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The posterior cingulate cortex (PCC) is a critical brain network hub particularly sensitive

to Alzheimer’s disease (AD) and can be subdivided into ventral (vPCC) and dorsal (dPCC)

regions. The aim of the present study was to highlight functional connectivity (FC)

disruption, atrophy, and hypometabolism within the ventral and dorsal PCC networks

in patients with amnestic mild cognitive impairment (aMCI) or AD. Forty-three healthy

elders (HE) (68.7 ± 6 years), 34 aMCI (73.4 ± 6.8 years) and 24 AD (70.9 ± 9.1

years) patients underwent resting-state functional MRI, anatomical T1-weighted MRI and

FDG-PET scans. We compared FC maps obtained from the vPCC and dPCC seeds in

HE to identify the ventral and dorsal PCC networks. We then compared patients and HE

on FC, gray matter volume and metabolism within each network. In HE, the ventral PCC

network involved the hippocampus and posterior occipitotemporal and temporoparietal

regions, whereas the dorsal PCC network included mainly frontal, middle temporal and

temporoparietal areas. aMCI patients had impaired ventral network FC in the bilateral

hippocampus, but dorsal network FC was preserved. In AD, the ventral network FC

disruption had spread to the left parahippocampal and angular regions, while the dorsal

network FC was also affected in the right middle temporal cortex. The ventral network

was atrophied in the bilateral hippocampus in aMCI patients, and in the vPCC and angular

regions as well in AD patients. The dorsal network was only atrophied in AD patients, in

the dPCC, bilateral supramarginal and temporal regions. By contrast, hypometabolism

was already present in both the vPCC and dPCC networks in aMCI patients, and further

extended to include the whole networks in AD patients. The vPCC and dPCC connectivity

networks were differentially sensitive to AD. Atrophy and FC disruption were only present

in the vPCC network in aMCI patients, and extended to the dPCC network in AD

patients, suggesting that the pathology spreads from the vPCC to the dPCC networks.

By contrast, hypometabolism seemed to follow a different route, as it was present in

both networks since the aMCI stage, possibly reflecting not only local disruption but also

distant synaptic dysfunction.
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INTRODUCTION

Alzheimer’s disease (AD) is the most widespread cause of
dementia. This neurodegenerative disease is characterized by
a progressive decline in cognitive performances, typically
predominated by episodic memory deficits. Tau-rich
neurofibrillary tangles and β-amyloid (Aβ) plaques are the
two neuropathological landmarks of the disease. In vivo
neuroimaging biomarkers of the disease include atrophy
(predominantly in the hippocampus and temporal neocortex),
hypometabolism (mainly in the posterior cingulate cortex
(PCC), and temporo-parietal cortex), and amyloid deposition
in medial frontal and parietal and temporo-parietal cortical
areas (McKhann et al., 2011; Winblad et al., 2016). Moreover,
connectivity has proved to be critical in the pathophysiology of
the disease. Disconnection processes have been shown to be at
least partly responsible for early hypometabolism in AD (Villain
et al., 2010; Teipel and Grothe, 2016), and neuropathological
research suggests that tau propagates transynaptically, neuron
to neuron (Duyckaerts et al., 1997; Braak and Del Tredici,
2011; de Calignon et al., 2012; Ahmed et al., 2014). Finally,
recent neuroimaging studies have shown that the topography of
atrophy/hypometabolism in AD (and other forms of dementia)
follows specific brain connectivity networks, as evidenced by
resting-state functional magnetic resonance imaging (fMRI),
for instance, leading to the network degeneration hypothesis
(Seeley et al., 2009; La Joie et al., 2014). More specifically, the
default mode network (DMN) includes those brain areas that
are most sensitive to AD (i.e., sites of the earliest atrophy,
hypometabolism and/or amyloid deposition), such as the PCC,
precuneus, hippocampus, temporo-parietal, and medial frontal
areas (Greicius et al., 2004; Sheline and Raichle, 2013).

Within this context, the PCC is thought to play a pivotal role
as it is one of the main hubs of the DMN and connects different
subsystems of this network (Buckner et al., 2008; Hagmann
et al., 2008; Andrews-Hanna et al., 2010). Moreover, it is the
earliest site of hypometabolism in AD (Minoshima et al., 1997;
Chételat et al., 2008), which is thought to reflect disconnection
from the hippocampus (Villain et al., 2008, 2010; Yakushev
et al., 2011) and, in turn, to be related to hypometabolism
in distant brain regions such as the frontal cortex (Fouquet
et al., 2009; Villain et al., 2010). Finally, the PCC is involved
in episodic/autobiographical memory processes (Cabeza and
Nyberg, 2000; Maddock et al., 2001; Wagner et al., 2005; Svoboda
et al., 2006; Fossati, 2013; Andrews-Hanna et al., 2014), and
disruption of PCC connectivity andmetabolism is known to be at
least partly responsible for early episodic memory deficits in AD
and amnestic mild cognitive impairment (aMCI) (Chételat et al.,
2003; Bastin et al., 2010; La Joie et al., 2014).

The PCC is a heterogeneous structure, with cytoarchitectonic
differences along the dorso-ventral axis (Vogt, 2005; Vogt et al.,
2006) and in the receptor architecture (Palomero-Gallagher
et al., 2009). Previous neuroimaging studies using a variety of
techniques (e.g., diffusion tensor imaging, resting-state glucose
metabolism, and resting-state fMRI) in healthy individuals have
also highlighted specificities in the functional connectivity (FC)
of the ventral (vPCC) vs. dorsal (dPCC) PCC. Thus, the vPCC

seems to be more strongly connected to medial temporal
areas (Greicius et al., 2004; Vogt et al., 2006), including the
hippocampus and parahippocampal gyrus (Maddock et al., 2001;
Beckmann et al., 2009; Margulies et al., 2009), orbitofrontal
and ventromedial prefrontal cortex (Vogt et al., 2006; Bzdok
et al., 2015), anterior cingulate (Maddock et al., 2001; Vogt
et al., 2006), occipital cortex (Vogt et al., 2006) and left inferior
part of the parietal cortex (Bzdok et al., 2015). By contrast, the
dPCC appears to be connected to the prefrontal cortex, especially
its dorsomedial (Beckmann et al., 2009; Bzdok et al., 2015),
dorsolateral (Bzdok et al., 2015) and ventromedial parts (Greicius
et al., 2009; Margulies et al., 2009), the parietal cortex (Vogt et al.,
2006; Beckmann et al., 2009) and the lateral temporal cortex
(Margulies et al., 2009). Thus, while both parts of the DMN (Yu
et al., 2011), each subregion yet belongs to distinct subnetworks.

Given the pivotal role of the PCC in AD and within the
DMN, and the distinct cellular organization and connectivity
profile of the vPPC vs. dPCC, the goal of the present study
was to investigate structural and functional alterations of the
vPPC and dPCC networks in patients with aMCI and demented
patients with AD. More specifically, we sought to (i) identify
the specific connectivity subnetworks of the vPCC vs. the dPCC
in cognitively normal older adults and (ii) assess the profiles of
connectivity disruption, atrophy and hypometabolism within the
vPCC and dPCC networks in patients with aMCI or AD.

MATERIALS AND METHODS

Participants
One hundred and one right-handed native French-speaking
participants from the ≪ Imagerie Multimodale de la maladie
d’Alzheimer à un stade Précoce ≫ (IMAP+) study (Caen) were
included in the present study: 43 healthy elders (HE), 34 patients
with aMCI, and 24 patients with AD (Table 1). Some of them had
been included in previous publications by our laboratory (La Joie
et al., 2012, 2013, 2014;Mevel et al., 2013; Tomadesso et al., 2015).
All participants were aged over 60 years, had at least 7 years of
education, and had no history of alcoholism, drug abuse, head
trauma, or psychiatric disorder.

HE were recruited from the community and performed
within the normal range on all neuropsychological tests in a
cognitive battery assessing multiple domains of cognition (verbal
and visual episodic memory, semantic memory, language skills,
executive functions, visuospatial functions, and praxis). The
patients with aMCI or AD were recruited from local memory
clinics and selected according to internationally agreed criteria.
aMCI patients were selected based on Petersen’s criteria for aMCI
(Petersen and Morris, 2005) and AD patients fulfilled standard
National Institute of Neurological and Communicative Disorders
and Stroke, and Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) clinical criteria for probable
Alzheimer’s disease (McKhann et al., 1984). Clinical diagnosis
was assigned by consensus under the supervision of a senior
neurologist (VdLS) and two neuropsychologists (AP and SE).
The majority of participants underwent a florbetapir-PET scan,
and the proportions of amyloid-positive scans using previously
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TABLE 1 | Demographic information of healthy elders (HE), patients with amnestic mild cognitive impairment (aMCI), and patients with Alzheimer’s

disease (AD).

HE aMCI AD p-value

Group effect HE vs. aMCI HE vs. AD aMCI vs. AD

F/M ratio 27/16 18/16 12/12 – 0.523 0.448 0.963

Age in years (SD) 68.7 (6.0) 73.4 (6.8) 70.5 (9.4) 0.020 0.022 0.532 0.460

Education in years (SD) 12 (3.5) 10 (3.5) 10 (3.3) 0.116 0.192 0.319 0.999

MMSE (SD) 29.2 (0.8) 26.7 (1.7) 20.8 (4.2) p < 0.001 p < 0.001 p < 0.001 p < 0.001

The bold values are significant (p < 0.05).

published methods (La Joie et al., 2012) were 17.9% (7/39) for
HE, 65.6% (21/32) for patients with aMCI, and 100% (23/23) for
patients with AD.

The IMAP+ study was approved by a regional ethics
committee (Comité de Protection des Personnes Nord-Ouest III)
and registered with http://clinicaltrials.gov (no. NCT01638949).
All participants gave their written informed consent to the study
prior to the investigation.

Neuroimaging Data Acquisition
All participants were scanned with the same MRI and PET
cameras at the Cyceron Center (Caen, France): a Philips
Achieva 3.0 T scanner and a Discovery RX VCT 64 PET-
CT device (General Electric Healthcare), respectively. High-
resolution T1-weighted anatomical volumes were acquired
using a three-dimensional fast-field echo sequence (3D-T1-FFE
sagittal; repetition time = 20 ms, echo time = 4.6 ms, flip angle
= 10◦, 180 slices with no gap, slice thickness = 1 mm, field of
view= 256× 256 mm2, in-plane resolution= 1× 1 mm2).

Resting-state functional volumes were obtained using an
interleaved 2D T2∗ SENSE EPI sequence designed to reduce
geometric distortions, with parallel imaging, short echo time, and
small voxels (2D-T2∗-FFE-EPI axial, SENSE= 2; time repetition
= 2382 ms, time echo= 30 ms, flip angle= 80◦, 42 slices with no
gap, slice thickness = 2.8 mm, field of view = 224 × 224 mm2,
in plane resolution = 2.8 × 2.8 mm2, 280 volumes, acquisition
time = 11.5 min). Participants were equipped with earplugs,
their head was stabilized with foam pads to minimize head
motion, and the scanner room’s light was turned off. During this
acquisition, which was the last one in the MRI scanning session,
participants were asked to relax, lie still in the scanner, and keep
their eyes closed, without falling asleep. A subsequent debriefing
questionnaire allowed us to ensure that the participants had no
difficulty staying awake throughout the duration of the resting-
state fMRI scan and that nothing particular had disturbed their
attention during the scanning.

Finally, 18FDG-PET images were acquired with a resolution
of 3.76× 3.76× 4.9 mm3 (field of view= 157 mm). Forty-seven
planes were obtained with a voxel size of 1.95× 1.95× 3.2 mm3.
A transmission scan was performed for attenuation correction
before the PET acquisition. Participants were fasted for at least
6 h before scanning. After a 30-min resting period in a quiet and
dark environment, 180 MBq of FDG was intravenously injected
as a bolus. A 10-min PET acquisition scan began 50 min after
injection.

Neuroimaging Data Preprocessing
Anatomical MRI
MRI data were segmented, normalized to the Montreal
Neurological Institute (MNI) template andmodulated (nonlinear
only) using the VBM5.1 toolbox, and smoothed with an 8-mm
Gaussian filter. The resulting gray matter datasets were used in
all subsequent analyses.

Resting-State fMRI
Individual datasets were first checked for artifacts by applying
the TSDiffAna routines (http://imaging.mrc-cbu.cam.ac.uk/
imaging/DataDiagnostics), during which a variance volume was
created for each participant to check that most of the signal
variability was restricted to the cortex. Datasets showing evidence
of significant movements (>3 mm translation or 1.5◦ rotation)
associated with image artifacts and/or an abnormal variance
distribution were excluded from subsequent analyses. Data were
then processed as described in La Joie et al. (2014), including
slice timing correction, realignment to the first volume, spatial
normalization, smoothing (4 mm), masking to include only
gray matter voxels and exclude the cerebellum (based on the
T1-weighted and non-EPI-T2∗ volumes), and temporal bandpass
filtering (0.01–0.08 Hz).

The vPCC and dPCC were manually delineated on the
normalized anatomical T1-MRI of a representative HE
scan using Anatomist (Version 4.0.0) software, based on
cytoarchitectural and functional findings (Vogt et al., 2006; Yu
et al., 2011). The vPCC included Brodmann areas v23 and 31,
and was bordered anteriorly by the ventral branch of the splenial
sulcus and posteriorly by the parieto-occipital sulcus. The dPCC
included Brodmann areas 23c, 23d, d23, and 31, and was limited
anteriorly by the cingulate sulcus and posteriorly by the ventral
branch of the splenial sulcus.

The two subregions were then masked using the gray
matter mask described above, and used as seeds in subsequent
connectivity analyses (Figure 1). Coincidently, both regions
measured 3592 mm3 (449 voxels). We then checked that the
vPCC and dPCC locations matched for each participant, by
superimposing the regions on each individual normalized scan.

For each of the 101 participants and each seed of interest
(transformed using the MarsBar toolbox, Brett et al., 2002),
positive correlations were assessed between the mean time course
in the seed and the time course of each gray matter voxel.
To remove potential sources of spurious variance, the time
courses from white matter, cerebrospinal fluid, the whole brain,
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FIGURE 1 | Illustration of the ventral PCC (blue) and dorsal PCC (yellow) seeds manually delineated on the mean normalized anatomical T1-MRI scans

of all participants.

their derivatives, and the six movements parameters generated
from realignment of head motion were introduced as covariates.
Lastly, Fisher’s z transform and 6.3 mm full width at half
maximum (FWHM) smoothing were applied to the resulting
individual connectivity maps, leading to a final smoothness of 8
mm FWHM (

√
(2.82 + 42 + 6.32)).

FDG-PET
18FDG-PET data were corrected for partial volume effects using
a three-compartment method (Giovacchini et al., 2004) with
PMOD (PMOD Technologies). Images were then coregistered
onto their respective MRIs, spatially normalized to the MNI
template using the respective MRI parameters, and scaled using
the mean PET value of the cerebellar gray matter. Smoothing
kernel of 7.1 × 7.1 × 6.3 mm Gaussian filter was applied so that
the final smoothness of the images was the same as for the fMRI
data (8× 8× 8 mm).

Statistical Analysis
Between-group differences on demographic variables were
assessed with a one-factor (group) analysis of variance (ANOVA)
for continuous variables and a chi2 test for categorical
variables.

Identification of the vPCC and dPCC Networks in HE
A voxelwise paired t-test was performed on resting-state fMRI
scans in HE to identify the brain regions that were significantly
more correlated with the dPCC than with the vPCC and vice
versa (FWE-corrected p < 0.05, k > 50), including only regions
that were significantly positively correlated with these regions
in HE (see details in Figure 2). Binary masks of the ventral
and dorsal networks were obtained from this analysis for use in
subsequent analyses (Figure 3).

Voxelwise Neuroimaging Analyses in Patients
To assess changes within these networks in patients with
aMCI or AD, compared with HE, we ran single factor (group)
ANCOVAs using Statistical Parametric Mapping (SPM) software
with full factorial designs. More specifically, two ANCOVAs were
carried out to assess FC disruption in patients vs. HE within
the ventral and dorsal networks, and the same analyses were
repeated with maps of gray matter volume and 18FDG-PET
metabolism to assess for atrophy and hypometabolism within

FIGURE 2 | Schematic representation of the procedure for ventral

(vPCC) and dorsal (dPCC) PCC connectivity analyses in HE. At the first

level, vPCC and dPCC regions were used as seeds to obtain individual vPCC

and dPCC connectivity maps. At the second level, one-sample t-tests (>0)

were performed on the individual connectivity maps and thresholded at p

(FWE-corrected) <0.01, k > 100 to identify regions positively correlated with

the vPCC and dPCC in HE. The resulting maps were binarized and combined

to obtain a mask of brain regions that were positively correlated with the

ventral or dorsal PCC. This mask was used in a paired t-test comparing the

individual vPCC and dPCC connectivity maps to identify, within the regions

positively associated with the ventral or dorsal PCC, those more correlated

with one or the other. The resulting maps, thresholded at p

(FWE-corrected) < 0.05 (k > 50) and binarized, were used as the specific

ventral and dorsal PCC networks in subsequent analyses.

these same networks. Age, sex, and education were controlled
for in all group comparisons, and we used a statistical threshold
of p (uncorrected) = 0.001. Cluster extent was determined by
Monte-Carlo simulation (AlphaSim program by D. Ward) for
each modality and within each network to achieve a multiple
comparison-corrected p < 0.05 (Table S1). The percentage of
alteration within each network was calculated by dividing the
total number of disrupted voxels by the total number of voxels
in the corresponding network (Table 2). Finally, to assess the
links with global cognitive changes, correlations were assessed
between atrophy and hypometabolism found in vPCC and dPCC
networks in aMCI and AD patients vs. performances at the
MMSE using non-parametric Spearman correlation analyses and
a p < 0.05 (Figure S2).
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FIGURE 3 | Illustration of the ventral PCC (blue) and dorsal PCC (yellow) networks in HE obtained with a paired t-test and thresholded at p

(FWE-corrected) < 0.05, k > 50.

TABLE 2 | Percentage of the volume of the ventral and dorsal networks

showing FC disruption, atrophy and hypometabolism in patients

compared with HE.

Ventral Network Dorsal Network

MCI AD MCI AD

FC disruption 1.82 3.17 0.00 0.47

Atrophy 11.42 49.37 0.00 50.23

Hypometabolism 10.09 61.21 28.18 79.24

RESULTS

Demographic Data
The three groups did not differ on either sex or years of
education, but the patients with aMCI were significantly older
than HE (Table 1).

Identification of the vPCC and dPCC
Networks in HE
Regions showing higher connectivity with the vPCC than with
the dPCC, and thus constituting the ventral PCC network,
included the vPCC region (autocorrelation) extending to the
retrospenial cortex, the medial temporal lobe including the
hippocampus and parahippocampal cortex and encroaching on
the fusiform and lingual gyri, the ventroposterior part of the
precuneus, the cuneus, the most inferoposterior part of the
angular gyrus, and the parieto-occipital sulcus (Figure 3). The
volume of the vPCC network was 53272 mm3 (6659 voxels).

Regions showing higher connectivity with the dPCC than
with the vPCC, and thus constituting the dorsal PCC network,
bilaterally included the dPCC region (autocorrelation) extending
to the middle cingulate cortex, the dorsomedial prefrontal cortex
(encroaching on both the anterior cingulate gyrus and the frontal
superior cortex), and the superior frontal gyrus (superolateral
part), middle frontal gyrus (superior portion), orbitofrontal
cortex, dorsal part of the precuneus, supero-anterior part of
the angular gyrus, and middle temporal gyrus (Figure 3). The
volume of the dPCC network was 58,968 mm3 (7371 voxels).

We had expected to highlight distinct FC networks for the
ventral and dorsal PCC, consistent with previous studies and
with the known heterogeneity of the PCC. We did indeed find
significant differences between the two networks in HE, with the
vPCC being more strongly connected to medial temporal and
parieto-occipital brain areas, while the dPCC network mainly
involved frontal and lateral temporal brain regions.

Alteration within the vPCC and dPCC
Networks in Patients with aMCI or AD,
Compared with HE
FC Disruptions
Within the vPCC network, FC was bilaterally reduced in
the anterior part of the hippocampus in patients with aMCI
compared with HE. Within the dPCC network, no significant
difference in FC was found between patients with aMCI and HE.

In AD, FC disruptions within the vPCC network were
found in the anterior part of the bilateral hippocampus, as
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well as in the left parahippocampal gyrus and left angular
gyrus (inferoposterior part). Within the dPCC network, FC was
reduced in the anterior part of the right middle temporal gyrus
(Figure 4A).

Results therefore showed that FC disruption initially
concerned the vPCC network at the aMCI stage. It then extended
further within this network and also occurred within the dPCC
network at the AD dementia stage.

Atrophy
Within the vPCC network, significant atrophy was found in the
bilateral hippocampus and parahippocampal gyrus in patients
with aMCI compared with HE. Within the dPCC, no significant
atrophy was found in patients with aMCI vs. HE.

In patients with AD, the vPCC network was atrophied in
the bilateral hippocampus, parahippocampal and fusiform gyri,
bilateral vPCC, cuneus and posterior part of the precuneus,

FIGURE 4 | Brain areas showing significant FC disruptions (A), atrophy (B), and hypometabolism (C) within the ventral (blue) and dorsal (yellow) PCC networks

of patients with aMCI or AD compared with HE, as revealed by ANCOVAs thresholded at p (uncorrected) <0.001.
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angular gyrus, and right parieto-occipital sulcus. The dPCC
network was also atrophied bilaterally in patients with AD vs.
HE in the supero-anterior part of the angular gyrus, dPCC
and precuneus, middle temporal gyrus, anterior cingulate gyrus
extending to the superior frontal gyrus, and in the right middle
frontal gyrus (Figure 4B).

In sum, as with FC disruption, atrophy was initially restricted
to the vPCC network at the aMCI stage, before extending further
within this network and in the dPCC network as well at the AD
dementia stage.

Hypometabolism
Within the vPCC network, significant bilateral hypometabolism
was found in the vPCC/precuneus region and hippocampus in
patients with aMCI compared with HE. The dPCC network was
also hypometabolic in patients with aMCI, in parietal regions
encompassing the bilateral dPCC and left angular cortex, as well
as in the left inferoposterior temporal, bilateral orbitofrontal and
middle frontal cortex.

In patients with AD vs. HE, significant hypometabolism was
found in all the regions of the vPCC and dPCC networks
(Figure 4C).

Thus, unlike FC disruption and atrophy, hypometabolism was
found not to be restricted to the vPCC network at the MCI stage,
as it was already present in both networks, and affected the whole
of the vPCC and dPCC networks by the AD dementia stage.

Correlations between Atrophy or Hypometabolism

and MMSE Score
Atrophy and hypometabolism in MCI and AD in the vPCC and
dPCC networks was found to be correlated with the MMSE score
either significantly or at a trend level (rho values between 0.3 and
0.51 and p-values between 0.09 and 0.01; see Table S2 and Figure
S2). This suggests that the alterations reflect the evolution of the
pathological process associated with global cognitive decline.

DISCUSSION

In the present study, we sought to highlight the distinct FC
of the vPCC and dPCC networks in HE, and identify the FC
disruptions, atrophy, and hypometabolism within these two
networks in patients with aMCI or AD.

Topography of vPCC and dPCC Networks
in HE
Direct comparisons between vPCC vs. dPCC connectivity
revealed the distinct topography of these networks in HE. The
vPCC network mainly included parieto-occipital and medial
temporal regions, while the dPCC network was mainly composed
of frontal and lateral temporal brain regions. This topography
is consistent with previous resting-state FC studies showing
that the vPCC is more correlated with hippocampal and
parahippocampal networks (Margulies et al., 2009) and the left
inferior parietal cortex (Bzdok et al., 2015), while the dPCC is
less correlated with the medial temporal lobe but more with the
lateral temporal cortex (Margulies et al., 2009) and dorsomedial
prefrontal, inferior parietal, posterior middle cingulate and left

dorsolateral prefrontal cortex (Bzdok et al., 2015). These findings
were also corroborated by a correlation analysis of resting-
state glucose metabolism data showing higher correlations for
the vPCC with the temporal and occipital cortices, and higher
correlations for the dPCC with parietal areas (Vogt et al.,
2006). Despite this overall consistency, there were also subtle
differences from previous studies. For example, the prefrontal
cortex was described as forming part of the vPCC network
in some previous studies (Maddock et al., 2001; Bzdok et al.,
2015) but not here, or the parietal cortex has sometimes been
found to belong to the dPCC network (Vogt et al., 2006;
Beckmann et al., 2009; Bzdok et al., 2015). These discrepancies
probably reflect differences in the specific seed of interest, the
samples, or other methodological aspects across studies. In line
with their cytoarchitectonic and connectivity differences, distinct
cognitive roles have been attributed to the ventral and dorsal
PCC. Thus, the vPCC has been preferentially associated with
tasks involving internally-focused attentional states such as self-
reflection (Johnson et al., 2002), episodic (autobiographical)
memory retrieval (Nielsen et al., 2005; Sugiura et al., 2005;
Vogt et al., 2006; Dastjerdi et al., 2011), planning for the future
(Fransson, 2005) and daydreaming (Mason et al., 2007). By
contrast, the dPCC has been found to be preferentially involved
in more externally-oriented attentional and/or visuospatial tasks
(Maguire et al., 1997, 1998; Sugiura et al., 2005; Spreng and
Schacter, 2012). The dPCC has also been found to play a
role in switching between the DMN (internal focus) and the
cognitive control network (external attention; Leech et al.,
2011).

Earlier Atrophy and Functional Disruption
in the vPCC Network
The vPCC network showed alteration in both FC and gray matter
volume, mainly in bilateral hippocampal regions, in patients with
aMCI, whereas the dPCC network showed neither FC disruption
nor atrophy at the aMCI stage. This early disruption of the vPCC
network especially involving the hippocampus, is consistent
with previous findings highlighting the particular vulnerability
of the PCC-hippocampus axis in the course of AD (Villain
et al., 2008, 2010), and studies showing alteration of the caudal
part of the cingulum bundle that connects the hippocampus to
the PCC (Choo et al., 2010; Villain et al., 2010). This vPCC
network alteration may reflect the propagation of tau lesions
from early sites of tau deposition, such as the medial temporal
areas (Buée andDelacourte, 2006), to themost directly connected
brain regions (vPCC network). It may also reflect the fact that
the vPCC contains more pyramidal neurons than the dPCC
(Vogt et al., 2006), and pyramidal neurons of the CA1 (Braak
and Braak, 1997) are particularly vulnerable to tau pathology.
Neuropathological examinations in patients with AD have also
shown that the IV, Va, and Vb layers of the PCC (Broadmann area
23a) are the most vulnerable to neuronal loss (Vogt et al., 1998).
These layers are more extensively represented and contain more
densely packed neurons in the vPCC than in the dPCC (Vogt
et al., 2006), which may explain the earlier involvement of the
vPCC network in the present study.
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By the AD dementia stage, the FC disruption and atrophy
had extended further within the vPCC network (left fusiform
and angular region), and was also present in the dPCC network
(right middle temporal region for FC, and bilateral precuneus,
frontal and temporal regions for atrophy). These results are
consistent with the hypothesis that lesions propagate from
the hippocampal-PCC axis within the vPCC network to the
dPCC network, resulting in both FC disruption and atrophy,
conducting to dementia (see below).

The PCC as a Hub through Which the
Pathology Spreads?
Medial temporal atrophy is one of the earliest events in the
pathophysiological process of AD, and is thought to reflect
neuronal and synaptic loss related to local neurofibrillary tangles
(Fukutani et al., 2000; Whitwell et al., 2012). Our findings
are consistent with the idea that the pathology (reflected in
structural and FC disruptions), is initially restricted to the
vPCC network, and subsequently spreads to the dPCC network.
The PCC thus appears as a hub through which the pathology
progresses. The two PCC subregions are known to be highly
interconnected in monkeys (Parvizi et al., 2006) and humans
(Leech et al., 2011). This hypothesis is in line with the network
degeneration hypothesis whereby neurodegenerative diseases
target brain networks (Seeley et al., 2009; Zhou et al., 2013;
Raj et al., 2015, 2012) as pathologies progress from neuron
to neuron through transneural spread, consistent with prion-
like spreading (Frost and Diamond, 2009). Thus, misfolded
proteins may spread throughout specific neural networks via
trans-synaptic transmission pathways. Within this framework,
we can hypothesize that the alterations observed within the vPCC
network at the aMCI stage spread to the dPCC network in AD via
the trans-synaptic connections between the vPCC and the dPCC.

Hypometabolism within vPCC and dPCC
In contrast to the atrophy and connectivity disruptions,
hypometabolism was found in both the vPCC and dPCC
networks, even in patients with aMCI. Post-mortem studies
in patients with AD suggest that PCC hypometabolism may,
at least partly, be related to a reduction in the expression of
energy metabolism genes in PCC neurons (Liang et al., 2008).
Hypometabolism seems not to follow the same progressive
involvement of the ventral and dorsal networks, as its progression
was not initially restricted to the vPCC network. This may reflect
the fact that hypometabolism is due to both local and distant
alterations (La Joie et al., 2012), that is, diaschisis due to atrophy
in connected brain regions (Chételat et al., 2009). In other words,
atrophy within structures of the vPCC network in patients with
aMCI may be associated with hypometabolism both in the same
regions of the vPCC network and in distant connected areas of
the dPCC network.

At the AD dementia stage, the whole vPCC and dPCC
networks were hypometabolic. Early hypometabolism is
commonly found in the PCC, temporoparietal and frontal
areas in patients with AD or aMCI, and is thought to reflect
mechanisms of disconnection from the atrophied hippocampus
via the cingulum bundle and uncinate fasciculus (Chételat et al.,

2008; Villain et al., 2008, 2010; Fouquet et al., 2009; Yakushev
et al., 2011).

LIMITATIONS/PERSPECTIVES

Our study had several strengths and also several limitations.
The strengths included a voxelwise multimodal approach
that afforded a comprehensive view of the patterns of FC
disruption, atrophy and hypometabolism in the vPCC and
dPCC networks in patients with aMCI or AD. The limitations
included the heterogeneous amyloid status of the patients with
aMCI. However, when we repeated our neuroimaging analysis
considering just the subgroup of amyloid-positive patients with
aMCI (n = 21), the results remained essentially unchanged
(Figure S1). The only difference was that, while there was
no atrophy in the dPCC network for the aMCI group as a
whole, atrophy was found in a small cluster located in the
dPCC when we only considered the amyloid-positive patients
with aMCI. The cross-sectional nature of the present study was
a second limitation; further longitudinal studies would allow
to demonstrate the spread of lesions from the vPCC to the
dPCC networks and to assess the sequence of events and causal
relationships between the different biomarkers.

ETHICS STATEMENT

Comite de Protection des Personnes Nord-Ouest III, registered
with http://clinicaltrials.gov (number NCT01638949). All
participants gave written informed consent to the study prior
to the investigation. Alzheimer patients were accompanied by a
relative who gave also his consent to the study.

AUTHOR CONTRIBUTIONS

JM, GC, VdLS, and FE contributed to the study concept and
design. JM, GC contributed to the interpretation of the data
and to the drafting of the manuscript. JM, CT, RdF, and FM
contributed to the data acquisition. JM, BL, and FM contributed
to the data analyses. All the authors revised the work, approved
the manuscript to be published, and agreed to be accountable for
the work.

FUNDING

This work was supported by the Programme Hospitalier de
Recherche Clinique (PHRC National 2011 and 2012), the Agence
Nationale de la Recherche (ANR LONGVIE 2007), the Région
Basse Normandie and the Institut National de la Santé et de la
Recherche Médicale (INSERM).

ACKNOWLEDGMENTS

The authors are especially grateful to B. Fauvel for his help
and advice at every stage of this work. They also thank S.
Benbrika, J. Dayan, S. Egret, M. Fouquet, M. Gaubert, J.
Gonneaud, R. La Joie, M. Leblond, A. Manrique, K. Mevel, A.

Frontiers in Neuroscience | www.frontiersin.org 8 December 2016 | Volume 10 | Article 582

http://clinicaltrials.gov
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Mutlu et al. Cingulate Network Disruptions in AD

Pélerin, A. Perrotin, A. Quillard, C. Schupp and N. Villain for
their contributions, the Cyceron MRI-PET staff members (C.
Lebouleux, J-M Mandonnet, M-H. Noel, and M-C. Onfroy) for
their help with the patients and imaging, and L. Barré, A Abbas,
and D. Guilloteau for the radiotracer.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2016.00582/full#supplementary-material

REFERENCES

Ahmed, Z., Cooper, J., Murray, T. K., Garn, K., McNaughton, E., Clarke,

H., et al. (2014). A novel in vivo model of tau propagation with rapid

and progressive neurofibrillary tangle pathology: the pattern of spread is

determined by connectivity, not proximity. Acta Neuropathol. 127, 667–683.

doi: 10.1007/s00401-014-1254-6

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., and Buckner, R.

L. (2010). Functional-anatomic fractionation of the brain’s default network.

Neuron 65, 550–562. doi: 10.1016/j.neuron.2010.02.005

Andrews-Hanna, J. R., Saxe, R., and Yarkoni, T. (2014). Contributions of

episodic retrieval and mentalizing to autobiographical thought: evidence from

functional neuroimaging, resting-state connectivity, and fMRI meta-analyses.

Neuroimage 91, 324–335. doi: 10.1016/j.neuroimage.2014.01.032

Bastin, C., Kerrouche, N., Lekeu, F., Adam, S., Guillaume, B., Lemaire, C.,

et al. (2010). Controlled memory processes in questionable alzheimer’s

disease: a view from neuroimaging research. J. Alzheimer’s Dis. 20, 547–560.

doi: 10.3233/JAD-2010-1393

Beckmann, M., Johansen-Berg, H., and Rushworth, M. F. (2009). Connectivity-

based parcellation of human cingulate cortex and its relation to functional

specialization. J. Neurosci. 29, 1175–1190. doi: 10.1523/jneurosci.3328-08.2009

Braak, E., and Braak, H. (1997). Alzheimer’s disease: transiently developing

dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn. Acta

Neuropathol. 93, 323–325. doi: 10.1007/s004010050622

Braak, H., and Del Tredici, K. (2011). Alzheimer’s pathogenesis: is there

neuron-to-neuron propagation? Acta Neuropathol. 121, 589–595.

doi: 10.1007/s00401-011-0825-z

Brett, M., Anton, J. L., Valabregue, R., and Poline, J. B. (2002). Region of interest

analysis using the MarsBar toolbox for SPM 99. Neuroimage 16, S497.

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s default

network: anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci.

1124, 1–38. doi: 10.1196/annals.1440.011

Buée, L., and Delacourte, A. (2006). Tauopathy and Alzheimer disease:

a full degenerating process. Psychol. Neuropsychiatr. Vieil. 4, 261–273.

doi: 10.1684/pnv.2006.0022

Bzdok, D., Heeger, A., Langner, R., Laird, A. R., Fox, P. T., Palomero-Gallagher,

N., et al. (2015). Subspecialization in the human posterior medial cortex.

Neuroimage 106, 55–71. doi: 10.1016/j.neuroimage.2014.11.009

Cabeza, R., and Nyberg, L. (2000). Imaging cognition II: an empirical

review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47.

doi: 10.1162/08989290051137585

Chételat, G., Desgranges, B., de la Sayette, V., Viader, F., Berkouk, K., Landeau,

B., et al. (2003). Dissociating atrophy and hypometabolism impact on

episodic memory in mild cognitive impairment. Brain 126, 1955–1967.

doi: 10.1093/brain/awg196

Chételat, G., Desgranges, B., Landeau, B., Mézenge, F., Poline, J. B., de la

Sayette, V., et al. (2008). Direct voxel-based comparison between grey matter

hypometabolism and atrophy in Alzheimer’s disease. Brain 131, 60–71.

doi: 10.1093/brain/awm288

Chételat, G., Villain, N., Desgranges, B., Eustache, F., and Baron, J. C. (2009).

Posterior cingulate hypometabolism in early Alzheimer’s disease: what is the

contribution of local atrophy versus disconnection. Brain 132, 2008–2009.

doi: 10.1093/brain/awp253

Choo, I. H., Lee, D. Y., Oh, J. S., Lee, J. S., Lee, D. S., Song, I. C., et al. (2010).

Posterior cingulate cortex atrophy and regional cingulum disruption in mild

cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 31, 772–779.

doi: 10.1016/j.neurobiolaging.2008.06.015

Dastjerdi, M., Foster, B. L., Nasrullah, S., Rauschecker, A. M., Dougherty,

R. F., Townsend, J. D., et al. (2011). Differential electrophysiological

response during rest, self-referential, and non-self-referential tasks in

human posteromedial cortex. Proc. Natl. Acad. Sci. U.S.A. 108, 3023–3028.

doi: 10.1073/pnas.1017098108

de Calignon, A., Polydoro, M., Suárez-Calvet, M., William, C., Adamowicz, D. H.,

Kopeikina, K. J., et al. (2012). Propagation of tau pathology in a model of early

Alzheimer’s disease. Neuron 73, 685–697. doi: 10.1016/j.neuron.2011.11.033

Duyckaerts, C., Uchihara, T., Seilhean, D., He, Y., and Hauw, J. J. (1997).

Dissociation of Alzheimer type pathology in a disconnected piece of cortex.

Acta Neuropathol. 93, 501–507.

Fossati, P. (2013). Imaging autobiographical memory.Dialogues Clin. Neurosci. 15,

487–490.

Fouquet, M., Desgranges, B., Landeau, B., Duchesnay, E., Mzenge, F., De La

Sayette, V., et al. (2009). Longitudinal brain metabolic changes from amnestic

mild cognitive impairment to Alzheimers disease. Brain 132, 2058–2067.

doi: 10.1093/brain/awp132

Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations:

an fMRI investigation of the resting-state default mode of brain function

hypothesis. Hum. Brain Mapp. 26, 15–29. doi: 10.1002/hbm.20113

Frost, B., and Diamond, M. I. (2009). Prion-like mechanisms in neurodegenerative

diseases. Nat. Rev. Neurosci. 11, 155–159. doi: 10.1038/nrn2786

Fukutani, Y., Cairns, N. J., Shiozawa, M., Sasaki, K., Sudo, S., Isaki, K., et al. (2000).

Neuronal loss and neurofibrillary degeneration in the hippocampal cortex in

late-onset sporadic Alzheimer’s disease. Psychiatry Clin. Neurosci. 54, 523–529.

doi: 10.1046/j.1440-1819.2000.00747.x

Giovacchini, G., Lerner, A., Toczek, M. T., Fraser, C., Ma, K., DeMar, J. C., et al.

(2004). Brain incorporation of 11C-arachidonic acid, blood volume, and blood

flow in healthy aging: a study with partial-volume correction. J. Nucl. Med. 45,

1471–1479.

Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V. (2004). Default-

mode network activity distinguishes Alzheimer’s disease from healthy aging:

evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–4642.

doi: 10.1073/pnas.0308627101

Greicius, M. D., Supekar, K., Menon, V., and Dougherty, R. F. (2009). Resting-

state functional connectivity reflects structural connectivity in the default mode

network. Cereb. Cortex 19, 72–78. doi: 10.1093/cercor/bhn059

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, J. V.,

et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol.

6, 1479–1493. doi: 10.1371/journal.pbio.0060159

Johnson, S. C., Baxter, L. C., Wilder, L. S., Pipe, J. G., Heiserman, J. E.,

and Prigatano, G. P. (2002). Neural correlates of self-reflection. Brain 125,

1808–1814. doi: 10.1093/brain/awf181

La Joie, R., Landeau, B., Perrotin, A., Bejanin, A., Egret, S., Pélerin, A., et al. (2014).

Intrinsic connectivity identifies the hippocampus as a main crossroad between

Alzheimer’s and semantic dementia-targeted networks. Neuron 81, 1417–1428.

doi: 10.1016/j.neuron.2014.01.026

La Joie, R., Perrotin, A., Barr,é, L., Hommet, C., Mézenge, F., Ibazizene, M.,

et al. (2012). Region-specific hierarchy between atrophy, hypometabolism,

and β-amyloid (Aβ) load in Alzheimer’s disease dementia. J. Neurosci. 32,

16265–16273. doi: 10.1523/JNEUROSCI.2170-12.2012

La Joie, R., Perrotin, A., de La Sayette, V., Egret, S., Doeuvre, L., Belliard, S.,

et al. (2013). Hippocampal subfield volumetry in mild cognitive impairment,

Alzheimer’s disease and semantic dementia. Neuroimage Clin. 3, 155–162.

doi: 10.1016/j.nicl.2013.08.007

Leech, R., Kamourieh, S., Beckmann, C. F., and Sharp, D. J. (2011). Fractionating

the default mode network: distinct contributions of the ventral and dorsal

posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224.

doi: 10.1523/JNEUROSCI.5626-10.2011

Liang, W. S., Reiman, E. M., Valla, J., Dunckley, T., Beach, T. G., Grover, A., et al.

(2008). Alzheimer’s disease is associated with reduced expression of energy

Frontiers in Neuroscience | www.frontiersin.org 9 December 2016 | Volume 10 | Article 582

http://journal.frontiersin.org/article/10.3389/fnins.2016.00582/full#supplementary-material
https://doi.org/10.1007/s00401-014-1254-6
https://doi.org/10.1016/j.neuron.2010.02.005
https://doi.org/10.1016/j.neuroimage.2014.01.032
https://doi.org/10.3233/JAD-2010-1393
https://doi.org/10.1523/jneurosci.3328-08.2009
https://doi.org/10.1007/s004010050622
https://doi.org/10.1007/s00401-011-0825-z
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1684/pnv.2006.0022
https://doi.org/10.1016/j.neuroimage.2014.11.009
https://doi.org/10.1162/08989290051137585
https://doi.org/10.1093/brain/awg196
https://doi.org/10.1093/brain/awm288
https://doi.org/10.1093/brain/awp253
https://doi.org/10.1016/j.neurobiolaging.2008.06.015
https://doi.org/10.1073/pnas.1017098108
https://doi.org/10.1016/j.neuron.2011.11.033
https://doi.org/10.1093/brain/awp132
https://doi.org/10.1002/hbm.20113
https://doi.org/10.1038/nrn2786
https://doi.org/10.1046/j.1440-1819.2000.00747.x
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1093/cercor/bhn059
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1093/brain/awf181
https://doi.org/10.1016/j.neuron.2014.01.026
https://doi.org/10.1523/JNEUROSCI.2170-12.2012
https://doi.org/10.1016/j.nicl.2013.08.007
https://doi.org/10.1523/JNEUROSCI.5626-10.2011
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Mutlu et al. Cingulate Network Disruptions in AD

metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. U.S.A.

105, 4441–4446. doi: 10.1073/pnas.0709259105

Maddock, R. J., Garrett, A. S., and Buonocore, M. H. (2001). Remembering familiar

people: the posterior cingulate cortex and autobiographical memory retrival.

Neuroscience 104, 667–676.

Maguire, E. A., Frackowiak, R. S., and Frith, C. D. (1997). Recalling routes

around london: activation of the right hippocampus in taxi drivers.

J. Neurosci. 17, 7103–7110. doi: 10.1002/(SICI)1098-1063(1996)6:3&lt;271::

AID-HIPO5&gt;3.0.CO;2-Q

Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G., and O’Keefe, J.

(1998). Knowing where things are: parahippocampal involvement in encoding

object locations in virtual large-scale space. J. Cogn. Neurosci. 10, 61–76.

doi: 10.1162/089892998563789

Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal,

B. B., et al. (2009). Precuneus shares intrinsic functional architecture in

humans and monkeys. Proc. Natl. Acad. Sci. U.S.A. 106, 20069–20074.

doi: 10.1073/pnas.0905314106

Mason,M. F., Norton,M. I., VanHorn, J. D.,Wegner, D.M., Grafton, S. T., Macrae,

C. N., et al. (2007). Wandering minds: stimulus-independent thought. Science

315, 393–395. doi: 10.1126/science.1131295

McKhann, G., Drachman, D., and Folstein, M. (1984). Clinical diagnosis of

Alzheimer’s disease : report of the NINCDS-ADRDA Work Group under

the auspices of Department of Health and Human Services Task Force on

Alzheimer’s Disease. Neurology 34, 939–944. doi: 10.1186/alzrt38

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R. Jr.,

Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s

disease: recommendations from the National Institute on Aging-Alzheimer’s

Association workgroups on diagnostic guidelines for Alzheimer’s disease.

Alzheimer’s Dement. 7, 263–269. doi: 10.1016/j.jalz.2011.03.005

Mevel, K., Landeau, B., Fouquet, M., La Joie, R., Villain, N., Mézenge, F., et al.

(2013). Age effect on the default mode network, inner thoughts, and cognitive

abilities. Neurobiol. Aging 34, 1292–1301. doi: 10.1016/j.neurobiolaging.2012.

08.018

Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., and Kuhl, D.

E. (1997). Metabolic reduction in the posterior cingulate cortex in very early

Alzheimer’s disease. Ann. Neurol. 42, 85–94. doi: 10.1002/ana.410420114

Nielsen, F. A., Balslev, D., andHansen, L. K. (2005). Mining the posterior cingulate:

segregation between memory and pain components. Neuroimage 27, 520–532.

doi: 10.1016/j.neuroimage.2005.04.034

Palomero-Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S., and Zilles,

K. (2009). Receptor architecture of human cingulate cortex: evaluation of

the four-region neurobiological model. Hum. Brain Mapp. 30, 2336–2355.

doi: 10.1002/hbm.20667

Parvizi, J., Van Hoesen, G. W., Buckwalter, J., and Damasio, A. (2006). Neural

connections of the posteromedial cortex in the macaque. Proc. Natl. Acad. Sci.

U.S.A. 103, 1563–1568. doi: 10.1073/pnas.0507729103

Petersen, R. C., and Morris, J. C. (2005). Mild cognitive impairment as a

clinical entity and treatment target. Arch. Neurol. 62, 1160–1163. doi: 10.1001/

archneur.62.7.1160

Raj, A., Kuceyeski, A., and Weiner, M. (2012). A network diffusion

model of disease progression in dementia. Neuron 73, 1204–1215.

doi: 10.1016/j.neuron.2011.12.040

Raj, A., LoCastro, E., Kuceyeski, A., Tosun, D., Relkin, N., and Weiner, M.

(2015). Network diffusion model of progression predicts longitudinal patterns

of atrophy and metabolism in Alzheimer’s Disease. Cell Rep. 10, 359–369.

doi: 10.1016/j.celrep.2014.12.034

Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., and Greicius, M. D. (2009).

Neurodegenerative diseases target large-scale human brain networks. Neuron

62, 42–52. doi: 10.1016/j.neuron.2009.03.024

Sheline, Y. I., and Raichle, M. E. (2013). Resting state functional connectivity

in preclinical Alzheimer’s disease. Biol. Psychiatry 74, 340–347.

doi: 10.1016/j.biopsych.2012.11.028

Spreng, R. N., and Schacter, D. L. (2012). Default network modulation and large-

scale network interactivity in healthy young and old adults. Cereb. Cortex 22,

2610–2621. doi: 10.1093/cercor/bhr339

Sugiura, M., Shah, N. J., Zilles, K., and Fink, G. R. (2005). Cortical representations

of personally familiar objects and places: functional organization of

the human posterior cingulate cortex. J. Cogn. Neurosci. 17, 183–198.

doi: 10.1162/0898929053124956

Svoboda, E., McKinnon, M. C., and Levine, B. (2006). The functional

neuroanatomy of autobiographical memory: a meta-analysis.Neuropsychologia

4, 2189–2208. doi: 10.1016/j.neuropsychologia.2006.05.023

Teipel, S., and Grothe, M. J. (2016). Does posterior cingulate hypometabolism

result from disconnection or local pathology across preclinical and clinical

stages of Alzheimer’s disease? Eur. J. Nucl. Med. Mol. Imaging 43, 526–536.

doi: 10.1007/s00259-015-3222-3

Tomadesso, C., Perrotin, A., Mutlu, J., Mézenge, F., Landeau, B., Egret,

S., et al. (2015). Brain structural, functional, and cognitive correlates

of recent versus remote autobiographical memories in amnestic Mild

Cognitive Impairment. Neuroimage Clin. 8, 473–482. doi: 10.1016/j.nicl.2015.

05.010

Villain, N., Desgranges, B., Viader, F., de la Sayette, V., Mézenge, F., Landeau,

B., et al. (2008). Relationships between hippocampal atrophy, white matter

disruption, and graymatter hypometabolism in Alzheimer’s disease. J. Neurosci.

28, 6174–6181. doi: 10.1523/JNEUROSCI.1392-08.2008

Villain, N., Fouquet, M., Baron, J. C., Mézenge, F., Landeau, B., de La Sayette, V.,

et al. (2010). Sequential relationships between grey matter and white matter

atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain

133, 3301–3314. doi: 10.1093/brain/awq203

Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate

gyrus. Nat. Rev. Neurosci. 6, 533–544. doi: 10.1038/nrn1704

Vogt, B. A., Vogt, L. J., Vrana, K. E., Gioia, L., Meadows, R. S., Challa, V. R.,

et al. (1998). Multivariate analysis of laminar patterns of neurodegeneration

in posterior cingulate cortex in Alzheimer’s disease. Exp. Neurol. 153, 8–22.

doi: 10.1006/exnr.1998.6852

Vogt, B. A., Vogt, L., and Laureys, S. (2006). Cytology and functionally

correlated circuits of human posterior cingulate areas.Neuroimage 29, 452–466.

doi: 10.1016/j.neuroimage.2005.07.048

Wagner, A. D., Shannon, B. J., Kahn, I., and Buckner, R. L. (2005). Parietal lobe

contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453.

doi: 10.1016/j.tics.2005.07.001

Whitwell, J. L., Dickson, D. W., Murray, M. E., Weigand, S. D., Tosakulwong,

N., Senjem, M. L., et al. (2012). Neuroimaging correlates of pathologically

defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol.

11, 868–877. doi: 10.1016/S1474-4422(12)70200-4

Winblad, B., Amouyel, P., Andrieu, S., Ballard, C., Brayne, C., Brodaty,

H., et al. (2016). Defeating Alzheimer’s disease and other dementias: a

priority for European science and society. Lancet Neurol. 15, 455–532.

doi: 10.1016/S1474-4422(16)00062-4

Yakushev, I., Schreckenberger, M., Müller, M. J., Schermuly, I., Cumming,

P., Stoeter, P., et al. (2011). Functional implications of hippocampal

degeneration in early Alzheimer’s disease: a combined DTI and PET study.

Eur. J. Nucl. Med. Mol. Imaging 38, 2219–2227. doi: 10.1007/s00259-011-

1882-1

Yu, C., Zhou, Y., Liu, Y., Jiang, T., Dong, H., Zhang, Y., et al. (2011). Functional

segregation of the human cingulate cortex is confirmed by functional

connectivity based neuroanatomical parcellation. Neuroimage 54, 2571–2581.

doi: 10.1016/j.neuroimage.2010.11.018

Zhou, J., Gennatas, E., Kramer, J. H., Miller, B., and Seeley, W. W.

(2013). Predicting regional neurodegeneration from the healthy brain

functional connectome. Neuron 73, 1216–1227. doi: 10.1016/j.neuron.2012.

03.004

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Mutlu, Landeau, Tomadesso, de Flores, Mézenge, de La Sayette,

Eustache and Chételat. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 December 2016 | Volume 10 | Article 582

https://doi.org/10.1073/pnas.0709259105
https://doi.org/10.1002/(SICI)1098-1063(1996)6:3&lt;271::AID-HIPO5&gt;3.0.CO;2-Q
https://doi.org/10.1162/089892998563789
https://doi.org/10.1073/pnas.0905314106
https://doi.org/10.1126/science.1131295
https://doi.org/10.1186/alzrt38
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1016/j.neurobiolaging.2012.08.018
https://doi.org/10.1002/ana.410420114
https://doi.org/10.1016/j.neuroimage.2005.04.034
https://doi.org/10.1002/hbm.20667
https://doi.org/10.1073/pnas.0507729103
https://doi.org/10.1001/archneur.62.7.1160
https://doi.org/10.1016/j.neuron.2011.12.040
https://doi.org/10.1016/j.celrep.2014.12.034
https://doi.org/10.1016/j.neuron.2009.03.024
https://doi.org/10.1016/j.biopsych.2012.11.028
https://doi.org/10.1093/cercor/bhr339
https://doi.org/10.1162/0898929053124956
https://doi.org/10.1016/j.neuropsychologia.2006.05.023
https://doi.org/10.1007/s00259-015-3222-3
https://doi.org/10.1016/j.nicl.2015.05.010
https://doi.org/10.1523/JNEUROSCI.1392-08.2008
https://doi.org/10.1093/brain/awq203
https://doi.org/10.1038/nrn1704
https://doi.org/10.1006/exnr.1998.6852
https://doi.org/10.1016/j.neuroimage.2005.07.048
https://doi.org/10.1016/j.tics.2005.07.001
https://doi.org/10.1016/S1474-4422(12)70200-4
https://doi.org/10.1016/S1474-4422(16)00062-4
https://doi.org/10.1007/s00259-011-1882-1
https://doi.org/10.1016/j.neuroimage.2010.11.018
https://doi.org/10.1016/j.neuron.2012.03.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Connectivity Disruption, Atrophy, and Hypometabolism within Posterior Cingulate Networks in Alzheimer's Disease
	Introduction
	Materials and Methods
	Participants
	Neuroimaging Data Acquisition
	Neuroimaging Data Preprocessing
	Anatomical MRI
	Resting-State fMRI
	FDG-PET

	Statistical Analysis
	Identification of the vPCC and dPCC Networks in HE
	Voxelwise Neuroimaging Analyses in Patients


	Results
	Demographic Data
	Identification of the vPCC and dPCC Networks in HE
	Alteration within the vPCC and dPCC Networks in Patients with aMCI or AD, Compared with HE
	FC Disruptions
	Atrophy
	Hypometabolism
	Correlations between Atrophy or Hypometabolism and MMSE Score


	Discussion
	Topography of vPCC and dPCC Networks in HE
	Earlier Atrophy and Functional Disruption in the vPCC Network
	The PCC as a Hub through Which the Pathology Spreads?
	Hypometabolism within vPCC and dPCC

	Limitations/Perspectives
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


