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ABSTRACT

SNPsyn (http://snpsyn.biolab.si) is an interactive
software tool for the discovery of synergistic pairs
of single nucleotide polymorphisms (SNPs) from
large genome-wide case-control association studies
(GWAS) data on complex diseases. Synergy among
SNPs is estimated using an information-theoretic
approach called interaction analysis. SNPsyn is
both a stand-alone C++/Flash application and a
web server. The computationally intensive part is
implemented in C++ and can run in parallel on a
dedicated cluster or grid. The graphical user inter-
face is written in Adobe Flash Builder 4 and can
run in most web browsers or as a stand-alone ap-
plication. The SNPsyn web server hosts the Flash
application, receives GWAS data submissions,
invokes the interaction analysis and serves result
files. The user can explore details on identified syn-
ergistic pairs of SNPs, perform gene set enrichment
analysis and interact with the constructed SNP
synergy network.

INTRODUCTION

Current genome-wide case-control association studies
(GWAS) focus on identifying a set of single nucleotide
polymorphisms (SNPs) that are most associated with the
disease under study. While individual SNPs are important
indicators of main genetic components of complex
diseases, they explain only a fraction of the genetic risk
(1). Because of the low or at best modest information
content of individual SNPs, it has been suggested (2)
that uncovering synergy among genes may improve the
predictive accuracy of models. A recent report by Gerke
et al. (3) also suggests that synergistic combinations may
carry information about the phenotype that cannot be
discovered from observations of individual SNPs alone.

An unequivocal proof of existence of SNP synergy
would push the modeling efforts from trying to add
effects of individual most informative SNPs towards
models that include non-additive SNP interactions, in
this way providing important insight into complex
diseases and underlying molecular mechanisms.

Various approaches to detect synergy have been
proposed, which is commonly referred to as positive inter-
action (4), k-way interaction information (5), epistasis
(6,7) or SNP synergy (8). In this article, we use the term
‘synergy’ and present a software tool that implements an
information-theoretic approach to synergistic interaction
analysis (4,5,8). Contrary to other approaches, interaction
analysis does not require the user to specify which gene
interaction models to test, but instead it discovers them
from data. It assumes an additive model, where the
expected amount of information on the phenotype for a
combination of SNPs is equal to the sum of information
of individual SNPs. Synergy is said to occur when a com-
bination carries more information than the sum of infor-
mation provided by individual SNPs (4,8). This difference
between the ‘whole’ and ‘sum of parts’ cannot be gained
from observations of individual SNPs alone, but only by
simultaneously observing a combination of SNPs.

Various degrees of synergy are associated with different
SNP pair models (9). An extreme case is when the
outcome is an XOR function of two SNPs. There, each
individual SNP does not carry any information on the
phenotype, while a simultaneous consideration of the
two SNPs produces a perfect association with disease.
This extreme case illustrates that, by definition, it is not
possible to predict which SNPs will form a synergistic
combination by observing individual SNPs alone. Two
SNPs must first be combined into a new feature, and
only then can the total information content for that par-
ticular combination be computed.

Consequently, to discover a set of best-interacting SNPs
we need to test exhaustively all possible combinations.
The number of SNP combinations grows exponentially
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with the order of interaction (i.e. number of SNPs in com-
bination) and the number of SNPs in data. Given N SNPs,
there are N(N — 1)/2 pairs and N(N — 1)(N — 2)/6 triplets.
Exploring higher order combinations of SNPs may be
desired, but is computationally intractable with data sets
that include more than few ten thousands of SNPs.
Current GWAS data include over one million SNPs but
typically do not include more than few thousands cases
and controls. Low sample-to-feature ratio, which de-
creases exponentially with number of SNPs, is another
limiting factor. It prevents obtaining statistically signifi-
cant results, increases the opportunity to over-fit and
thus limits SNPsyn’s exploration to pairs of SNPs.
Heuristic, non-exhaustive search require shorter run
times, but cannot guarantee the detection of all synergistic
pairs.

METHODS AND IMPLEMENTATION

SNPsyn aims to optimize the computational time and at
the same time provides an interaction-rich graphical user
interface. The computationally intensive data analysis is
implemented in C++. This computational library imple-
ments functions for calculating mutual information and
information gain of individual and pairs of SNPs and
synergy of pairs of SNPs. The library also includes func-
tions for random data sampling and shuffling, estimation
of probability distribution, calculation of false discovery
rate [FDR, (10)] and functions for the subdivision of the
analysis into independent subtasks that can run in parallel.
Example scripts to perform the analysis in parallel on a
cluster or grid are included in the distribution package.
SNPsyn’s C++ library can be used to build custom appli-
cations for interaction analysis. A command-line interface
to the library is provided, and is actually used by
SNPsyn’s web server to perform interaction analysis.

Results of interaction analysis are presented to the user
through an interactive web application with a graphical
user interface (GUI). The interface has a desktop-like feel
and was designed using the Adobe’s Flash Builder 4 de-
velopment framework. The GUI offers a series of effective
visualizations for explorative analysis of results generated
by the computationally intensive part of the system. The
GUI runs as a web application inside web browsers that
supports Adobe’s Flash player. It sends analysis requests
to SNPsyn server and renders the results of analysis.
We also provide a stand-alone version of the application
that runs in Adobes AIR runtime environment and is
completely independent from the web server.

Interaction analysis

Synergy (Syn) of a pair of SNPs (M; and M,) is the
difference between the information on the phenotype
P encoded in the newly derived feature (defined by
cross-product function f) and the sum of information
encoded by the two individual features (4,8):

Syn(My, M| P)
=I(f(My, M>); P) — [I(M; P)+ I(My; P)]
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Mutual information I(M; P), also called information gain,
is based on calculations of entropy and corresponds to the
level of association (i.e. shared information) between
marker M and phenotype P. Given the value of marker
M, mutual information estimates how well can we predict
the value of phenotype P. The new feature f{M,, M,) may
be derived by Cartesian product of values of SNPs M,
and M, or by other methods for feature construction,
e.g. Kramers method (11) or constructive induction by
feature decomposition (12). For reasons of simplicity
and speed, SNPsyn uses Cartesian product. Pairs of
SNPs with positive synergy (Syn > 0) are called synergis-
tic. Negative synergy (Syn <0) indicates that the two
SNPs carry redundant information, an effect typically
observed among highly correlated SNPs. For further
details on interaction analysis see Jakulin and Bratko (4)
and a review by Anastassiou (8).

Compact data format

GWAS data are usually encoded in large human-readable
text files exceeding one GB in size, which is not suitable
when data is read many times by concurrently running
processes on a cluster. SNPsyn accepts GWAS data in
various text formats, such as PLINK’s ped, tped (13) or
tab-delimited files, where each row holds genotype infor-
mation and other annotation on a sample. For reasons of
speed, the data is first transformed into SNPsyn’s compact
binary format (see web site for detailed specification).
The format is similar to PLINK’s Binary PED file and
allows up to 255 different genotype values for each
marker (PLINK can encode only four values: three for
genotype, one for missing value). This will allow future
extensions of SNPsyn to work with other kinds of
markers, such as haplotypes and structural variants data.

SNP-to-gene mapping and gene set enrichment analysis

SNPs are mapped to genes using the mapping in NCBI’s
dbSNP database. Gene Ontology (GO) term enrichment
analysis (14) requires two sets of genes. The ‘cluster’ set is
obtained by mapping the user-selected SNPs to genes.
The ‘reference’ set is obtained by mapping all SNPs in
the data to genes. SNPs that cannot be mapped to genes
are excluded from enrichment analysis. SNPsyn uses
the hypergeometric distribution to compute the associated
significance (P-values) and visualizes the results similarly
as in GOAT (15). Currently, only human SNPs can be
analyzed. SNPsyn’s documentation incudes examples on
how to prepare a local installation of the software for
mouse or other species.

Permutation analysis and assessment of significance

The large number of tests performed when searching for
synergy demands a strict assessment of the significance of
results. Because the goal is to select SNP pairs with both
high information gain and high synergy, we define the null
distribution of (Z, Syn) scores by randomly shuffling data a
number of times (e.g. 100 times, see Supplementary Data),
each time computing the scores for all pairs of SNPs. Two
random data shuffling approaches are implemented in
SNPsyn: permute phenotype labels and permute
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48 (out of 200) SNPs can be mapped into 46 genes.

Figure 1. Data preparation. (a) Grouping of samples into cases and controls. (b) Selection of SNPs for analysis may be aided with Gene Ontology

browser.

genotype data across samples (default). The significance of
a given SNP pair with score (/, Syn) is determined from
the null distribution by calculating N,./N.u, where Ng, is
the number of equally or better scored pairs obtained on
random data (/,,;,>1 and Syn,,;> Syn) and N, is the
number of all tests performed on randomly permuted
data. Obtained significance scores are corrected for
multiple testing using the FDR method described by
Benjamini and Yekutieli (10).

Computational requirements and restrictions on search

Exhaustive search for SNP synergies requires long pro-
cessing times and may identify possibly large number of
candidate synergistic SNP pairs. Best 5000 SNP pairs
with highest synergy and 5000 SNP pairs with highest in-
formation gain are retained and presented to the user for
explorative analysis.

The publicly available SNPsyn web server limits
exhaustive search to 22000 SNPs (242M pairs, which
require Sh of CPU time). These limits are imposed
because of the associated high computational costs and
the desire to offer this service to a larger number of
researches. Although no fast and exact solution is
known for this search problem—the XOR SNP inter-
action model being an example where all heuristics fail—
some theoretical studies have demonstrated (16) the
applicability of two-stage heuristic approaches. When
more than 22000 SNPs are given on SNPsyn’s input, the
user must choose between two heuristics: ‘synergy among
main effects’ or ‘approximate screening of all pairs’. In the
former, SNPsyn examines all pairs among 22000 SNPs
with highest information gain. In the latter, closely follow-
ing an idea implemented in BOOST (17), an upper ap-
proximate bound on Syn is used to quickly screen all

pairs. The analysis is then performed on a smaller subset
of best candidate pairs. See Supplementary Data for
details and comparison of the two heuristics.

If needed, these search restrictions can be lifted in
a local installation on the user’s computer, dedicated
cluster or grid. Instructions how to set up a local
SNPsyn server are provided on the web site. Another pos-
sibility is to use the stand-alone Adobe AIR version of
SNPsyn to prepare the data for analysis and then use
the command-line utility to run the analysis locally.

RESULTS

SNPsyn provides a user-friendly interactive graphical
interface that supports all steps in the analysis of GWAS
data: data preparation, interaction analysis and explor-
ation of results. We briefly describe each of these steps
below.

Data preparation and submission

SNPsyn can read GWAS data in PLINK’s ped and tped
formats and a tab-delimited format. PLINK’s formats
store assignment of samples into cases and controls.
When loading data from tab-delimited files, the user
must select an annotation column that is used to assign
samples into groups. Groups are usually defined based on
the phenotype (e.g. classes or subclasses of a disease with
a common genetic component, etc.). Samples from each
group can be assigned into either the case or control class.
This group-to-class mapping allows easy exploration
of synergy in specific subgroups of cases and controls
(Figure la).

SNPsyn implements two approaches to SNP selection
for synergy exploration. The hypothesis-free de novo
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Figure 2. Exploration of results. (a) I versus Syn scatterplots. (b) List of SNPs selected in (a). (¢) Gene Ontology enrichment analysis of SNP pairs
selected in (b). (d) Synergy network from SNP pairs selected in (b). (e) Details on a selected pair. (f) Results of individual SNP analysis.

whole genome approach, where all SNPs are used, and the
hypothesis-driven investigation, where a user-defined,
knowledge-based selection of a subset of SNPs is
explored. In the latter approach the user can focus on a
more specific biological question, drastically reducing the
number of candidate SNP pairs. The user can hand-pick
individual SNPs or subsets of SNPs associated with genes
in specific, biologically relevant annotation terms in
Gene Ontology (Figure 1b).

Data is then encoded in SNPsyn’s compact binary
format file and is submitted to SNPsyn web server for
analysis. The user may also choose to store the data
locally and analyze it on local computational facilities.

Visual exploration of results

The results of data analysis include a list of single SNPs
with highest information gain /(M;; P), a list of SNP pairs
with highest information gain /(f(M,, M;); P) and a list of
SNP pairs with highest synergy Syn(f(M;, MJ-)\P).
Calculated scores for SNP pairs on true data are plotted
in a I versus Syn scatterplot (blue dots, Figure 2a), with
the superimposed null-distribution (red dots, Figure 2a).
Distributions of Syn and I are plotted in histograms on the
sides of the scatterplot. Pairs of SNPs can be selected by
user-defined minimum synergy (Syn), information gain (/),
synergy ratio (Syn/I) and FDR. The scatterplot
region defined by these constraints is highlighted in
blue and associated SNP pairs are displayed in a table
(Figure 2b). There, the user can bookmark (star)
favorite SNP pairs for latter access in a separate
window. Starred SNPs are included in the detailed report.
Even after filtering by information gain, synergy and
significance scores, the list of SNP pairs with highest
synergy can be quite extensive and may include a large
number of false positives. Instead of just examining

details on individual pairs (shown in Figure 2e), one
may benefit from exploring and reasoning on
commonalities among genes associated with best-ranked
pairs. Links to detailed information on SNP and gene
annotation at NCBI and HapMap (18) are provided
throughout the interface wherever a gene or SNP is
shown. Additionally, the user can perform Gene
Ontology (19) term enrichment analysis (Figure 2c¢) and
visualize an interaction network (Figure 2d).

Enriched GO terms are drawn in a tree plot browser
(Figure 2c). Each row represent an enriched term and
provides details on the number of matching genes (and
SNPs) in the cluster and reference sets, P-value, FDR
and fold enrichment. Genes associated with user-selected
GO-terms are rendered in green in the interaction
network.

SNPs displayed in the interaction network (Figure 2d)
are connected if the pair was selected by the user in
Figure 2b. Three layouts of the network are available to
survey the overall structure and quickly identify
commonalities among interacting genes: network nodes
(SNPs) are spread out uniformly and connected nodes
tend to be displayed closer to each other (‘basic’ layout),
SNPs from same gene are displayed closer to each other
(‘group by gene’), SNPs from same chromosome are
shown closer to each other (‘group by chromosome’).
Network edges may additionally include labels for Syn
or I scores of a corresponding pair. A sliding bar can be
used to reduce or expand the network by selecting the
number of best-ranked pairs to draw. When a node is
selected on the network, other nodes in the network that
are either from the same gene or the same chromosome get
highlighted in red. This visual cue allows to quickly
identify groups of similar SNPs. Details on the group of
highlighted SNPs can be displayed in a separate window.
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Besides SNP synergy, SNPsyn can also display the
results of analysis of individual SNPs (Figure 2f). These
are available by clicking on the Single SNPs button
(Figure 2, lower left). Detailed results on individual
SNPs are displayed in a separate window. By moving a
slide bar below the distribution of information gain scores,
the user can select the corresponding most informative
SNPs to be displayed in the table. Individual SNPs can
be marked with a star for latter access and are included in
the report.

A report on the results of the analysis including the
current state of the exploration, with details on best-rated
individual SNPs and pairs of SNPs, can be generated and
downloaded at any time during exploration.

Comparison with other tools

SNPsyn addresses a type of genome-wide analysis of SNP
interactions similar to those implemented in PLINK (13),
MDR (7), HFCC (20), PLR (21), BEAM (22), etc.
Various existing methods and tools are reviewed in
Cordell (23). Two main features differentiate SNPsyns
from other tools. The first one is its application of infor-
mation theory to determine synergy. This solves a critical
problem in dealing with main effect SNPs that afflicts
some of the mentioned tools (MDR, HFCC), which
tend to rank highly SNP pairs with low synergy but high
information content that is due to a highly informative
SNP in the pair. To compensate for this, ad hoc filters
are applied, e.g. main effect SNPs are removed from the
analysis, potentially missing a subset of synergistic pairs.
The information-theoretic approach implemented by
SNPsyn elegantly solves this by directly calculating the
amount of synergy. The second distinctive feature of
SNPsyns is its highly interactive, GUI that supports all
steps of an explorative analysis of synergy and reveals a
structure of the discovered gene interaction network.

CONCLUSION

With increased availability of the experimental technol-
ogy, decrease of its costs, and emerging techniques
such as high-throughput sequencing (24), the number of
whole GWAS is on the rise. Efficient and easy-to-use bio-
informatics and data analytics tools are needed to support
biologists in their search for relations between genotype
and phenotype. The development of such software is far
from trivial. It needs to address critical issues such as, on
one hand, computational speed and appropriate statistical
treatment when dealing with low sample-to-feature ratios
and, on the other hand, presentation of results that can
support interactive data exploration. The latter is crucial
as it provides means to biologists to reconnect with their
own data in the absence of constant required interventions
by computer and software specialists. SNPsyn addresses
all these issues with a carefully designed implementation
of selected computational and statistical approaches and
with its intuitive and easy-to-use interactive graphical
interface for explorative analysis of synergistic gene
interactions.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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