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A B S T R A C T

Advancements in radiotherapy auto-segmentation necessitate reliable and efficient workflows. Therefore, a
standardized fully automatic workflow was developed for three commercially available deep learning-based
auto-segmentation applications and compared to a manual workflow for safety and efficiency. The workflow
underwent safety evaluation with failure mode and effects analysis. Notably, eight failure modes were reduced,
including seven with severity factors ≥7, indicating the effect on patients, and two with Risk Priority Number
value >125, which assesses relative risk level. Efficiency, measured by mouse clicks, showed zero clicks with the
automatic workflow. This automation illustrated improvement in both safety and efficiency of workflow.

1. Introduction

To allow conformal and accurate treatment planning in radio-
therapy, precise delineation of the target volume and organs at risk
(OARs) is of utmost importance [1]. Manual contouring on the
Computed Tomography (CT) images used for planning (planning-CT) is
considered the gold standard [2].

In the last two decades, significant progress has been made in
implementing multi-modality imaging with image registration [3,4] and
dynamic image series [5,6], allowing for much higher precision in the
delineation of target volumes and OARs. However, even with all tools at
hand, delineation remains time-consuming. Additionally, delineation is
subjective and dependent on the observer, as has been shown by
numerous articles on inter-observer [7,8], intra-observer [9], as well as
inter- and intra-institute [10] contouring variations. To overcome these
issues, auto-contouring (or auto-segmentation) methods have been
developed to complement manual delineation [11]. Furthermore, a
modern radiotherapy workflow, including contouring, is complex and
requires highly qualified staff. This complexity arises from the
advancement of techniques aimed at precisely delivering target volumes

while minimizing damage to surrounding healthy tissue. Therefore, the
time needed to apply this workflow increases significantly. Automation
of this workflow offers a possible solution to manage resource con-
straints [12].

Recently, several commercially available deep learning-based auto-
segmentation (DL-Segmentation) applications have been developed.
Clinical evaluation of these applications has already been performed
[13–16]. However, their integration in a fully automated workflow has
not yet been widely reported. The purpose of this paper is twofold.
Firstly, to design a standardized, fully automatic workflow for three DL-
Segmentation applications, and secondly, to evaluate the safety and
efficiency of this automated workflow in comparison to the manual
workflow.

2. Materials and methods

2.1. Deep-learning based auto-segmentation applications

The fully automatic workflow was evaluated using three DL-
Segmentation applications. Contour ProtégéAI (Application A),
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developed by MIM Software Inc. (Cleveland, OH, US), is an artificial
neural network model based on the U-Net architecture composed of a
convolutional encoding and decoding unit [17]. Syngo.via (Application
B), from SIEMENS Healthineers (Erlangen, Germany), is a Deep Image-
to-Image Network based on a convolutional encoder–decoder architec-
ture combined with multi-level feature concatenation. Additional con-
volutional layers are used compared to traditional U-Net [18]. MVISION
(Application C) (Helsinki, Finland) is a convolutional neural network
that utilizes on an encoder-decoder architecture, similar to 3D U-Net and
with more recent residual block [19].

All three DL-Segmentation applications allow the automation of
tasks based on incoming data. Subsequently, the data can be automati-
cally exported to another location. Before integration in the workflow,
the structures required by the department can be selected and their
properties can be adjusted for each segmentation module.

2.2. Fully automatic workflow

The planning CT-set was automatically transferred to ARIA database
via DICOM following the completion of CT simulation reconstruction.
Subsequently, a binary plug-in script, created using Eclipse Scripting
APITM (Varian Medical Systems, Palo Alto) and Structured Query Lan-
guage, was used to transfer these CT images from the ARIA database to
the DL-Segmentation software database. To execute this process, a

database daemon was created on the server hosting the ARIA database,
enabling selective retrieval of CT images for each patient and their
export to a dedicated database.

Once the images reached the DL-Segmentation application database,
the server was configured to automatically trigger the relevant seg-
mentationmodule, based on the anatomical region specified in the series
description within the CT DICOM-header. After segmentation, only the
structure set containing the segmented structures was automatically
transferred to the ARIA database. Finally, this structure set was auto-
matically associated with the corresponding CT set already existing in
the ARIA database through a unique identifier in the DICOM-tags.

The automated workflow was developed to be flexible to changes.
For example, relocating an application to a new server requires updating
DICOM server entities (IP-address, AE-title, and port) in the script and
database daemon. Similarly, updating segmentation modules necessi-
tates modifying their identifiers in the automation process. Multiple
segmentation modules can also be applied to a single CT set via this
automation, particularly if the region of interest covers multiple body
parts.

2.3. Safety

The safety of the fully automatic workflow was assessed through a
failure modes and effects analysis (FMEA) [20]. This method involves

Fig. 1. Manual and automated workflow with their potential identified failure modes listed under each steps. CT: Computed Tomography; DL-Seg appli: DL-
Segmentation application; DB: database.
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evaluating the potential failure modes and their subsequent impact on a
process component if preventive actions are not taken into account. The
analysis was carried out by a multidisciplinary team consisting of a
quality coordinator, three medical physicists, one radiation oncologist,
and four radiation therapists.

The application of the FMEA method comprised multiple steps.
Initially, a process tree was created, identifying all subprocesses starting
from the completion of the CT simulation until the creation of a structure
set ready for review. In the following step, potential failure modes, along
with their causes and effects, were identified within each subprocess.

In accordance with the FMEA methodology, three parameters were
quantitatively evaluated for each potential failure mode. Occurrence (O)
is the likelihood of a failure mode occurring; Severity (S) is the degree of
severity of an undetected failure mode; Detectability (D) is the likeli-
hood of a failure mode not being detected.

Each parameter was rated on a scale from 1 to 10. The product of
these three parameters yielded a metric known as the Risk Priority
Number (RPN): RPN = O × S × D. The highest RPN value assigned to a
failure mode signified it as the most frequent, the most severe, and the
least detectable.

2.4. Efficiency

The metric used to assess the efficiency of the fully automatic
workflow was the number of mouse clicks required from the conclusion
of the CT simulation to the point where the structures were ready for
review.

3. Results

In the process tree of the manual workflow, eleven potential failure
modes were identified from the completion of the CT simulation until

the structures were ready for review (supplementary material). The
automated workflow reduced certain subprocesses from the manual
workflow, leading to a decrease of eight identified failure modes (Fig. 1).

Furthermore, the manual workflow exhibited seven failure modes
with a severity factor equal to or greater than 7. All of them were
eliminated using the automatic workflow. Additionally, two failure
modes had an RPN exceeding 125 with the manual workflow. After
implementation of the automatic workflow, both were eliminated.
Nonetheless, the severity of one individual failure mode, namely the
selection of an incorrect CT protocol during the simulation, increased
within the automated workflow, resulting in the value rising from 4 to 7
(Table 1).

The required number of mouse clicks, from the completion of the CT
simulation until the structures were ready for review, decreased from
37, 45, and 30 in the manual workflow for Application A, B, and C,
respectively, to zero clicks in the fully automatic workflow (Table 2).

4. Discussion

In our department, a standardized fully automatic workflow was
implemented utilizing three DL-Segmentation applications for all tumor
localizations. This workflow allowed to use a recent auto-segmentation
technique for all patients without increasing the initial radiotherapy
workflow. The automated process ran completely in the background,
allowing concurrent TPS use for other tasks. Compared to the manual
workflow, this automated approach proved safer and more efficient, as
evaluated by the FMEA method and the number of mouse clicks.

The manual workflow used in clinical practice for modern radio-
therapy is complex and time-consuming [21,22]. Users need to under-
stand each step thoroughly and apply it cautiously to prevent failure
modes. Despite appropriate training and awareness, avoiding failure
modes entirely remains challenging. Furthermore, efficiency gains are

Table 1
Potential failure modes identified and their occurrence (O), severity (S), detectability (D) and Risk Priority Number (RPN) values for manual and automatic workflow.
DL-Seg: DL-Segmentation.

Location Failure Modes Manual Workflow Automatic Workflow

O S D RPN O S D RPN

CT Patient simulated with incorrect CT protocol 1 4 2 8 1 7 2 14

Shared Folder Import incorrect patient 2 10 1 20 / / / /

ARIA Open incorrect patient 1 10 1 10 / / / /
Choice of wrong CT-set 5 7 9 315 / / / /

Export error to DL-Seg application 8 2 1 16 8 2 1 16

DL-Seg Open incorrect patient 4 10 1 40 / / / /
Choice of wrong CT images 2 7 2 28 / / / /

Choice of incorrect Auto-Segmentation module 7 7 2 98 / / / /
Not saved in the DL-Seg application 6 2 1 12 / / / /
Choice of incorrect structure set 5 7 8 280 / / / /
Export error to ARIA database 1 2 1 2 1 2 1 2

Table 2
Number of required mouse clicks for each subprocess within the manual workflow of the three DL-Segmentation (DL-Seg) applications and the automatic workflow.

Sub-processes Manual Workflow Automatic Workflow
(clicks)

Application A
(clicks)

Application B
(clicks)

Application C
(clicks)

Import CT-set from shared folder to ARIA database 11 11 11 /
Export to DL-Segmentation database 8 8 8 /
Open patient and CT 3 11 4 /
Auto-Segmentation 5 6 5 /
Save and export to ARIA database 10 9 2 /
TOTAL 37 45 30 0
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desired as a manual workflow is time- and resource-consuming. To
overcome these issues, an in-house automated workflow was developed
and implemented.

Improving safety is important when applying new workflows in
clinical practice [23,24]. Using the FMEA method, we showed an
enhancement in safety when automating a previous manual workflow.
In this automated process, importantly, two failure modes with the
highest RPN values (>125) were eliminated. A failure mode with an
RPN value higher than 125 is identified as high risk and it is recom-
mended to take preventive action [20]. Furthermore, it is reported that
the potential for serious toxicity for organs at risk begins when a failure
mode has a severity factor of 7 [20]. An automated workflow could
successfully address and avoid such failure modes in seven cases. A
possible explanation of these result is that automation reduces user
intervention and therefore increase safety. Veronese et al. [25] similarly
concluded that minimizing the amount of tools and software used per
operator in the radiotherapy process contributes to reducing the fre-
quency of failure modes and, consequently, decreasing the overall risk of
accidents.

Although the automated workflow effectively resolved many failure
modes, an unexpected observation was that the severity of one partic-
ular failure mode increased. This particular issue originated from the
selection of an incorrect CT protocol during the simulation, leading to
the incorrect application of the auto-segmentation module associated to
the anatomical region. In the automated process, the corresponding
auto-segmentation module was assigned using the series description in
the DICOM- header, which was directly linked to the identification of the
CT protocol. Considering that the occurrence factor and the detectability
factor value were at their minimum, resulting in a small RPN, the like-
lihood of this failure mode occurring on a patient is low. In the future
clearer description of the scan protocols in combination with specific
training for the operators may reduce this risk factor.

Additionally, the manual workflow required a different number of
mouse clicks for each application. This variation was principally due to
the procedures of opening, closing, and exporting CT-set within each
application. With the automatic workflow, the number of mouse clicks
decreased for each application, which demonstrates an enhanced effi-
ciency [26,27]. Nowadays, radiotherapy departments are increasing
their focus on efficiency as modern radiotherapy is time- and resource-
consuming, as was mentioned before. Note that there is a relationship
between the number of mouse clicks and the potential failure mode
considering that the reduction of these clicks not only saved time but
could also lead to a reduction in potential failure modes, as less manual
interference is needed.

The major strength of this work lies in the general and rapid appli-
cability in daily clinic of the automated workflow we developed, and
this for all users of the TPS used in this study. Small modifications in the
script need to be made in the DICOM server entities, such as the IP-
address, AE-title, and port for different DL-Segmentation applications.
Consequently, the proposed workflow can be also easily adapted for
another application or an in-house developed auto-segmentation soft-
ware at the condition that the software has a database and a database
daemon. Additionally, the enhanced safety is important, as more and
more daily interest is directed towards quality assurance. We acknowl-
edge however that the FMEA method used is a subjective method of
analysis, as this is expert-opinion driven. Nevertheless, this analysis was
the most suited for assessment of patient safety of workflows composed
of subprocesses [28]. Other more quantitative assessments of risk, like
the analysis of Ford et al. [29] are mainly useful for the prevention of
pretreatment error, as they demonstrated how employing a clinical error
database can identify common failure modes and assess the effectiveness
of quality control strategies for standard radiotherapy. To further
enhance this automated workflow, in the future more work is needed to
establish periodic quality assurance by applying well-known test CT-set
to the automatic workflow. Additionally, it would be of interest to assess
each DL-Segmentation application using an FMEA method because deep

learning models are not perfect and can by itself generate failure modes
[30].

In conclusion, an in-house fully automated workflow for three DL-
Segmentation applications was developed. This automation, reducing
manual subprocesses, improved both safety and efficiency compared to
the manual workflow. This was shown through enhanced risk and
severity of failure modes using the FMEA analysis, and the reduction of
mouse clicks respectively. However, selecting the wrong CT protocol
slightly increased the risk of one failure mode. This emphasizes the
importance of starting processes correctly and recognizing the factors
and triggers that affect their effectiveness.
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