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ABSTRACT Urban living has been reported to cause various skin disorders. As an
integral part of the skin barrier, the skin microbiome is among the key factors associ-
ated with urbanization-related skin alterations. The role of skin microbiome in media-
ting the effect of urban stressors (e.g., air pollutants) on skin physiology is not well
understood. We generated 16S sequencing data and constructed a microbiome net-
work of individual (MNI) to analyze the effect of pollution stressors on the micro-
biome network and its downstream mediation effect on skin physiology in a person-
alized manner. In particular, we found that the connectivity and fragility of MNIs
significantly mediated the adverse effects of air pollution on skin health, and a smok-
ing lifestyle deepened the negative effects of pollution stress on facial skin micro-
biota. This is the first study that describes the mediation effect of the microbiome
network on the skin’s physiological response toward environmental factors as
revealed by our newly developed MNI approach and conditional process analysis.

IMPORTANCE The association between the skin microbiome and skin health has been
widely reported. However, the role of the skin microbiome in mediating skin physiol-
ogy remains a challenging and yet priority subject in the field. Through developing
a novel MNI method followed by mediation analysis, we characterized the network
signature of the skin microbiome at an individual level and revealed the role of the
skin microbiome in mediating the skin’s responses toward environmental stressors.
Our findings may shed new light on microbiome functions in skin health and lay the
foundation for the design of a microbiome-based intervention strategy in the future.

KEYWORDS skin microbiome, direct association, pollution, single-sample network,
microbiome network of individual, microbiome network of population

Urban living is associated with increased exposure to environmental stressors, such as par-
ticulate matter, volatile organic compounds, and dust fall. Human skin is the first layer

of the body’s natural defense against external stressors in urban living. Increasing numbers of
epidemiological and mechanistic studies have indicated the clear link between pollution and
skin concerns, such as blemishes (1), dermal aging (2), and skin inflammation (3).
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The skin microbiome is an integral part of the skin barrier that can affect skin health
by modulating host immune responses and the skin barrier function (4). The dysbiosis
of the microbiome has been associated with various diseases. Various studies adapted
the connectivity and robustness from network theory (5) to investigate the functional
importance of the skin microbiome in health and diseases from a microbiome ecologi-
cal perspective. There is increasing evidence indicating a link between undesirable skin
conditions with altered microbial assembly process and a more fragile microbiome net-
work (6, 7). Specifically, a cooccurrence network of the microbiome was found to be
affected by environmental factors (8). In a study of the skin microbiome in China, a mi-
crobial cooccurrence network was found to be more fragile in urbanized environments
where the higher incidence of skin diseases has been observed (6). We hypothesize
that the skin microbiome, being the first layer of the skin barrier (4), could mediate the
effect of urban living on skin physiology. Until now, little has been known about the
directional relationship between the skin microbiome and skin health under environ-
mental stressors.

Mamet et al. (9) reported a potential causal hypothesis between climate, soil prop-
erty, and microbial beta diversity by mediation analysis. Mamet et al. (10) further intro-
duced the network concept to construct a microbiome network of the population
(MNP) and disclosed the mediation relationships between plant, soil, and soil micro-
biome by mediation analysis. However, the MNP approach is limited for studying the
mean value across a population of samples or subjects and cannot elucidate microbe
occurrence patterns or microbiome networks at an individual level (10) or characterize
the heterogeneous features of each individual in a population. In gene expression
studies, several methodologies based on a single-sample network (SSN) framework
have been developed to characterize statistical perturbation of a single sample against
a group of control samples and have demonstrated an important regulatory pattern of
gene networks in clinical settings (11–14). Thus far, there is no such method for a mi-
crobial community, which requires different constraints from gene expression net-
works due to the compositional nature of microbiome sequencing data (15). Simply
adopting a traditional SSN method for microbiome network construction may result in
spurious correlations due to this compositional effect.

To overcome these methodological limitations and illustrate the dysbiosis of the
microbiome under pollution effects on an individual, we developed a new method for
constructing a microbiome network of an individual (MNI). Specifically, the MNI
method adopted the following principles: a population cooccurrence network (or
MNP) generated from a set of samples is a linear combination of cooccurrence net-
works of individual samples (16), and the interaction of microbes can be represented
with partial correlations between microbes based on a precision matrix generated by
the SPIEC-EASI framework (17). In other words, an MNI is a network specific for one
sample and subtracts the effects of all other samples from MNP (Fig. 1). This is also a
direct-association network rather than a traditional Pearson correlation network that
mixed both direct and indirect associations between microbes (17). In MNI, we
adopted partial correlation, which can eliminate indirect association caused by con-
founders and inferred only direct association between a pair of nodes/species (17).
Intuitively, an MNI is able to provide a snapshot of a microbial community on an indi-
vidual in terms of the network. Through the construction of MNIs, we could obtain net-
work properties from each subject.

We previously reported that taxi drivers exposed to heavy-traffic-derived pollutants
in urban Shanghai city (SH) had weakened skin physical and antioxidant barrier proper-
ties compared with those on Chongming island (CM) (18), a rural area of the Shanghai
municipality. Here, we further profiled the facial skin microbiome of the two taxi driver
cohorts by 16S amplicon sequencing with subgroups of smokers and nonsmokers in
both SH and CM (a total of 58 subjects) and constructed an MNI for each subject. Using
urban/rural and smoking/nonsmoking as major exposure factors with a conditional
process model, we analyzed skin MNPs and MNIs under different pollution conditions.
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Our analysis revealed that air pollution had an apparent effect on the fragility of the
skin microbial network at both the population and individual levels; this fragile micro-
biome network mediated the skin’s physiological responses to pollution, thus damag-
ing skin health, and a smoking lifestyle further amplified the damaging effects of air
pollution on the microbiome and the skin. Our results revealed, for the first time, that
environmental stressors exert significant impacts on the network of the microbial com-
munity for each subject (Fig. 1), which subsequently influence the skin’s physiological
properties.
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FIG 1 Framework of network analyses by microbiome network of individual (MNI). (A) In order to construct an MNI for each subject/
sample, we first built a population network of n samples and then eliminated the effect of all but the sample of interest. Next, we
repeated this process to obtain an MNI for each sample (detailed information is in Materials and Methods). (B) Samples were
collected from 58 subjects, including rural smokers (n= 15 from Chongming smokers [CS]), urban smokers (n= 14 from Shanghai
smokers [SS]), rural nonsmokers (n= 14 from Chongming nonsmokers [CN]), and urban nonsmokers (n= 15 for Shanghai nonsmokers
[SN]). We constructed an MNI for each subject, totaling 58 individual MNIs. (C) The mediation role of the skin microbiome was
revealed by MNI analysis for each subject. In particular, the moderated mediation effect of network properties of MNIs was
statistically tested using conditional process analysis.
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RESULTS

Shanghai is a highly urbanized megacity, while Chongming county is a nature
reserve outside Shanghai, with a lower population density, lower industrial production,
and higher green area coverage. According to the Shanghai Statistical Yearbook (2014,
2015, and 2016), air quality in Chongming is constantly better than that of Shanghai.
To study the impact of pollution stress on the facial microbiome, we applied 16S amplicon
sequencing to compare facial skin microbiome profiles (upper cheek) of taxi drivers from
Shanghai and Chongming, with a 1:1 smoker-to-nonsmoker ratio (all males balanced by
age). Among the four groups of Chongming nonsmokers (CN, n=15), Chongming smokers
(CS, n=14), Shanghai nonsmokers (SN, n=14), and Shanghai smokers (SS, n=15), the SS
group was thought to have the most exposure to pollution stress (air pollution plus cigarette
smoke) while the CN group was thought to have the least (Fig. 1). The terminology and
notation related to each network are given in detail in Materials and Methods.

Pollution stress affected the skin microbiome network of the population.
Conventional MNP analysis showed that the skin microbiome from a group exposed to
less pollution formed a more robust community than that from a group exposed to
more pollution (Fig. 2A). We then compared the connectivities and fragilities of MNP
across the four groups. The connectivity of the microbiome community was examined
based on the MNP attributes of the overall network structure (Fig. 2B). Among the four
groups, the MNP of CN had the largest connected component, whereas that of SS had
the smallest (Fig. 2A). The node numbers and edge numbers of MNPs were in the order
of CN . CS . SN . SS, which indicated higher microbial network connectivity in the
lower-pollution groups. An analysis of mean degree (i.e., the mean of degrees for all
nodes in one network) agreed with this finding that the CN network had the highest
mean degree of any of the groups. The average paths showed an inconsistent trend
where SN had the highest value while that from SS had the lowest one (Fig. 2B). The
overall trends of MNP attributes were in agreement with previous results (6), indicating
that people living in an environment of low urbanization had better connectivity of
their microbial networks. In addition, we measured the fragility of these microbial net-
works by sequentially removing individual nodes (e.g., operational taxonomic units
[OTUs]) from the network to simulate system collapse (5). As shown in Fig. 2C, CN had the
largest area under the curve, indicating that it had the most robust MNP under this simu-
lated disruption. In contrast, the SS group had the most fragile MNP, suggesting that the
skin microbial network becomes more fragile under more severe pollution stress.

We next examined microbial composition under different pollution stresses.
Staphylococcus, Cutibacterium, and Corynebacterium had the highest relative abundan-
ces on facial skin from all of these groups (CN, CS, SN, and SS) in Fig. S1A in the supple-
mental material, which agreed well with reported literature (20). All of the dominant
genera (with a mean of relative abundance of .1%) had no significant difference
between these four groups (P. 0.05). In our study, alpha diversity was assessed by the
Shannon index while beta diversity was measured by Bray-Curtis dissimilarity. Both
alpha diversity (P. 0.05) and beta diversity (false-discovery rate [FDR]. 0.05) showed
no significant difference between these four groups (Fig. S1B).

Our results indicated that pollution stress did not significantly change the composi-
tion or diversity of the microbiome but affected the fragility of the microbial ecosys-
tem, that is, it made the microbiome networks fragile.

Microbiome network of individual (MNI) revealed the fragility of the skin
microbial community under pollution conditions at an individual level.While MNP
analysis discloses the trend of microbiome network fragility with increasing pollution
stress at a population level, it cannot reveal individual or heterogeneous features of a
microbial community at an individual level. To analyze the differences of MNI between
the four groups, we conducted principal-coordinate analysis (PCoA). We calculated
Bray-Curtis distance of samples based on degree of nodes and distribution of each
node (microbe) in MNI networks. We observed nonoverlapping distributed samples of
each group (adjusted Rand index [ARI] = 1) which indicated that different network
characteristics exist between four groups (Fig. S2). Thus, we further investigated the
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FIG 2 Analysis of the microbiome network of populations (MNP) for each group of subjects under different pollution conditions. (A) MNPs
of each group. Each node represents a microbial taxon (OTU). Associations were detected using the SPIEC-EASI method. Clearly, there
were significant differences in terms of network between the four groups. Three dominating genera (accounting for over 50% of the total
abundance of all species), Cutibacterium (green), Corynebacterium (blue), and Staphylococcus (red), were colored. (B) Connectivity properties
(node number, edge number, mean degree, and average path) of the MNPs of each group. (C) Fragility of the MNP of each group.
Fragility was measured by the percentage of remaining nodes in the giant (largest) component, which was indicated on the y axis. The
percentage of nodes/vertices removed was indicated on the x axis. The fragility of each network characterizes the robustness of each
network. Both a larger area under the curve and a high robustness value indicate the corresponding network was more robust/less fragile.
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connectivity and fragility of the microbiome network using our MNI approach (see Materials
and Methods for details), which also enabled statistical significance testing. MNIs for each
subject were shown in Fig. 3A. The MNIs of CN subjects showed the largest connectivity
between these four groups, which agreed with the trend of MNPs as shown in Fig. 2.

Network attributes in terms of node number, edge number, mean degree, and average
path were evaluated with a Wilcox test to further elucidate whether pollution stress affected
skin MNIs. As illustrated in Fig. 3B, the groups could be ordered CN . CS . SN . SS in
terms of node number of MNIs among these four groups and CN. CS. SN. SS in terms
of both edge number and mean degree, while the reverse pattern, CN , CS , SN , SS,
occurred in terms of the average path. All of the three network attributes indicated weaker
network connectivity with increasing exposure to pollution stress. We also conducted analy-
sis on the system collapse of MNIs to investigate microbiome fragility at an individual level
(Fig. 3C). The robustness of MNIs showed significant difference between these four groups
ordered as CN. CS. SN. SS, suggesting that pollution stress was associated with fragile
skin MNIs or that MNIs became fragile under pollution stress. This result was also consistent
with our findings on MNP (Fig. 2B and C).

Skin microbiota mediated host response to pollution stress. Our previous report
demonstrated that urbanization-related pollution stress significantly affected skin physiologi-
cal properties, including skin indices like total antioxidant capacity, cholesterol levels, vitamin
E (VE), and transepidermal water loss (TEWL), and the activities of stratum corneum tryptic
enzyme (SCTE) and catalase (18). While there is evidence indicating that skin microbes may
be involved in certain biochemical events related to cholesterol esterification (21), skin anti-
oxidant defense (22), and epidermal proteolytic activity (23), the mediative role of microbes
in driving skin biophysical and biochemical responses toward environmental stimuli remains
to be elucidated.

Here, we used a mediation model to evaluate whether or not the skin microbiome
could mediate pollution’s effect on the six affected skin indices (Table S1). In a previous
study (10), alpha diversity and network attributes of the soil microbiome were reported
to play a key role in mediating plant-soil-microbe links. Thus, we collected 21 microbial
properties, including 9 MNI variables and 12 alpha diversity variables, for mediation anal-
ysis. We obtained 6 (skin indices) � 21 (microbial properties) � 2 (binary directions),
making a total of 252 models. We found 14 of these 252 models had significant media-
tion effects, as illustrated by the significance of the mediation index (Table S2A and B).

We found that alpha diversity had no significant mediating effect in all of our mod-
els, while multiple MNI attributes of connectivity (edge number, node number, mean
degree, and average path) and fragility (robustness) had significant mediating effects
on cholesterol, total antioxidant capacity, VE, and SCTE activity (Fig. 4). For example,
cholesterol and VE levels of the skin were reduced due to decreased MNI connectivity
and robustness upon pollution exposure. Notably, in reverse models where skin indices
were set as a mediation variable from regional air pollution exposure to MNI properties, the
mediation effects of skin attributes of cholesterol, total antioxidant capacity, VE, and SCTE
were insignificant, while TEWL showed bidirectional mediation effects (Table S2A and B).
The result of our mediation analysis indicated that fragile MNIs mediated the adverse effects
of air pollution on skin attributes, thus damaging skin health.

A smoking lifestyle deepened the negative effects of pollution stress on skin
microbiota. Cigarette smoke is another source of pollution stressors known to affect
skin health (24). Certain bacteria of skin origin were reported to display a metabolic
capacity to break down organic pollutants, like benzo(a)pyrene, that exist in both ciga-
rette smoke and automobile exhaust fumes (25), suggesting a potential combinatorial
effect of regional air pollution and a smoking lifestyle on the skin microbiome. Indeed,
our MNI results indicated that Shanghai smokers (SS) had the least robust microbiome
network compared with Chongming nonsmokers (CN). To further quantify the moderating
effect of smoking on a model path from exposure (regional air pollution) to mediation varia-
bles (MNI property), by conditional process analysis (CPA), we conducted a moderation analy-
sis of these 11 models as shown in Fig. 4, 9 of which were statistically significant (Table S3), as
shown in Fig. 5.
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FIG 3 Analysis of the microbiome network of individual (MNI) for each subject under different pollution conditions. There were
58 MNIs corresponding to 58 subjects, respectively. (A) The MNI of each subject. Fifteen MNIs of the 15 subjects in the lowest-
pollution group (CN) had the densest connections between the four groups. Three dominating genera (accounting for over 50%
of the total abundance of all species), Cutibacterium (green), Corynebacterium (blue), and Staphylococcus (red), were colored. (B)
Violin chart demonstrating the connectivity property of MNIs for each group of subjects, including node number, edge number,
mean degree, and average path (Wilcox test P value: **, ,0.05; ***, ,0.001; ****, ,0.0001). Clearly, the network connectivity
decreased (CN . CS . SN . SS) with decreased pollution stress. (C) Line chart with error bars (median) demonstrated the

(Continued on next page)
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On the path from exposure (regional air pollution) to mediation variables (MNI proper-
ties), the moderation effect of smoking was consistent across all nine models (interaction
between smoking and pollution path coefficient b , 0, P , 0.05); namely, a smoking life-
style deepened the negative effect of pollution on MNI properties, including edge number,
node number, mean degree, and robustness, which then mediated skin physiological proper-
ties. The model with the highest R2 value was the urban (smoking)-edge number-cholesterol
model (Fig. 5B, conditional process analysis, R2 = 0.1656). This model indicated that pollution
reduces the edge number of the microbiome network/community, and then, such a fragile
microbiome community results in less cholesterol on the skin surface. Moderation analysis
using a conditional process model shows that smoking significantly moderated (path coeffi-
cient b = 1.066, P, 0.0001) (Table S3) the effect or interaction from regional air pollution on
the robustness of MNIs, thus deepening the negative effects of pollution stress on skin micro-
biota. This result indicated that smoking and regional air pollution actually had a combinatorial
effect to reduce microbial interactions, leading to the decrease of cholesterol and VE levels, as
well as reduced SCTE and the total antioxidant capacity on the skin surface.

DISCUSSION

The human microbiome is comprised of numerous microbial taxa, each of which
potentially has interactions with many other taxa. Elucidating microbial interactions should
help uncover the functional importance of the microbiome in health and disease. In this
study, we conducted a network-based investigation to elucidate the characteristics of a skin
microbiome network/community at an individual level and to quantify the mediation and

X M
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c  

X: exposure, M: mediator, Y: outcome,
a : X to M, b: M to Y, c: X to Y, 
Total effect: a*b+c, 
Mediation effect: a*b

Significant
Red Black
Non-significant
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FIG 4 Mediation analysis reveals the mediation role of the skin microbiome. Only models that had
consistent mediation effects are contained in the table. Each model contains three variables (X,
exposure; M, mediator; and Y, outcome). Each number in the table represents the coefficient of each
path (a, X to M; b, M to Y; c, X to Y; total, total effect a*b1c; mediation, mediation effect a*b). Red
numbers indicate significant coefficients with a negative value, black numbers indicate significant
coefficients with a positive value, and gray numbers indicate nonsignificant coefficients.

FIG 3 Legend (Continued)
fragility change as nodes were removed in each MNI network. The robustness of MNIs decreased (CN . CS . SN . SS) with
decreased pollution stress and was consistent with the result of MNP. Both a larger area under the curve and a higher robustness
value indicated the corresponding network was more robust.
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further moderation effects of a skin microbial community on the skin’s physiological
response toward pollution stressors. To better control heterogenous factors such as subject
backgrounds, climate condition, and socioeconomic status that may affect the skin and the
skin microbiome, we conducted the study by comparing male taxi drivers from two neigh-
boring areas with different pollution levels with a desired contrast by controlling possible
confounding factors such as subjects’ age, years of working, and service life of the taxi to
investigate the effect of pollution stress on skin microbiome. This was the first study on the
mediation effect of the microbiome by the use of mediation analysis and conditional process
analysis at an individual resolution. This work represents a step toward deciphering the im-
portance of the microbiome in mediating the directional effect of pollution on skin health.
Our data revealed for the first time that MNIs significantly mediate the change of cholesterol,
antioxidant capacity, VE, TEWL, and SCTE activity of the skin resulting from pollution
stress, while a smoking lifestyle amplifies the damaging effect of air pollution on the
microbiome and the skin. In contrast, most of the tested skin indices, except for
TEWL, did not exert significant mediation effects on MNI properties. This suggests
that in our data set, location-related microbial changes are independent of skin
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FIG 5 Moderation analysis with conditional process analysis linking pollution and microbiome network properties to skin attributes. (A to I) In each
model, regional air pollution was a mediator, and smoking was a moderator. MNIs can mediate the damage of pollution on skin indices, while smoking
can moderate the path between pollution and MNI properties. As a result, we obtained multiple models that were biologically plausible and were also
statistically significant, tested by conditional process analysis (moderated mediation). Here, the number near the path was path coefficient, which was
labeled with P value significance levels (*, ,0.05; **, ,0.001; ***, 0.0001).
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indicators (26). Notably, we found that network properties of MNIs, rather than the
traditional alpha diversity properties, played a mediation role in our models. This ob-
servation underlies the importance of microbial interactions for skin indices.
Moreover, the effect of pollution on MNIs was additive to lifestyle factors (e.g., smoking). The
current study was restricted to the microbiome of facial skin (upper cheek) regions. Given
that the skin microbiome is diverse across different body sites, further investigation into the
mediation effect of the skin microbiome across multiple body sites could help to provide a
more holistic view on microbiome functions related to skin health.

The skin microbiome is regarded as an integral part of the skin’s natural defense sys-
tem against external stressors (20). By mediation analysis, we found that the skin micro-
biota mediated several aspects of the stratum corneum (SC) function under pollution
stress. Cholesterol is among the key component of the SC intercellular lipid layer (27).
SCTE is known as kallikrein-related peptidase 5 (KLK5), and its activity regulates SC desqua-
mation to maintain the skin barrier function (28). Our data indicated that pollution stress
may affect skin barrier function via altering the skin microbiome network. Dominant skin
bacteria, such as Cutibacterium acnes and Staphylococcus epidermidis, were reported to
modify skin lipids by esterification of cholesterol to cholesteryl esters, which may affect SC
structure (21, 29). Skin enzyme activities can also be regulated by skin microbiota via regu-
lating skin pH through hydrolyzing skin lipids to free fatty acids (30). These insights sup-
port a possible mediation role of skin microbiota in modulating skin barrier function.

In addition to the barrier function of the skin, SC supports the skin’s innate antioxidant
system (31). We found that a fragile microbiome network resulting from pollution stress can
alter the skin’s total antioxidant capacity and the level of VE, one of the skin antioxidants
(32). The disrupted antioxidant system may further lead to skin inflammation and disrupted
barrier function (33).

In our model, TEWL was the only skin index that showed bidirectional effects, whereby pol-
lution stress affected TEWL via the skin microbiome and vice versa. Biologically, TEWL is a key
attribute of skin barrier integrity. An increased level of TEWL indicates an altered skin hydration
and worsened skin barrier function. It may be possible that a fragile skin microbiome network
resulting from pollution stress disturbs skin barrier integrity, leading to the increased TEWL lev-
els. Conversely, pollution exposure may lead to increased TEWL, which impacts skin hydration,
a key attribute of the skin that affects the skin microbiome community (20).

Compared with traditional network methods, the advantage of our MNI method is that it
is able to reveal previously hidden features, such as network biomarkers and “dark”
microbes/species, based on its sample-specific nature. A network biomarker (12, 13) is a bio-
marker measured by the interaction or correlation between two species, rather than their
concentrations or abundances (traditional molecular biomarkers), and a “dark” species is one
where there was no differential expression of this species but there is differential interaction/
correlation with this species (11, 14). Although a structural equation model has been applied
to the analysis of the microbiome network of population (MNP) previously (10), it requires
the assignment of a set of samples to the same attributes of the MNP. In contrast, an MNI
can represent each person’s characteristics at a network level. In our data set as shown in
Fig. 2, the average path of MNP displayed inconsistent trends between the four groups (SS
, CN, CS, SN). However, by MNI as shown in Fig. 3, a consistent trend can be identified
(CN, CS, SN, SS). Moreover, the partial correlation generated by MNI was a direct asso-
ciation reflecting the microbial interaction or the underlying structure of microbial commun-
ities (34), which eliminated the indirect associations (spurious relations) generated by tradi-
tional single-sample network methods (12, 16, 35). To further validate our finding, we
analyzed an independent cohort for the skin microbiome upon pollution from Dalian (low
pollution) and Baoding (high pollution) cities in China (see Fig. S3 in the supplemental mate-
rial). In this data set, we observed the same trend of reduced network connectivity in pollu-
tion (Dalian . Baoding) as of our cohort (Chongming . Shanghai). Our MNI algorithm
enabled us to investigate network rewirings, to help in revealing “dark” microbes whose
interaction cannot be detected by traditional microbiome abundance analysis, to study the
mediation effect, and further to identify network biomarkers at an individual level. We
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anticipate that the MNI method will serve as a backbone for precision medicine based on
the microbiome and allow exploration of new hypotheses on its relevance to environmental
factors and human health. We propose that the MNI properties could serve as a novel net-
work biomarker (11, 12, 14) of skin health.

Conclusion. This is the first study that describes the mediation effect of the skin
microbiome on the damage effect of environmental factors on skin health. We developed
the microbiome network of an individual (MNI), to analyze what effect of pollution stressors
exerted on the microbiome network and how rewiring of the microbiome network mediates
downstream skin responses toward pollution stressors. We provide evidence here that the
skin microbiome can act as the first interface of the body responding to environmental
stress. The stability and integrity of the skin microbial community can play a critical media-
tion role that regulates skin biophysical and biochemical properties. Improving the skin mi-
crobial community stability may be a sensible strategy for delivering skin benefits.

MATERIALS ANDMETHODS
Clinical study design and sampling. The air quality and urbanization data were obtained from the

2014, 2015, and 2016 Shanghai Municipal Bureau of Ecology and Environment Shanghai Environment
Yearbook. Middle-aged (mean age 43 years, SD= 7, ranging from 30 to 55 years) healthy male taxi driv-
ers from rural CM and urban SH were recruited, each of whom had been working at the current place
for at least 5 years. In total, 30 SH subjects and 30 CM subjects, with half smokers and half nonsmokers
in each group, were analyzed. A method of stratification was used to ensure a balance of age, years of
working, and service life of the taxi between each group to control potential confounding variables that
may affect skin microbiome. Forty-three, 11, and 2 years were the median value of the corresponding
variables of age, years of working, and service life of the taxi. Detailed information on this clinical study
was previously reported (18). In brief, exclusion criteria included daily alcohol drinking, skin diseases,
regular medication with antihistamines or anti-inflammatory drugs, or having had facial cosmetic proce-
dures. Informed consent was obtained from all subjects, with the study protocol being reviewed and
approved by the Independent Ethics Committee at the Shanghai Clinical Research Center. All subjects
were asked to refrain from washing their faces with cleansers before the study visit for at least 12 h since
the last face wash. On the day of the visit, subjects were asked not to wear any skin care products on the
face. After 1 h of equilibrium period on site, TEWL (transepidermal water loss) (Tewameter TM300) and
cheek hydration (Corneometer CM825) were measured according to well-established industrial practice.
All instrumental measures were repeated, and the average data were used for data analysis. After instru-
mental measurement, standard D-Squame tape stripping (Cuderm, Dallas, TX, USA) was conducted on
the upper right cheek of each subject 13 consecutive times with all tapes individually stored in a 96-well
sample collection box at 280°C. Sebutapes (Cuderm, Dallas, TX) were used for sebum collection on the
central forehead area. Immediately after sample collection, all the Sebutapes were stored at 280°C as
well until subjected to extraction for endpoint analyses. The first layer of D-Squame tape was used for
microbiome 16S amplicon sequencing, and the fifth layer of the tape was used to measure SCTE, total
antioxidant capacity (TAOC), and catalase activity. Sebutapes were used to measure the levels of choles-
terol and vitamin E.

16S rRNA sequencing using Illumina MiSeq PE300. The first layer of D-Squame tape stripping
samples was used for microbiome analysis. DNA was extracted from the samples using a DNA extraction
kit (DNeasy blood and tissue kit, catalog no. 69506; Qiagen, Hilden, Germany) following the manufac-
turer’s instructions. The microbial DNAs were sequenced at the variable region (V1 to V3) of the 16S
rRNA gene for bacterial classification. The V1 to V3 region was amplified using a primer set (forward
primer, AGAGTTTGATYMTGGCTCAG, and reverse primer, ATTACCGCGGCTGCTGG) and sequenced by
Beijing Genomics Institute (BGI; Wuhan, China) by using fusion primers with dual indices and adapters.
The quantity and quality of the libraries were analyzed by Bioanalyzer (Agilent Technologies, CA, USA).
Only qualified libraries were processed and analyzed via Illumina MiSeq PE300 (pair-end) sequencing,
initially resulting in approximately 21.9 million raw sequence paired reads. After quality processing, 20.0
million overlapping contigs were produced after Pandaseq 2.9 and grouped into 486 OTUs.

Skin index analysis. Analysis of skin indices was previously reported (18). In brief, the fifth layer of the D-
Squame tape stripping samples was extracted with phosphate-buffered saline (PBS) containing 0.3% Triton X-100
and subjected to catalase activity, total antioxidant capacity (TAOC), and stratum corneum tryptic enzyme (SCTE)
measurements as previously reported (18). Sebutapes were extracted individually using 5 ml of hexane, under
three times of 5-min sonification. After that, the extract was dried with rotary evaporation (9 kPa, 35°C) before
being reconstituted with 2ml of hexane for gas chromatography-mass spectrometry (GC-MS) analysis. Reference
compounds were used in GC-MS as reference for quantification. In total, cholesterol, vitamin E, and squalene
were quantified for each Sebutape. Among them, squalene content was used as normalization reference (18).

Data normalization. Data normalization of skin attributes and MNI attributes was performed with
Yeo-Johnson normalization using the yeojohnson function (R package bestNormalize).

Network connectivity and fragility calculations. The connectivity of a network is an important in-
dicator of network complexity. To measure network connectivity, we calculated various network attrib-
utes, such as node (vertex) number, edge (link) number, mean degree, connection component, and aver-
age path using the R package igraph. The node number represents the sum of all nodes in a network,
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and the edge number represents all significant partial correlations (SPIEC-EASI) between nodes in a net-
work. The degree of a node is the number of edges connecting the given node. The mean degree is the
mean of degrees for all nodes, and the average path is the mean length of the shortest paths of all the
nodes. The connected component in a network is a subnetwork where any two nodes are connected by
at least a path. When the node number, edge number, and mean degree are larger, a network has a
higher connectivity. When the average path is lower, a network has higher connectivity.

To measure network fragility, we simulated the ecological disruption under the deletion of the species.
Given the P OTUs in a network, each OTU was removed one by one in a random order. The fractional size of
the largest component statistics (y axis in Fig. 2C) was defined as the ratio of the node number in the largest
connected component to the total node number in the network, and the ratio was recalculated when each
node was removed. The percentage of removed nodes was taken as the x axis in Fig. 3C. To ensure reliable
results, we ran the above process to remove the nodes 1,000 times. To plot the robust curve, the median of
the fractional size of the largest component statistics in the 1,000 curves was taken as the y coordinates for the
curve. The robustness value R of a network was defined as a function s which was based on the decreasing
order of the fractional size of the largest component statistics as nodes were removed (5). The robustness value
of a network was the median of the robustness value of the 1,000 curves.

R ¼ 1
P

XP
i¼1

s i=Pð Þ (1)

where i represents ith OTU. A larger area under the curve and higher robustness value of the network
indicate a less fragile network.

Microbial association network (MNP and MNI) construction. Before network construction, we
removed OTUs that had frequencies of less than 65% (99% in the validation cohort with more sparse
sequence) in all samples of each group. Then, we performed SPIEC-EASI to infer a microbial association
network, using the neighborhood selection (mb) method with a minimum l threshold of 0.01 (18). All
steps were computed using the R package SpiecEasi (version 1.0.7). The microbiome network of popula-
tion (MNP) with N subjects was constructed directly using SpiecEasi. The MNI method was used to
obtain the microbiome network of individual (MNI) for each subject as described below.

MNI method and algorithm. Our MNI method was proposed to investigate the network characteris-
tics of each subject in a single-sample network manner as shown in Fig. 1. Aitchison indicated that 16S
sequencing data were compositional and constrained to a simple dimension (sum to 1), therefore suffer-
ing from the problem of serious spurious correlation (17), if we simply use the traditional correlation
methods. The log ratio of the unobserved absolute species abundance was equivalent to the log ratio of
a compositional species abundance (17):

log
x
y

� �
¼ log

v x=m
v y=m

 !
¼ log

v x

v y

� �
(2)

where x and y are the relative abundances of the two different species, m is total absolute abundances
of all species within this sample, and v x and v y are the absolute abundances of those two species. The

log ratio log x
y

� �
is the basis for studying compositional data, rather than the original x and y.

Then, to eliminate spurious correlation in compositional data, X = Cov[log v ], the covariance matrix
of the log-transformed absolute abundance v , can be approximated via reference 17:

C ¼ GXG (3)

where v is the absolute abundance of each species, G ¼ Ip2 1
p J, Ip is the p-dimensional identity matrix, J

is the p-dimensional all-ones vector, and C is Cov log x
y

h i
. Therefore, X21 is the inverse covariance of the

underlying unmeasured absolute basis, corresponding to the precision matrix and partial correlation
(36). The resulting matrix X21 can estimate an inferred network, and the elements in X21 are the partial
correlations of the population network for p species with N samples/subjects.

In this work, instead of a population network with N samples, we further derived a sample-specific
network by sample-specific partial correlation, based on the fact that the partial correlation of a popula-
tion network is a linear combination of each sample (19), i.e.,

r Nð Þ
xy;z ¼

N
XN
i

e ið Þ
xz e

ið Þ
yzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
XN
i

e ið Þ2
xz

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
XN
i

e ið Þ2
yz

s (4)

where r Nð Þ
xy;z is the partial correlation between x and y conditioned on z with all N samples, and

e ið Þ
xz ¼ x ið Þ2bxzZ ið Þ and e ið Þ

yz ¼ y ið Þ2byzZ ið Þ are the ith elements of residuals exz and eyz (37), respectively. bxz
and byz are regression coefficients corresponding to exz and eyz, respectively, while xi, yi, and zi are the rel-
ative abundance of species x, y, and z in the ith sample. Actually, provided that the relative abundances
of N samples are given, SPIEC-EASI gives the precision matrix, which was proportional to the partial cor-
relation matrix. In this work, we directly used its result as an approximate partial correlation.
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Based on the single-sample method developed by Kuijjer (16), we can represent a partial correlation
for a single sample (i.e., the qth sample) as follows by considering that each sample contributes equally
to a partial correlation of population with N samples:

l
qð Þ
xy;z ¼ Nr Nð Þ

xy;z2 N21ð Þr N=qð Þ
xy;z (5)

This means that the partial correlation of species x and y in a given qth sample l
qð Þ
xy;z is equal to the difference

between a partial correlation using all N samples r Nð Þ
xy;z and a partial correlation using all except for this given

sample r N=qð Þ
xy;z . Here, r Nð Þ

xy;z is the partial correlation between x and y conditioned on z with all N samples, and

r N=qð Þ
xy;z is the partial correlation between x and y conditioned on z with all samples except the qth sample.

We can transform the partial correlation of equation 4 into
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For a sufficiently large value of N, we can easily show x n=qð Þ ! x nð Þ (16); therefore, x n=qð Þ2 !
x nð Þ2 ; y n=qð Þ2 ! y nð Þ2 ; x n=qð Þz n=qð Þ ! x nð Þz nð Þ . Then

l
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In the limit of a sufficiently large N, N
N21 and

N21
N22 are approximately equal to 1. Thus, the equation above

can be simplified as follows:
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Therefore,
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which is equal to r Nð Þ
xy;z according to equation 5. Thus, the MNI algorithm is given as follows.
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Step 1. Input the sequencing data (relative abundances of species: x, y, z, . . .) with N

samples of p species. Let q= 1.

Step 2. Calculate each partial correlation r Nð Þ
xy;z with N samples using SPIEC-EASI (equation 3).

Step 3. Calculate each partial correlation r N=qð Þ
xy;z with N – 1 samples by removing the qth

sample using SPIEC-EASI (equation 6).

Step 4. By equation 8, calculate each sample’s specific partial correlation for each pair of

species x and y.

Step 5. Let q = q 1 1, and go to step 3 until q=N. Partial correlations of all pairs for each

sample form a sample-specific network, or the microbiome network of an individual (MNI).

To illustrate the differences of MNI between the four groups, we conducted PCoA (R package vegan)
based on Bray-Curtis distance of degree distribution of each node (microbes) in MNI networks. The
degree matrix represents the microbial network characteristics from the perspective of nodes. Through
PCoA based on degree matrix, we can visualize the difference of network characteristics between four
groups.

Mediation analysis and moderation analysis with a conditional process model.Mediation analy-
sis in this study was adopted from the well-established principle in the literature to quantify mediation
effects (26, 38). We implemented our custom pipeline based on the R package Lavaan with the following
two steps.

(i) Mediation step. To test our hypothesis on the direction, we did a two-directional analysis. In the
first direction, we tested whether skin indices mediated the damage of urban stressors on the skin
microbiome. In the second direction, we tested whether the skin microbiome mediated (path a*b) the
damage of urban stressors on skin indices. As the result, we found that only the mediation paths
through the skin microbiome (path a*b) were significant.

Specifically, for a given skin index, we tested the mediation effect of every microbial property, such
as connectivity and robustness. Each mediation model was composed of three variables: regional pollu-
tion (dichotomous) as exposure, microbial property variables (or microbiome network) as mediation var-
iables, and the skin index as an outcome. A total of 252 models, including 6 (skin indices) � 21 (microbial
properties) � 2 (opposite directions) were tested. Finally, we obtained 11 models that had one-direc-
tional significant mediation effect coefficients (P, 0.05) among all 252 models (Fig. 4). One direction
means that these models have an effect from the microbiome to the skin indices, and the skin indices
have no effect on the microbiome. Note that we aimed to reveal how a microbiome network of a subject
played a mediation role between air pollution and skin health, in this mediation step (mediation
analysis).

(ii) Moderation step. Considering the potential reverse effect of the skin index on microbial proper-
ties, we also tested a model of regional pollution (dichotomous) as exposure, with the skin index as a
mediation variable, and a microbial property variable as the outcome, using conditional process analysis.
We found the models based on reverse effects of skin index on microbial property were all insignificant
(mediation effect P. 0.05). Based on our 11 models, we quantified the moderating effect of smoking (di-
chotomous variable) on the path (air pollution to microbial property), by using a conditional process
model in SPSS Process. Nine of the 11 models had a significant moderating effect (P, 0.05). Note that
we aimed to identify how smoking affects or changes the interaction or path between air pollution and
a microbiome network for each subject, in this moderation step (moderation analysis).

Statistical analysis. Alpha diversity (Shannon entropy) and beta diversity were generated by QIIME
(39) and phyloseq (40). Beta diversity was visualized using a Bray-Curtis dissimilarity with nonmetric mul-
tidimensional scaling. To compare the alpha diversities between pollution levels, we performed a
Kruskal-Wallis test for multiple groups, a Wilcoxon test for two groups, and post hoc correction. We used
the Kruskal.test function and wilcox.test function in R. Analysis of variance between CS, CN, SS, and SN
was performed using permutation analysis of variance (PERMANOVA) on the Bray-Curtis dissimilarity ma-
trix. Analyses were performed using the R packages Vegan, Party, and HMP with q value to control for
false discovery. ARI (adjusted Rand index) was calculated with adjustedRandIndex function in mclust
package.
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