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Abstract: Although the effect of hypoxia on p53 in human papillomavirus (HPV)-positive cancer
cells has been studied for decades, the impact of p53 regulation on downstream targets and cellular
adaptation processes during different periods under hypoxia remains elusive. Here, we show that,
despite continuous repression of HPV16 E6/E7 oncogenes, p53 did not instantly recover but instead
showed a biphasic regulation marked by further depletion within 24 h followed by an increase
at 72 h. Of note, during E6/E7 oncogene suppression, lysosomal degradation antagonizes p53
reconstitution. Consequently, the transcription of p53 responsive genes associated with senescence
(e.g., PML and YPEL3) cannot be upregulated. In contrast, downstream genes involved in autophagy
(e.g., DRAM1 and BNIP3) were activated, allowing the evasion of senescence under hypoxic conditions.
Hence, dynamic regulation of p53 along with its downstream network of responsive genes favors
cellular adaptation and enhances cell survival, although the expression of the viral E6/E7-oncogenes
as drivers for proliferation remained inhibited under hypoxia.
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1. Introduction

Cervical cancer represents the fourth most commonly diagnosed cancer in women worldwide [1],
and mainly the high-risk human papillomavirus (HR-HPV) 16 and 18 are the most frequent types
causing this disease [2,3]. Since 2006, broad health care programs are using three prophylactic HPV
vaccines to provide protection against HR-HPV-related cancers [4,5]. However, incidence and mortality
rates of cervical cancer remain high in many parts of the world where effective vaccinations and
screening programs are missing [1,6–8]. The available HPV vaccines cannot treat advanced stages of
HPV-associated diseases. For cervical cancer, treatment still consists of surgery combined with either
pre- or post-operative adjuvant chemo and/or radiation therapy [9,10].

Such treatment options remain problematic owing partially to the tumors’ strong resistance to
these kinds of therapeutic interventions [11,12]. Therapy-resistant progeny cells apparently derive
from hypoxic areas frequently detected in cervical cancer tissues. Consistent with this notion is also that
certain biomarkers of hypoxia (e.g., carbonic anhydrase-IX) negatively correlate with the prognostic
outcome of the disease [13–20].

Hypoxic HPV-positive cancer cells can enter a dormant state, characterized by an evasion of
cellular senescence [21] and resistance to cell death [22]. However, the underlying mechanisms are still
not fully understood.

The p53 tumor suppressor functions as a transcription factor responding to a plethora of
cellular stresses including hypoxia. p53 is not only important for DNA repair [23,24], cell cycle
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arrest [23,25], and apoptosis [23,26], but also for senescence [27], autophagy [28], and metabolism [29].
p53 activity depends on its intracellular localization and stability, which are both regulated by diverse
post-translational modifications such as phosphorylation or ubiquitination, respectively, mediated by
various enzymes [30].

In cells infected with HR-HPVs, the viral oncoprotein E6 promotes the binding of p53 to
the ubiquitin ligase E6-AP, causing its proteasomal degradation, hereby inhibiting apoptosis and
contributing to malignant transformation [31,32]. Repression of E6 in turn restores p53, resulting in the
induction of p53-dependent senescence and/or apoptosis in HPV-positive cells [27,33].

As with most solid tumors, cervical cancers often display strongly reduced oxygen (O2) content
compared to the atmospheric 21%, with a median O2 concentration of 1.18% [13,34]. Although the
effect of hypoxia on HPV-positive cells has been already examined [21,22,35,36], the role of p53 in
cellular adaptation, especially in the early phase under hypoxia, is still elusive.

In the present study, the dynamics of p53 in HPV16-positive cancer cells during hypoxia were
examined. Notably, despite continuous repression of HPV16 E6/E7 oncogenes, p53 did not recover
but instead showed a biphasic regulation (rapid further reduction followed by a marked recovery
after prolonged hypoxia). Such a dynamic along with the impact on corresponding downstream p53
responsive genes may contribute to enhance cellular adaptation to protect hypoxic E6/E7-repressed
cancer cells from an irreversible commitment towards apoptosis or senescence. Predominantly,
autophagy as a downstream response is critical for the evasion of senescence under hypoxic conditions.
These findings reveal a novel niche of a molecular mechanism where pharmacological drugs could act
to prevent cancer cell survival and recurrence in poorly oxygenated regions of HPV-positive cancers.

2. Results

2.1. p53 Is Regulated in a Biphasic Manner in Hypoxic E6/E7-Repressed HPV16-Positive Cervical Cancer Cells

To investigate the effect of hypoxia on p53 in an in vitro system, HPV16-positive cervical cancer
cells (SiHa, CaSki) were cultured at 21% O2 (normoxia) or 1% O2 (hypoxia) for 24 h. Here, despite a
downregulation of HPV16 E6/E7 oncogene expression by up to 90% under hypoxia, p53 was not restored
and even diminished to almost non-detectable levels. At the same time, hypoxia-inducible factor 1α
(HIF-1α) was readily induced, which in turn promoted transcription of vascular endothelial growth
factor (VEGF) (Figure 1A,B), a known downstream target gene required for neovascularization [37].

Next, time-course experiments were carried out in order to monitor HPV16 E6/E7 mRNA levels
and the amount of p53 protein under hypoxic conditions, ranging from 6 to 72 h. As depicted in
Figure 1C (upper panel), viral transcription was downregulated by roughly 90% in SiHa and 80%
in CaSki cells. Examining the levels of p53, a biphasic regulation under hypoxic conditions was
noted—first, a rapid and strong decrease (by 24 h) but subsequently a recovery to even higher levels
than under normoxic conditions at 72 h (Figure 1C, lower panel). The protein levels were comparable to
those after siRNA-mediated knockdown of E6/E7 and remained stable until the end of the experiment
at 120 h of hypoxic incubation (Figure S1A).
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Figure 1. E6/E7 oncogene transcription and p53 protein expression in human papillomavirus 

(HPV)16-positive cervical cancer cells under normoxia and hypoxia. Cells were cultured for the 

indicated times at 21% O2 or at 1% O2. Total RNA and total protein were extracted. (A) qPCR analyses 

of HPV16 E6/E7 and vascular endothelial growth factor (VEGF) transcripts. The 18S rRNA served as 

internal control for normalization. Error bars indicate the SD of three independent experiments. 

Corresponding transcript levels under normoxia were arbitrarily set to 1 and used as control for the 

calculation of significant differences (two-tailed Student’s t-test was employed, ** p < 0.01, *** p < 

0.001). (B) Western blot analyses of cells after 24 h under normoxia/hypoxia. The filter was incubated 

with antibodies against p53 and hypoxia-inducible factor 1α (HIF-1α). Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) served as a loading and transfer control. (C) Time course of hypoxic 

incubation. Upper panels: qPCR analyses of HPV16 E6/E7 transcripts. The 18S rRNA served as 

internal control for normalization. Error bars indicate the SD of three independent experiments. The 

0 h value of E6/E7 expression was set as a control for the calculation of significant differences (two-

tailed Student’s t-test was employed, * p < 0.05, ** p < 0.01, *** p < 0.001 and ns, statistically not 

significant). Lower panels: Western blot analyses of p53 levels. GAPDH served as a loading control 

(S, short exposure; L, long exposure). The incubation time is indicated. The p53 ratio refers to 

Figure 1. E6/E7 oncogene transcription and p53 protein expression in human papillomavirus
(HPV)16-positive cervical cancer cells under normoxia and hypoxia. Cells were cultured for the
indicated times at 21% O2 or at 1% O2. Total RNA and total protein were extracted. (A) qPCR analyses
of HPV16 E6/E7 and vascular endothelial growth factor (VEGF) transcripts. The 18S rRNA served
as internal control for normalization. Error bars indicate the SD of three independent experiments.
Corresponding transcript levels under normoxia were arbitrarily set to 1 and used as control for the
calculation of significant differences (two-tailed Student’s t-test was employed, ** p < 0.01, *** p < 0.001).
(B) Western blot analyses of cells after 24 h under normoxia/hypoxia. The filter was incubated
with antibodies against p53 and hypoxia-inducible factor 1α (HIF-1α). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) served as a loading and transfer control. (C) Time course of hypoxic
incubation. Upper panels: qPCR analyses of HPV16 E6/E7 transcripts. The 18S rRNA served as
internal control for normalization. Error bars indicate the SD of three independent experiments.
The 0 h value of E6/E7 expression was set as a control for the calculation of significant differences
(two-tailed Student’s t-test was employed, * p < 0.05, ** p < 0.01, *** p < 0.001 and ns, statistically not
significant). Lower panels: Western blot analyses of p53 levels. GAPDH served as a loading
control (S, short exposure; L, long exposure). The incubation time is indicated. The p53 ratio refers
to normalized quantifications of p53 band intensities relative to GAPDH from three independent
experiments (see Supplementary Table S1).
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2.2. Lysosomal Degradation Is Required for the Initial Reduction of p53 in Hypoxic Cells

To decipher the mechanism underlying the biphasic regulation under hypoxia, p53 transcription
was analyzed. However, as shown in Figure 2A and Figure S1B, changes of the amount of TP53
mRNA in either cell line did not account for the quantitative differences discerned on protein level.
Despite an initial decrease by 60% within the first 24 h of hypoxia, mRNA levels then remained rather
stable throughout prolonged incubation under hypoxia of up to 72 h, while p53 protein started to fully
recover to normoxic levels (Figure 1C and Figure S1A).

To examine whether the reduction of p53 protein levels under hypoxia was due to changes in
its half-life, SiHa and CaSki cells were first incubated either under normoxic or hypoxic conditions
for 4 h, followed by the addition of cycloheximide (CHX) to block de novo protein synthesis [38] for
different periods of time. Notably, as shown in Figure 2 (panel B and C), short-term hypoxia reduced
the half-life of p53 by > 45% in SiHa cells (from 8.6 to 4.6 min) and to a similar degree in CaSki cells
(Figure S1C), suggesting that the additional quantitative reduction is mediated by a post-translational
degradation mechanism.

Next, we determined which cellular pathway was involved in the reduction of p53 under hypoxia,
since E6/E7 oncoprotein suppression should allow p53 recovery. In cervical carcinoma cells, p53 is
normally prone to proteasomal degradation by the E6 oncoprotein and E6-AP, a ubiquitin-dependent
ligase [39,40]. In the absence of E6 or in HPV-negative cells, p53 is controlled by MDM2,
another ubiquitin-dependent ligase that counteracts its quantitative level and function via an
autoregulatory loop [41]. In any case, ubiquitinated p53 will ultimately be targeted for degradation via
the 26S proteasome [42]. However, blocking the proteasome with the specific inhibitor MG132 for 8
and 24 h prior to harvesting could not fully restore p53 protein levels in hypoxic cells to quantities
observed under normoxic conditions (Figure 2D and Figure S1D).

Apart from the ubiquitin/proteasome system, autophagy-lysosome-dependent degradation is
another important mechanism to control intracellular protein half-life [43]. The lysosomal inhibitors
chloroquine (CQ) [44] and bafilomycin A1 (Baf A1) [45] were therefore used to assess the role of this
pathway on the regulation of p53 under hypoxia. The adaptor protein p62/SQSTM1, a marker of
autophagy, is a representative cargo protein sequestered into autophagosomes and degraded in the
autolysosomes [46,47]. As shown in Figure 2E, both CQ and Baf A1 prevented the reduction of p62
under hypoxia, indicating that the degradation by autolysosomes was efficiently blocked under these
conditions. In contrast, only CQ but not Baf A1 inhibited hypoxia-associated p53 degradation. Baf A1
blocked the fusion of autophagosomes and lysosomes yet only prevented the degradation of p62
but not p53. This suggests that, unlike p62, p53 was not sequestered into autophagosomes but was
degraded via the lysosomal pathway. Although the treatment of CQ slightly increased TP53 mRNA
levels under both normoxia and hypoxia, the extent of induction was not significant (Figure S1E).
Furthermore, specific siRNA silencing of the autophagy-related genes ATG12 and p62/SQSTM1 did
not restore p53 protein levels under hypoxia (Figure S1F), additionally confirming that lysosomal
degradation and not autophagy caused p53 degradation after E6/E7 oncogene suppression during the
first 24 h of hypoxia.

2.3. Hypoxic HPV16-Positive Cancer Cells Do Not Enter Senescence

Repression of E6/E7 oncogenes in HPV-positive cells results in the rapid induction of cellular
senescence [48], and p53 is a key regulator in this response [27,49,50]. In agreement with previous
results [21], the RNAi-mediated reduction of E6/E7 transcripts by 50% under normoxia (Figure 3A,
left) led to a massive augmentation of p53 levels (Figure S1A) as well as strong SA-β-Gal staining
and the appearance of typical morphological signs of senescence, such as cellular enlargement and
flattening [51] (Figure 3A, right). This is, however, in contrast to cells where E6/E7 expression was
reduced in response to hypoxia (Figure 1A), indicating that senescence was circumvented (Figure 3B
and Figure S2A).
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Figure 2. p53 transcription and protein stability under normoxic and hypoxic conditions in the
presence or the absence of proteasomal and lysosomal inhibitors. (A) qPCR analysis of TP53 transcripts.
SiHa cells were cultured for the indicated times at 1% O2 prior to RNA extraction. The 18S rRNA served
as internal control. Error bars indicate the SD of three independent experiments. The 0 h value of TP53
expression was set as a control for the calculation of significant differences (two-tailed Student’s t-test
was employed, * p < 0.05 and ns, statistically not significant). (B) p53 levels in SiHa cells incubated at
21% O2 or at 1% O2 for 4 h and subsequently treated with/without cycloheximide (CHX, 10 µg/mL) for
up to 30 min. Western blot analyses of p53. GAPDH served as a loading control (S, short exposure;
L, long exposure). (C) The grayscale of p53 shown in (B) was quantified using the ImageJ software.
The relative grayscale values of p53 normalized to the respective (21% O2 or 1% O2) 0 time point were
plotted on an x/y diagram with log (2)-transformed x-axis to visualize the protein half-life. The median
protein half-lives (t1/2) of normoxic (n) and hypoxic (h) samples are given. Error bars are SD, and n = 3
independent experiments. (D) p53 western blot analyses. SiHa cells were incubated at 21% O2 or at 1%
O2 for 0 h or 16 h prior to the treatment with 10 µM MG132. Total protein was extracted after 24 h.
GAPDH served as a loading control. (E) SiHa and CaSki cells were cultivated for 24 h under normoxia
(21% O2) or hypoxia (1% O2) in either the absence (−) or the presence (+) of 50 µM chloroquine (CQ) or
0.5 µM Bafilomycin A1 (Baf A1). Western blot analyses of p53 and p62 were performed. GAPDH served
again as a loading control.



Int. J. Mol. Sci. 2020, 21, 9533 6 of 17

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 17 

 

2.3. Hypoxic HPV16-Positive Cancer Cells Do Not Enter Senescence 

Repression of E6/E7 oncogenes in HPV-positive cells results in the rapid induction of cellular 

senescence [48], and p53 is a key regulator in this response [27,49,50]. In agreement with previous 

results [21], the RNAi-mediated reduction of E6/E7 transcripts by 50% under normoxia (Figure 3A, 

left) led to a massive augmentation of p53 levels (Figure S1A) as well as strong SA-β-Gal staining and 

the appearance of typical morphological signs of senescence, such as cellular enlargement and 

flattening [51] (Figure 3A, right). This is, however, in contrast to cells where E6/E7 expression was 

reduced in response to hypoxia (Figure 1A), indicating that senescence was circumvented (Figures 

3B and S2A). 

 

Figure 3. Effect of E6/E7 repression on senescence induction under normoxia and hypoxia. (A) SiHa 

cells were cultured at 21% O2, and endogenous HPV16 E6/E7 expression was silenced by RNAi. (A, 
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Figure 3. Effect of E6/E7 repression on senescence induction under normoxia and hypoxia. (A) SiHa
cells were cultured at 21% O2, and endogenous HPV16 E6/E7 expression was silenced by RNAi. (A,
left) qPCR analysis of HPV16 E6/E7 mRNA levels following transfection with scrambled siRNA (si-scr)
or siRNA directed against HPV16 E6/E7 (si-E6/E7). The 18S rRNA served as internal control. Error bars
indicate the SD of three independent experiments. The scr value of HPV16 E6/E7 expression was set
as a control for the calculation of significant differences (two-tailed Student’s t-test was employed
** p < 0.01). (A, right) Cells were stained for the senescence marker SA-β-Gal expression at 72 h after
siRNA transfection. Scale bar: 300 µm. (B) SiHa cells were cultured under normoxia (21% O2) or
hypoxia (1% O2). After 24 h or 72 h, respectively, cells were stained for the expression of SA-β-Gal. Scale
bar: 300 µm. (C) qPCR analysis of senescence-associated genes in SiHa cells. HPV16 E6/E7 expression
was silenced by RNAi under normoxia (si-16E6/E7), and total RNA was extracted 48 h after transfection.
In parallel, cells were cultured for the indicated periods under normoxia (21% O2) or hypoxia (1% O2), and
total RNA was extracted after different time intervals as indicated. The 18S rRNA served as internal control.
Error bars indicate the SD of three independent experiments. The si-scramble group or the 0 h hypoxia
value of gene expression was arbitrarily set to 1.0 in order to calculate significant differences (two-tailed
Student’s t-test was employed *** p < 0.001; ** p < 0.01, * p < 0.05 and ns, no significant difference).
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Apart from apoptosis, activation of the p53 signaling pathway is a classical response leading to
senescence when cellular stresses such as hypoxia or ionizing radiation occur. Senescence induction
requires the expression of particular p53 target genes, such as PML and Yippee-like-3 (YPEL3) [50].

We therefore analyzed RNA levels of these target genes to assess whether they also display a
biphasic regulation pattern, as seen for p53. In SiHa cells, the transcript levels of PML and YPEL3
indeed decreased under hypoxia and showed only a recovery after prolonged oxygen depletion
(Figure 3C). In hypoxic CaSki cells, PML mRNA levels also declined continuously, whereas the levels of
YPEL3 showed a response that mirrored p53 protein dynamics (Figure S2B). These results demonstrate
that p53-dependent senescence genes such as PML and YPEL3 were not activated during the first 24 h
of hypoxia.

2.4. p53-Responsive Genes Associated with Autophagy Are Induced in Hypoxic Cells

Since hypoxic HPV16-positive cancer cells appear to evade senescence, we hypothesized that the
biphasic regulation of p53 under hypoxia has diverse effects on downstream pathways within the p53
network. Based on this assumption, additional p53-responsive genes known to be involved in different
functional pathways and cellular outcomes were selected [52]. Notably, there was a subset of genes that
showed an expression pattern consistent with the biphasic regulation observed in p53 protein levels.
This group encompassed genes encoding apoptotic proteins (e.g., BAX and PUMA) [52] as well as
genes involved in DNA repair (e.g., XPC) [53] (Figure 4A,B and Figure S3A,B left). GADD45A, which is
involved in cell cycle regulation, DNA nucleotide excision repair, and epigenetic modification [54,55],
showed a slight increase in SiHa and a two-fold increase in CaSki cells at 24 h of hypoxia (Figure 4B
right and Figure S3B right). After prolonged hypoxia, however, GADD45A was strongly increased at
48 h in SiHa cells, whereas, in CaSki cells, the peak of mRNA levels was at 24 h and then decreased
after further hypoxic incubation.

In another set, two p53-responsive genes promoting autophagy (DRAM1 and BNIP3) [56,57] were
induced by hypoxia. While the mRNA profile of DRAM1 closely correlated with the levels of p53 with
an initial decrease followed by a strong increase at 48 h of hypoxia, BNIP3 already displayed a ten-fold
upregulation at 24 h of hypoxia in SiHa cells. Furthermore, the mRNA levels of TIGAR, a gene related
to the repression of autophagy [58], decreased at the same time as p53 protein levels in both SiHa
and CaSki cells (Figure 4C and Figure S3C). This indicates that autophagy is induced by hypoxia in
HPV16-positive cancer cells in the absence of p53.
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Figure 4. Transcript levels of p53-responsive genes in normoxic and hypoxic SiHa cells. HPV16 E6/E7
expression was silenced by RNAi under normoxia (si-16E6E7), and total RNA was extracted 48 h
after transfection. In parallel, cells were cultured under normoxia (21% O2) or hypoxia (1% O2),
and total RNA was extracted as indicated. qPCR analyses of BAX and PUMA (panel A); XPC and
GADD45A (panel B) and DRAM1, BNIP3, and TIGAR (panel C) transcripts. The 18S rRNA served
as internal control for normalization. Error bars indicate the SD of three independent experiments.
The si-scramble group or 0 h hypoxia value of gene expression was set to 1.0 as a control to calculate
significant differences (two-tailed Student’s t-test was employed, *** p < 0.001; ** p < 0.01, * p < 0.05 and
ns, no significant difference).

2.5. The Evasion of Hypoxic HPV16-Positive Cancer Cells from Senescence Can Be Attributed to the Induction
of Autophagy

Autophagy is essential to suppress cellular stress and to induce a dormant state in cells by
preventing senescence [59,60]. Hypoxia-induced autophagy is further linked to hypoxia tolerance and
tumor cell survival [61]. These considerations raise the possibility that autophagy is involved in the
evasion of hypoxic cancer cells from senescence. In fact, as depicted in Figure 5A, hypoxia induced
autophagy in HPV16-positive cancer cells, which showed a transient increase of LC3-II and a reduction
of p62, two markers of autophagy. In order to further assess the role of p53 in the context of autophagy
in our experimental system, we ectopically expressed wild-type p53 in cells prior to hypoxic incubation.
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As shown in Figure 5B, autophagy was readily induced in untransfected control cells, since p62 was
decreased. In contrast, in cells where p53 was reconstituted, p62 remained stable. This indicates that
autophagy was inhibited by ectopic p53 expression.
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Figure 5. Protein levels of LC3-II, p62, and p53 in hypoxic cells and analyses of cellular senescence
upon treatment with autophagy inhibitor CQ. (A) Western blot analyses of SiHa cells using antibodies
against LC3-II, p62, and p53. After cell culturing as indicated at 1% O2, total protein was extracted.
GAPDH served as a loading control. (B) Cells were transfected with an empty vector (control) or a wild
type p53 expression plasmid. Subsequently, 48 h post transfection, cells were cultured under normoxia
(21% O2) or hypoxia (1% O2) for 24 h prior to total protein extraction. Western blot analyses using
antibodies against p53 and p62 were performed. GAPDH served as a loading control. (C) SiHa cells
were cultured for 48 h under normoxia (21% O2) or hypoxia (1% O2), in either the absence (top) or the
presence (bottom) of 50 µM chloroquine (CQ). Subsequently, cells were passaged and cultivated at 21%
oxygen for additional 72 h. Cells were stained for the senescence marker SA-β-Gal. Scale bar: 300 µm.

To examine whether inhibition of autophagy induces senescence, HPV16-positive cancer cells
were incubated with the autophagy inhibitor chloroquine (CQ). Since CQ is known to inhibit the
activity of beta-galactosidase [62], we were not able to detect strong SA-β-Gal staining in this assay.
We did, however, observe the characteristic morphological signs of senescence (e.g., cell enlargement
and flattening) in the presence of CQ as well as the apparent inability to grow when switched back to
normoxic conditions (Figure 5C and Figure S4), which strongly suggests a senescent state. Unlike in
SiHa cells, where CQ had no apparent growth inhibitory effect under normoxia (Figure 5C), CQ showed
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strong inhibitory effects on CaSki cells already under normoxia that was further pronounced under
hypoxic conditions (Figure S4). This indicates a different dependence of these cell lines on autophagy
or lysosomal degradation of p53 [63,64].

In summary and based on these findings, biphasic p53 regulation under hypoxia along with the
respective downstream genes represents a survival and protective strategy of HPV16-positive cervical
cancer cells where autophagy is required at prolonged hypoxia to circumvent apoptosis and senescence
(Figure 6).
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Figure 6. Schematic overview of the proposed biphasic regulation of p53 under hypoxia.
Under normoxia (left panel), depletion of E6 causes an immediate accumulation of p53 followed
by the induction of senescence or apoptosis. Hypoxic conditions for 24 h (center panel) lead to the
reduction of E6 as well as p53, which is diminished by lysosomal degradation. Consequently, cells do
not enter apoptosis or senescence. Autophagy, which is normally inhibited in the presence of p53,
is induced under hypoxic conditions, and hypoxia-related gene expression takes place. Inhibition of
p53 degradation by chloroquine (CQ) results in an irreversible growth arrest of cells. Upon prolonged
hypoxia (right panel), p53 is no longer degraded, and p53-dependent as well as autophagy-related genes
are expressed, allowing a maintenance of cellular homeostasis, proper autophagic flux, and inhibition
of senescence, even in the presence of p53. When autophagy is inhibited by CQ under these conditions,
homeostasis is disturbed resulting subsequently in the induction of senescence. Black arrows indicate
a translocation of p53. Red arrows represent the induction of a cellular process whereas blue lines
represent their repression, respectively.

3. Discussion

A microenvironment with reduced or low oxygen availability affects all types of cells on their way
to malignancy [65]. Even in transformed cells, hypoxia selects for phenotypes that allow the survival
of progenies [66]. Genome sequencing data recently demonstrated divergent mutational processes of
normoxic versus hypoxic tumors [67]. In any case, the key protein that is always a central decisive hub
within the cellular network is p53, therefore justifying its role as “guardian of the cell” [68].

In contrast to most human tumors, HPV-positive premalignant and malignant cells still harbor
wild type p53 whose availability, however, is diminished by HPV E6 oncoprotein-mediated proteasomal
degradation [31,32]. Hypoxic HPV-positive cancer cells can enter a dormant state, characterized by
evasion of cellular senescence [21] and resistance to cell death [22]. However, the role of p53 at different
time intervals during and after hypoxia and its function in the decision determining which cellular
phenotype ultimately manifests and accumulate still remains elusive.

Based on this, it was therefore intriguing to see that p53 showed a biphasic regulation in
HPV16-positive cancer cells. Although E6/E7 oncogene expression was reduced early after hypoxic
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incubation, p53 did not instantly recover within 24 h, as was the case when viral gene expression was
impaired after specific siRNA delivery (Figure S1A). Instead, in spite of stably reduced TP53 mRNA
levels after 24 h of hypoxia, p53 protein re-appeared delayed upon prolonged oxygen deprivation
(starting at 48 h) (Figure 1 and Figure S1A), raising the question about the selective benefit for the cells
where such a mechanism occurred.

Considering multi-step carcinogenesis as an evolutionary process, there are several rounds of
selection that certainly strongly affect all aspects of cellular homeostasis (transcriptome, proteome,
and epigenetic changes, respectively) of both premalignant and fully transformed cells simply to allow
adaptation to different microenvironmental constraints [65]. Hence, hypoxic changes can select for
progeny cells that acquire, for instance, a higher resistance toward radiation therapy and antineoplastic
drugs [69].

Indeed, unlike in response to E6/E7 depletion under normoxia, hypoxic cells in which the levels
of oncogene mRNA were similarly reduced did not enter senescence (Figure 3A,B and Figure S2A),
since p53 and crucial p53-responsive genes remained reduced (Figure 3C and Figure S2B). Hence,
speaking in evolutionary terms, biphasic regulation of p53 allows cell survival by preventing apoptosis
or senescence.

Mechanistically, early hypoxia causes a decrease in p53 half-life that could not be attributed to
disproportionate proteasomal degradation or autophagy, since specific inhibition of both pathways
was insufficient to reconstitute p53 (Figure 2 and Figure S1C–F). Only treatment with the lysosome
inhibitor chloroquine (CQ) fully recovered p53 levels. Notably, hypoxia can induce a time-dependent
redistribution of lysosomes within the cells as well as the induction of lysosomal proteins [70,71].
This might result in a shift in proteins subjected to lysosomal degradation.

Although p53 was not degraded by autophagy (Figure 2E and Figure S1F), its depletion coincided
with the induction of autophagy-related genes (Figure 4C and Figure S3C). Moreover, the fact that
treatment with CQ or ectopic expression of p53 inhibited autophagy (Figures 2E and 5B) and led
to an irreversible growth arrest of hypoxic cells (Figure 5C and Figure S4) further substantiates the
key role of p53 in these processes. The loss of p53 in chronically starved cancer cells can impair
autophagic flux and ultimately result in apoptosis [72,73]. A proper oscillation of autophagic factors is
therefore critical for cell survival and might additionally facilitate the loss of apoptosis-related gene
expression. Hence, continued quantitative reduction of p53 after prolonged hypoxia might lead to an
excessive autophagic fluctuation [74]. Conversely, restoration of p53 after prolonged hypoxia could be
another strategy of HPV16-positive cancer cells to enhance cell survival by maintaining advantageous
autophagic homeostasis and adjusting the rate of autophagy to a changing microenvironment under
prolonged hypoxia.

Previous studies already showed that hypoxia readily induces autophagy in cancer cells, but not
all cancers are susceptible to the inhibition of this process, making a generalized cancer treatment
strategy impossible [75]. We also observed certain differences between CaSki and SiHa cells with
respect to the onset of p53 depletion and its recurrence (Figure 1C), p53-responsive gene profiles
(Figure 4 and Figure S3), as well as the cells’ susceptibility to CQ under only hypoxic (SiHa, Figure 5C)
or hypoxic and normoxic conditions (CaSki, Figure S2A). This might be due to differences in the
HPV16 copy number and integration sites [76] or simply—as explained by the current discourse of
personalized medicine—by the individual genetic background of the cancer patients the cells derived
from [77].

Based on our findings, we propose the following model for the hypoxia-induced regulation of p53
and its consequences for the cell’s fate (Figure 6). Under normoxic conditions, the siRNA-mediated
knock-down of E6/E7 caused a rapid and strong recovery of p53, resulting in the induction of apoptosis
or senescence in HPV16-positive cells. Within the first 24 h of hypoxia, however, E6/E7 expression was
repressed, p53 was subjected to lysosomal degradation, and p53-responsive genes associated with
senescence and apoptosis were down-regulated, while autophagy-related factors were induced in a
p53-dependent manner. Treatment with chloroquine overcame the cells’ resistance to senescence and
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caused an irreversible growth arrest in hypoxic cells. After prolonged hypoxia, p53 protein levels fully
recovered similar to oncogene-depleted levels under normoxia by a thus far unidentified mechanism
that did not cause cell death. Nonetheless, targeted perturbation of the p53/autophagy axis may pave
the way for novel pharmacological strategies to prevent cancer recurrence in poorly oxygenated regions
of HPV-positive cancers.

4. Materials and Methods

4.1. Cell Culture

HPV16-positive cervical carcinoma cell lines CaSki and SiHa were grown in Dulbecco’s Modified
Eagle’s Medium (Sigma-Aldrich, Taufkirchen, Germany) containing 10% fetal calf serum (Thermo
Fisher Scientific, Dreieich, Germany). The authenticity of the cells was confirmed by an in-house
authentication service platform. PCR was applied to exclude possible contaminations with Mycoplasma
spec. Cells were cultured under normoxia (21% O2, 5% CO2) or hypoxia (1% O2, 5% CO2).

4.2. Treatment of Cells with Chemical Compounds

Cells were treated with the following chemicals at 21% O2 or at 1% O2: bafilomycin A1 (Thermo
Fisher Scientific, Dreieich, Germany); chloroquine and cycloheximide (Sigma-Aldrich, Taufkirchen,
Germany); and MG132 (Merck, Darmstadt, Germany). Bafilomycin A1, cycloheximide, and MG132
were dissolved in DMSO, chloroquine was dissolved in H2O, and stock solutions were stored at −20 ◦C.
As control, cells were incubated with the same volume of the respective solvent. The compounds’ final
concentrations are mentioned in the figure legends.

4.3. siRNA Transfection

For siRNA-mediated knockdown of genes, cells were transfected using Lipofectamine 2000
Transfection Reagent (Thermo Fisher Scientific, Dreieich, Germany) according to the manufacturer’s
instructions. The siRNA oligonucleotides were purchased from Thermo Fisher Scientific: Silencer®

Select Pre-designed siRNA Atg12 (5′-GCAGCUUCCUACUUCAAUUTT-3′) and Silencer® Select
Pre-designed siRNA SQSTM1/p62 (5′-CUUCCGAAUCUACAUUAAATT-3′). A siRNA oligonucleotide
pool was used to block HPV16 E6/E7 expression as described previously [21]; scrambled control siRNA
(Silencer® Negative Control #1 siRNA, Cat#: AM4611) was purchased from Thermo Fisher Scientific,
Dreieich, Germany. At 48 h post transfection, the cells were cultured for 0–24 h at 21% O2 or at 1% O2.
After respective incubation periods, total protein or RNA was extracted as described below.

4.4. Ectopic Expression of p53

The 1.0 × 106 SiHa or CaSki cells were seeded in 6 cm cell culture dishes and incubated overnight.
Cells were transfected using Turbofect in vitro Transfection Reagent (Thermo Fisher Scientific, Dreieich,
Germany). Then, 1 µg of the respective expression plasmids (pPK-CMV-E3 empty vector or pPK-p53
wild type) were diluted in 300 µL of Opti-MEM (Thermo Fisher Scientific, Dreieich, Germany) and
4 µL of Turbofect mixed by vortexing. After incubation for 15 min at room temperature, the mix was
added to the culture dishes. At 48 h post transfection, the cells were cultured for 0–24 h at 21% O2 or at
1% O2. Total protein was extracted as described below.

4.5. Protein Extraction and Western Blotting

Cells were washed once with 1x phosphate buffered saline (PBS). CSKI buffer (10 mM
piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES), 100 mM NaCl, 1 mM Ethylenediaminetetraacetic
acid (EDTA), 300 mM Sucrose, 1 mM MgCl2, and 0.5% Triton® X-100, pH 6.8) freshly supplemented with
1× complete protease inhibitor cocktail (Roche, Mannheim, Germany), 1 mM dithiothreitol (DTT), 1 µM
MG132, 1 mM NaF, and 0.2 mM Na3VO4 was added to the cells, which were scraped off and collected.
The suspensions were incubated on ice for 30 min and mixed every 10 min. The lysates were centrifuged
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for 30 min at 13,000 rpm and 4 ◦C. Supernatants were quantified using the Bradford Assay Reagent
(Bio-Rad Laboratories GmbH, Feldkirchen, Germany). In total, 40–80 µg of denatured proteins were
used for western blotting. After transfer, filters were incubated with the following primary antibodies:
anti-p53 (sc-126, Santa Cruz Biotechnology, Heidelberg, Germany); anti-Atg12 (4180, Cell Signaling
Technology, Frankfurt am Main, Germany); anti-SQSTM1/p62 (ab56416, abcam, Berlin, Germany);
anti-GAPDH (sc-25778, Santa Cruz Biotechnology, Heidelberg, Germany); anti-HIF-1α (610959,
BD Biosciences, Heidelberg, Germany) [21]; and anti-LC3A (NB100-2331, Novus Biologicals, Wiesbaden,
Germany). The following HRP-conjugated secondary antibodies were used: goat-anti mouse IgG
(H + L) and goat-anti rabbit IgG (H + L) (115-035-003, Jackson ImmunoResearch, Camebridgeshire,
United Kingdom). Immunoblots shown in this manuscript depict representative images of three
independent experiments, respectively.

4.6. RNA Extraction and Reverse Transcription

RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The DNA digestion was performed using the RNase-Free DNase Set
(Qiagen, Hilden, Germany). RNA concentrations were determined photometrically, and 1 µg of
RNA was reverse transcribed into cDNA using RevertAid Reverse transcriptase (Thermo Fisher
Scientific, Dreieich, Germany) and random primers (Roche, Mannheim, Germany) according to the
manufacturer’s protocol. A 1:5 dilution of the generated cDNA was used for PCR analyses.

4.7. Quantitative Real-Time PCR Analyses

Quantitative real-time PCR (qPCR) was performed with the CFX96 Real-Time PCR Detection
System (Bio-Rad Laboratories GmbH, Feldkirchen, Germany) using iTaq Universal SYBR Green
Supermix (Bio-Rad Laboratories GmbH, Feldkirchen, Germany) according to the manufacturer’s
instructions. The transcript levels of 18S rRNA were assessed to allow normalization of samples.
A complete list of primer sequences can be found in Table S1.

4.8. Cycloheximide (CHX) Treatment under Normoxic and Hypoxic Conditions

Cells were incubated either at 21% O2 or at 1% O2 for 4 h, treated with cycloheximide (CHX,
10 µg/mL), and harvested after 0, 10, 20, and 30 min for western blotting as described above.

4.9. Senescence Assays

Cells were fixed and stained for SA-β-Gal activity as described [21].

4.10. Statistical Analysis

Statistical significance was determined by the two-tailed Student’s t test. p-values of ≤ 0.05 (*),
≤0.01 (**), or ≤0.001 (***) were considered statistically significant.

Supplementary Materials: Can be found at http://www.mdpi.com/1422-0067/21/24/9533/s1.
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