronary disease 2 (10) 8 (9.1) 1.000

Atrial fibrillation 4 (20) 8 (9.1) 0.229

Diabetes 5 (25) 14 (15.9) 0.340

Neurological disease 1 (5) 1 (1.1) 0.337

Stroke 0 (0) 1 (1.1) 1.000

Hypertension 11 (55) 39 (44.3) 0.460

Liver disease 1 (5) 1 (1.1) 0.337

Obesity 2 (10) 8 (9.1) 1.000

COPD 2 (10) 5 (5.7) 0.611

Kidney disease 2 (10) 1 (1.1) 0.087

Laboratory. [median (IQR)]

Glycaemia (mg/dL) 198 (227) 106 (67.25) <0.001

Creatinine (mg/dL) 0.995 (0.86) 0.815 (0.23) 0.007

Total bilirubin (mg/dL) 0.5 (0.58) 0.5 (0.39) 0.482

Leukocytes (x109/L) 8.16 (10.23) 6.41 (3.72) 0.042

Lymphocytes (x109/L) 0.72 (0.74) 1 (0.56) 0.185

Neutrophil (x109/L) 7125 (9590) 4725 (3272.5) 0.016

Procalcitonin (ng/ml) 0.3 (0.57) 0.09 (0.195) <0.001

Platelet (x109/L) 195 (95.25) 208 (117) 0.512

CRP (mg/L) 160 (190) 76 (95.5) 0.003

Ferritin (µg/L) 1024.5 (113.25) 671 (1107) 0.126

D-dimer (mg/L) 2029 (23629.25) 711 (769.5) 0.015

LDH (mmol/L) 385 (183.25) 306 (96.25) 0.002

Clinical outcomes

Invasive mechanical ventilation [n (%)] 12 (60) 21 (23.9) 0.122

Length of hospital stay [days.median (IQR)] 15.5 (11.75) 11 (13.5) 0.153

Length of ICU stay [days. median (IQR)] 17.5 (8.75) 20 (19.5) 0.253
fronti
IQR, interquartile range; COPD, chronic obstructive pulmonary disease; CRP, C-Reactive protein; ICU, intensive care unit.
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0.005); PC3 (U= 1111.00; p= 0.031). These values let us confirm

that those cytokines are different between infected and healthy

subjects, emphasizing the importance of these cytokines in

COVID-19 infection.
Principal components score in survivors
vs non-survivors

Figure 2 shows PC1, PC2 and PC3 scores at the first, third

and sixth day of admission for survivors and non-survivors. In

Figure 2A, significant differences are observed between both

groups. Mortality was associated with lower scores of PC1 and

higher scores of PC2 and PC3. This indicates that higher scores

in PC1 are protective while PC2 and PC3 represent risk factors.

In contrast to PC3, which is only significantly elevated in non-

survivors at day one; the differences between survivors and

non-survivors in the cytokines of PC1 and PC2 intensified

through time. Figure 2B shows that in the first 6 days of

hospitalization, the mean score is stable and significantly

lower for patients who survived than for those who died. In

addition, a growing trend is observed for this marker in

patients who did not survive.
Multivariate analysis of principal
components associated with mortality
at 28 days

Sex and age between both groups were not significant

variables in the final adjusted model. Logistic regression

analysis (Table S5) showed that on the day of admission, only
Frontiers in Immunology 05
the combination of cytokines defined by PC3 was significant

[OR: 2.35, 95%CI: 1.09-5.06, p=0.029]. In contrast, PC1 and PC2

were significant on the sixth day of admission, where PC1

cytokines represented a protective factor relative to mortality

at 28 days [OR: 0.273, 95%CI: 0.12-0.64, p=0.003] while PC2 was

pointed out as the major risk factor [OR: 5.24, 95%CI: 2.03-

13.48, p=0.001]. ROC curves of significant factors and predicted

probability for final logistic regression model are shown in

Figure 3. The area under the curve (AUC= 0.89, 95%CI= 0.81-

0.96, p <0.001) shows a good discrimination ability of the model.
Discussion

Several studies have been carried out comparing cytokine

profiles in severe and moderate COVID-19 (20–23). However,

there are fewer studies comparing differences in cytokine profiles

between survivors and non-survivors or analyzing the

relationship between the evolution of cytokines profile in

COVID-19 hospitalized patients and mortality (17, 24). Severe

disease is characterized by acute lung injury (ALI) that can

eventually lead to highly lethal acute respiratory distress

syndrome (ARDS) and a cytokine storm (25, 26). Previous

studies have associated the significant elevation of many

cytokines such as IL-2, IL-7, IL-10, GSCF, IP-10, MCP-1,

MIP-1a and TNF-a in the blood of patients with severity of

the disease. Particularly the level of IL-6 and IL-10 (27–30).

However, we found three cytokine clusters (PC1, PC2 and PC3)

that could be considered as independent risk factors. Their

different contribution would be associated to a higher or lower

mortality risk. On one hand, IL-2, IL-15 and BDNF levels (PC1)

are significantly reduced in the group of non-survivors, which
FIGURE 1

Component plot in rotated space. Results of principal component analysis (PCA) and Varimax rotation method with Kaiser normalization. The
three components accounted for 66.09% of the total variance.
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suggests they constitute a protective factor. In contrast, cytokines

included in PC2 (HGF, SCF, IL-18, MCP-1 and eotaxin)

together with the combination of PC3 (IL-1a and VEGFA) are

significantly increased in non-survivors representing a risk

factor for mortality at 28 days. It is interesting that, while PC1
Frontiers in Immunology 06
and PC2 are significantly reduced and increased, respectively, at

the three stages evaluated; PC3 only showed to be significantly

increased in non-survivors at the day of admission. In addition,

whereas no trend is observed in PC1 or PC3, PC2 seems to

display an increasing trend through time.
A

B

FIGURE 2

PC scores for COVID patients (survivors and non-survivors) and controls when applying PC estimators. In blue PC1 groups IL-15; IL-2 and BDNF.
In red PC2 groups HGF; MCP1; IL-18; eotaxin and SCF. In green PC3 groups IL-1a and VEGFA. (A) Box-plots shows the different contribution of
each of the factors obtained in the analysis of principal components for survivors and non-survivors, showing, in addition, three moments in the
evolution of the disease (first, third and sixth days of admission of the patients). (B) Shows that in the first 6 days of hospitalization, the mean
score is stable and significantly lower for patients who survived than for those who died. In addition, a growing trend is observed for this marker
in patients who did not survive. Trends over time of the PC scores for survivors and non-survivors were calculated separately by using RM-
ANOVA or Friedman test.
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PC3, constituted by the combination of IL-1a and VEGFA is

only significantly increased at day of admission. The importance

of this set at day 0 may be explained by its implication in the

initial response to COVID-19 severe infection. Initial COVID-19

studies revealed higher levels of IL-1a, which is a cytokine of

initial states of the innate immune response (31). Actually, IL-1a
has recently been described as an early marker to predict a bad

outcome in COVID-19 severe patients (23). This could be

explained by the fact that the precursor of IL-1a, in contrast

to IL-1b or IL-1ra, does not need to be activated and is capable of
triggering a powerful inflammatory response when it is released

by damaged cells (32). Its main biological activities are activation

of T lymphocytes, and B cell proliferation along with synthesis of

immunoglobulins (31). On the other hand, VEGFA has a key

role in lung development resulting in an appropriate

organization of the pulmonary vascular network (33). VEGFA

can be released during hypoxia, in inflammatory situations

where there is damage to the endothelium. Its effect is

mediated by VEGFR-1 and VEFGR-2 that contribute to

hematopoiesis and monocyte chemotaxis and increased

permeability, respectively. PC3 component could be

interpreted as the initial expression of the existence of a severe

cell damage in lungs due to macrophage infiltration produced by
Frontiers in Immunology 07
SARS-CoV-2 virus (34), which would initiate the subsequent

fatal pathogenesis and exacerbate the immune response

observed in following stages of disease. As a matter of fact, our

results support previous studies that prove the early use in severe

disease of treatments with IL-1 antagonists such as anakinra,

improves outcome by blocking progression of the cytokine

storm (35).

Our results showed that despite cytokine levels were

increased in both survivors and non-survivors, in the first

group levels remain similar through time. However, there is a

significant upward trend in PC2 in non-survivors through time,

which could remark their importance as mortality markers, as

they are particularly elevated at day 6. The cytokines of PC2 are

HGF, SCF, IL-18, MCP-1 and eotaxin. The importance of PC2 is

that, altogether, represent the intense and probably irretrievable

damage in lung tissue due to the virus itself as well as the extreme

immune response. First, IL-18, a cytokine belonging to the IL-1

family and intervening in cellular immune response it is secreted

upon macrophage activation in viral infections and courses with

endothelial damage in lung tissue (32). IL-18 binds in its mature

form to specific receptor IL-1 receptor 5 (IL-1R5, known as IL-

18 receptor alpha chain), leading to the recruitment of the

coreceptor, IL-1 receptor 7 (IL-1R7, known as IL-18 receptor
FIGURE 3

Receiver operating characteristic (ROC) curves for the predicted probability of the logistic regression model and significant predictors for 28-
day mortality (PC3 at the day of admission, PC1 and PC2 at the sixth day after admission).
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beta chain). IL-18BP, a natural inhibitor of IL-18, circulates

maintaining a balance between both of them. Severe COVID-19

patients have been shown to have an imbalance of IL-18/IL-

18BP (36, 37). Actually, an antibody against IL-1R7 has been

proposed to reduce inflammatory signalling of IL-18 in COVID-

19 patients (38). SCF, HGF and eotaxin are upregulated by

inflammatory processes and secreted by mast cells upon

cytokine stimulation including IL-18. All of them have also

been related to severe lung injury. Eotaxin and SCF play a central

role in mast cell and eosinophilic infiltration and, SCF promotes

the expression and release of MCP-1 from lung mast cells (39–

41). In addition, HGF can promote the development of different

cell lineages, including thrombocytes, as to contribute to tissue

repair and modulate the adaptive immune response to control

inflammation (15, 42). Worthy of remark is that HGF and

eotaxin were found to be elevated in patients with severe

influenza A (H1N1) virus and other viral infections and in

patients with inflammatory lung injury (43–46).. Finally, we

have MCP-1, which has been previously described as a factor to

predict severity in COVID-19 patients due to its activity in

monocyte recruitment to arterial wall (47). More than 70% of the

deaths related to COVID‐19 are associated with deregulation of

the mechanisms that control blood clotting, as a part of the

innate immune response to limit pathogen spread in a process

known as immunothrombosis (48, 49). Moreover, hypoxic

environment due to pulmonary affection activates pro‐

coagulation factors that may promote thrombosis (50). In our

work, both MCP-1 and D-dimer are elevated in non-survivors

indicating thrombotic events were taking place. Taking together

PC2, has a potential as a marker of bad prognosis due to extreme

inflammation and lung injury.

According to the logistic regression model, the most

contributing factor to survival in this case is a protective factor

for mortality that involves high plasma levels of the cytokines IL-

2, IL-15 and BDNF in survivors compared to those determined

in deceased patients. The elevation of the plasmatic levels of

some of these three cytokines would, therefore, increase this

protective factor. BNDF has a pivotal role in neuroplasticity that

is considerably affected by inflammatory states. The most

common pro-inflammatory cytokines are IL-1b, IL-6, TNF-a
and IFN-g cause a significant reduction of BDNF gene

expression (51). In fact, low serum BDNF levels were

correlated with severe SARS-CoV-2 infection in a recent study

where BDNF levels were restored during patients´ recovery. This

has been linked to the lymphopenia observed in critical COVID-

19 patients as lymphocytes contribute to peripheral BNDF

secretion (52). IL-2 and IL-15 have several similar functions.

Both cytokines stimulate the proliferation of T cells; induce the

generation of cytotoxic T lymphocytes; facilitate the

proliferation of B cells as well as immunoglobulin secretion;

and induce generation and persistence of natural killer cells (53).

On one hand, IL-15 has a pivotal role in viral clearance by long-

lasting, high avidity T-cell responses to invading pathogens by
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ensuring survival of memory cells. Actually, influenza and other

respiratory viruses induce peripheral and local expression of IL-

15, which is critical for anti-viral responses by different

lymphocyte populations. Low levels of circulating IL-15 have

been associated with high viremia and poor disease outcome

(54). On the other hand, IL-2 is involved in maintenance of

peripheral regulatory T cells and elimination of self-reactive ones

(53). What is more important, both IL-2 and IL-15 can regulate

cell proliferation, thus controlling excessive response (31).The

progressive decrease of BDNF, IL-15 and IL-2 in plasma may be

a warning factor of disease deterioration in severe patients with

COVID-19 pneumonia. For that matter, IL-2 and IL-15

supplementation have been proposed as to improve the

immune disorder and reduce mortality (55, 56).

The independence of the three factors suggests three possible

independent therapeutic pathways of intervention. One aimed at

stopping the initial proinflammatory response by blocking IL-1

and VEGFA. Other aimed at regulating the immune response by

increasing IL-15 levels, IL-2 and BDNF. And other aimed at

limiting lung tissue by interfering with HGF, SCF, IL-18, MCP-1

or eotaxin. As a multiphasic disease, immune monitoring and

multiple targets would be a great approach to improve outcomes.

The main limitations of the study are that we only performed

a plasma analysis including 45 cytokines. This means some

relevant cytokines in severity of COVID-19, might not be

included. However, we selected this panel as it was the most

complete available for cytokine analysis and eligible for clinical

implementation. As future directions, we considered it would be

interesting to confirm our results, especially in relevant cytokines

by a classic ELISA analysis. In addition, we consider it would be

interesting to evaluate cytokine profiles in healthy population

and how these levels correlate with clinical parameters and

outcomes. Also, a further multicentric corroboration of our

findings would be of interest.
Conclusions

In summary our findings unravel the cytokine evolution in

relation to mortality caused by COVID-19 disease. We propose

the use of PC2 associated with clinical data as a marker of strong

lung damage, and evolution of values of PC1 and PC3 to predict

outcome thus personalize treatment. In addition, we consider

early target of the markers of dysregulation of immune responses

and therapies to promote tissue repair could be a better approach

in severe patients as antiviral therapy could not be useful at

that point.
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